A Two-Queue Model with Alternating Limited Service and State-Dependent Setups

E.M.M. Winands, I.J.B.F. Adan and G.J.J.A.N. van Houtum

Eindhoven University of Technology

FIFTH INTERNATIONAL CONFERENCE ON Analysis of Manufacturing Systems - Production Management May 24, 2005
Stochastic Economic Lot Scheduling Problem

- Multiple products;
- Single machine;
- Only one product can be produced at a time;
- Bottleneck (expensive machine);
- Holding costs;
- Backorder costs;
- Setup costs and setup times;
- Make-to-stock.
Goal

Minimization of total costs:

1. Holding costs;
2. Backorder costs;
3. Setup costs.

- *short cycles*: lead to frequent production opportunities;
- *large cycles*: decrease setup frequencies.
Base-stock policy

Federgruen and Katalan [1996, 1998]

• *Fixed production sequence*:
 – Order and frequency in which products are produced.

• *Base-stock policy*:
 – Continue production until the target inventory level b_i is reached.

Drawbacks

• Setups are incurred even when there is no shortfall;

• One product may occupy the machine for a long period of time.
Base-stock policy

Federgruen and Katalan [1996, 1998]

• Fixed production sequence:
 – Order and frequency in which products are produced.

• Base-stock policy:
 – Continue production until the target inventory level b_i is reached.

Drawbacks

• Setups are incurred even when there is no shortfall (state-dependent setups);

• One product may occupy the machine for a long period of time (quantity-limited base-stock policy, i.e., produce until either the target inventory level b_i is reached or a maximum number of items has been produced).
Overview

- Model;
- Analysis;
- Numerical evaluation;
- Future research.
Model

- 2 independent products;
- Demand for item i follows a Poisson process with rate λ_i;
- Individual production times are generally distributed;
- Setup times are generally distributed;
- Setups are state-dependent;
- When the system is idle, the machine is turned off;
- Item 1 is produced according to a standard base-stock policy;
- Item 2 is produced according to the quantity-limited base-stock policy.

The goal of our research is to get more insight in the effect of the quantity-limited base-stock policy on the total costs.
Total costs

- \(K_i \): setup costs of item \(i \);
- \(h_i \): holding costs of item \(i \);
- \(p_i \): backorder costs of item \(i \).

\[
F = \sum_{i=1}^{2} \frac{K_i}{E[C]} + \sum_{i=1}^{2} E[h_i I_i^+ + p_i I_i^-],
\]

with \(E[C] \) the mean cycle length and \(I_i(t) \) the inventory level of item \(i \).
Specific realization

\[I_i(t) = b_i - L_i(t), \quad t \geq 0, \quad i = 1, 2, \]

where \(L_i(t) \) represents the shortfall of station \(i \) at time \(t \).
Optimal base-stock levels

\[F = \sum_{i=1}^{2} \frac{K_i}{E[C]} + \sum_{i=1}^{2} E[h_i I_i^+ + p_i I_i^-] \]

\[= \sum_{i=1}^{2} \frac{K_i}{E[C]} + \sum_{i=1}^{2} (h_i E[(b_i - L_i)^+] + p_i E[(L_i - b_i)^+]). \]

- Since the distribution of \(L_i \) is independent of \(b_i \), the optimal target inventory level \(b_i^* \) for given \(k \) is as follows (newsboy problem)

\[b_i^* = \min \{ n \in \mathbb{N} | P[L_i \leq n] \geq \frac{p_i}{p_i + h_i} \}. \]
Optimization procedure

1. Compute the shortfall, and thus the stock level, distribution for given k;
2. Compute optimal base-stock levels given this distribution;
 - Solution of newsboy equations.
Derivation shortfall distributions

Derivation queue sizes distributions for given k

Distribution of queue size L_i is derived in the paper by a generating function approach.
Optimization procedure

1. Compute the shortfall, and thus the stock level, distribution for given k;
 - Generating function approach.
2. Compute optimal base-stock levels given this distribution;
 - Solution of newsboy equations.
Numerical evaluation (I)

(1. exhaustive 2. k-limited)

\[\lambda_1 = \lambda_2 = 0.45, \quad \beta_1 = \beta_2 = 1 \quad (\text{mean production time}), \]
\[p_1 = 2, \quad h_1 = 1, \quad p_2 = 1, \quad h_2 = 0.5. \]
Numerical evaluation (II)

(I. exhaustive 2. k-limited)

\[\lambda_1 = 0.675, \quad \lambda_2 = 0.225, \quad \beta_1 = \beta_2 = 1, \quad p_1 = p_2 = 1.5, \quad h_1 = h_2 = 0.75. \]
Conclusion

(1. exhaustive 2. k-limited)

• k increases:
 – Costs and base-stock level of item 1 increase;
 – Costs and base-stock level of item 2 decrease.

• ρ_1 increases or ρ_2 decreases:
 – Base-stock level of item 1 increases;
 – Base-stock level of item 2 decreases.

• ρ_1 decreases or ρ_2 increases:
 – Base-stock level of item 1 decreases;
 – Base-stock level of item 2 increases.
Future research

- ≥ 2 products;
- optimization of k;
- multi-echelon;
-