Education

  • Diploma. Department of Mathematics, Aristotle University of Thessaloniki (2008).
  • Msc, Information Systems, Greek Open Univesity (2014)

Research Interests

  • Educational Process Mining on data collected through the use of robots for educational purposes
  • E-learning of programming lanquages with the use of robots
  • Robotics

Teaching Activities

  • Professor of Mathematics at secondary education (2021-)
  • Substitute Professor of Mathematics at secondary education (2012 - 2021)
  • Subsitute Professor of Mathematics at secondary education (2008 - 2010)

Journals


Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.


M. Rousouliotis, M. Vasileiou, N. Manos, E. Kavallieratou, Employing an underwater vehicle in education as a learning tool for Python programming, Computer Applications in Engineering Education, Vol. 32, No. 1, pp. e22693, 2024, Wiley, (to_appear), https://doi.org/10.1002/cae.22693, indexed in SCI-E, IF = 2.9
 

Abstract
Getting students motivated and interested in their education can be challenging in any classroom setting, even more so in an online learning environment. In this spectrum, educational robotics (ER) has demonstrated numerous advantages in the educational environment, not only by facilitating teaching, but also enabling the cultivation of manyfold skills, including creativity, problem-solving, and teamwork. Meanwhile, many methods have been developed with the aid of technology to improve the teaching process and boost students' ability to learn. Blended learning is one approach that integrates conventional classroom methods with digital resources in an effort to foster students' creativity. But how can blended learning be combined with robotics? The objective of this paper is to evaluate the impact of employing an underwater vehicle, called educational underwater vehicle (EDUV), in conjunction with a dedicated programming learning platform within the context of a programming course that is offered at the high school level. In this work, this platform is utilized by students in secondary education, and a survey was conducted prior and after using the underwater vehicle's platform based on two questionnaires. The survey included 112 Greek participants, 64 males and 48 females in the age range of 14–18 years old. The experimental results show an increase in their motivation and creativity. In other words, they are more engaged in the classroom and the lesson becomes more enjoyable. More specifically, the survey revealed that most participants are familiar with computers but have limited knowledge of robotics and programming. After training on the EDUV platform, participants showed a significant increase in correct responses for Python and Blockly environments, with an average of 50.7% in four programming-related questions. The platform also reduced “do not know” replies, which means that the student's self-esteem increased. The paired sample T-test showed that the EDUV platform positively influenced participants' perceptions of robotics and motivated them to further their education. In this paper, the related work is discussed, and the architecture of the vehicle is analyzed, along with the integration with the online platform. In addition, the methodology performed is explained and divided into steps. Finally, the experimental results are discussed. Instructions, 3D models, and code can be found in the github repository https://github.com/MariosVasileiou/EDUV.

M. Rousouliotis, M. Vasileiou, N. Manos, E. Kavallieratou, EL Greco Platform: A novel Python programming learning platform that uses a real robot, Computer Applications in Engineering Education, pp. e22742, 2024, Wiley, (to_appear), https://doi.org/10.1002/cae.22742, indexed in SCI-E, IF = 2.9
 

Abstract
This paper introduces the El Greco Platform, a Python programming platform for distance learning that employs an educational robot. This website allows prospective learners to remotely control El Greco, a social humanoid robot designed to be cost-effective, simple to construct, and appropriate for use in education. El Greco is capable of performing multiple tasks, including combined movements. These Robot capabilities can be programmed using either Python code or the Blockly library, which adds an editor to an application that visualizes coding concepts as interlocking blocks. Programming a robot appears to be a significantly more effective and creative method for students to learn a programming language. This educational tool was designed primarily for use by students and allows anyone to learn Python while controlling a robot for free. El Greco Platform features gamification elements that increase the enjoyment and engagement of the learning experience while reinforcing the concepts taught. The survey results on students aged 13–18 revealed that the El Greco Platform captivated the study participants and positively affected their attitudes toward programming and robotics. In addition, it significantly impacted their comprehension of programming and motivated them to seek additional opportunities to expand their knowledge of robotics and programming.

K. Karampidis, M. Rousouliotis, E. Linardos, E. Kavallieratou, A comprehensive survey of fingerprint presentation attack detection, Journal of Surveillance, Security and Safety, 2021, (to_appear), , IF =
 

Abstract
Nowadays, the number of people that utilize either digital applications or machines is increasing exponentially. Therefore, trustworthy verification schemes are required to ensure security and to authenticate the identity of an individual. Since traditional passwords have become more vulnerable to attack, the need to adopt new verification schemes is now compulsory. Biometric traits have gained significant interest in this area in recent years due to their uniqueness, ease of use and development, user convenience and security. Biometric traits cannot be borrowed, stolen or forgotten like traditional passwords or RFID cards. Fingerprints represent one of the most utilized biometric factors. In contrast to popular opinion, fingerprint recognition is not an inviolable technique. Given that biometric authentication systems are now widely employed, fingerprint presentation attack detection has become crucial. In this review, we investigate fingerprint presentation attack detection by highlighting the recent advances in this field and addressing all the disadvantages of the utilization of fingerprints as a biometric authentication factor. Both hardware- and software-based state-of-the-art methods are thoroughly presented and analyzed for identifying real fingerprints from artificial ones to help researchers to design securer biometric systems.

Conferences


Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.


M. Rousouliotis, M. Vasileiou, N. Manos, E. Kavallieratou, Using a Robot to Teach Python, 14th International Conference on Robotics in Education (RiE), Balogh, R., Obdržálek, D., Christoforou, E., (ed), (eds), (to_appear), Apr, 2023, Limassol, Cyprus, Springer, https://doi.org/10.1007/978-3-031-38454-...
 

Abstract
Educational robotics is rooted in Constructionism and allows learners to investigate and discover new concepts. It would appear that learning a programming language while programming a robot is more motivating and productive than conventional methods. El Greco platform is an educational platform built to teach Python. Users can control El Greco from any computer connected to the Internet due to the platform’s web-based interface. El Greco is a social humanoid robot built to be affordable and appropriate for use in education. Potential users can use Python direct code entry or the Blockly library to control El Greco. The Blockly library embeds an editor in an application to represent coding notions like interlocking blocks. Unique functions that control El Greco were created. The inserted code can be executed on the website or by the Robot. The user can view the result of code execution through a live-streaming window. The El Greco platform has been designed with students in mind but is available to anyone at no cost.

Books


Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.


Chapters in Books


Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.


Conferences Proceedings Editor


Copyright Notice: This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted or mass reproduced without the explicit permission of the copyright holder.