First-Order Logic

Knowledge Interchange Format (KIF)

Professor Richard Fikes

CS222
Winter 2003

Computer Science Department
Stanford University

KR Language Components

◆ A logical formalism
 ▪ Syntax for wffs
 ▪ Vocabulary of logical symbols (e.g., AND, OR, NOT, =>, <=>)
 ▪ Interpretation semantics for the logical symbols
 E.g., “(=> A B)” is true if and only if B is true or A is false.

◆ An ontology
 ▪ Vocabulary of non-logical symbols
 > Relations, functions, constants
 ▪ Definitions of non-primitive symbols
 E.g., (=> (Bachelor ?x) (AND (Man ?x) (Unmarried ?x)))
 ▪ Axioms restricting the interpretations of primitive symbols
 E.g., (=> (Person ?x) (Gender (Mother ?x) Female))

◆ A proof theory
 ▪ Specification of the reasoning steps that are logically sound
 E.g., From “(=> S1 S2)” and “S1”, conclude “S2”.
Knowledge Interchange Format

Interlingua for Multi-Use Knowledge

Language 1 Language 2 ... Language n

K I F

KB Library

◆ Knowledge Interchange Format (KIF)
 ‣ First-order symbolic logic with equality
 ‣ Includes numbers, lists, and strings
 ‣ Linear ASCII syntax
 ‣ In the process of becoming an ISO standard

Conceptualization

◆ Set of objects about which knowledge is being expressed
 ‣ Objects can be –
 > Concrete Clyde, my car
 > Abstract Justice, 2
 > Primitive Resister
 > Composite Electric circuit
 > Fictional Sherlock Holmes
 ‣ Objects always in the KIF conceptualization
 > Real and complex numbers
 > All finite lists of objects
 > Words
 > ASCII characters
 > Finite strings of ASCII characters

◆ Set of relations and functions on the objects
Conceptualization

- Set of objects about which knowledge is being expressed
- Set of relations and functions on the objects
 - Relation
 > Entity having an extension that is a set of finite sequences of objects
 E.g., Parent: {<Richard Earl> <Richard Polly> <Debbie Don> ... }
 - Relation \(R \) is functional on a sequence \(\langle O_1, ..., O_n \rangle \) just in case there is exactly one object \(V \) in the conceptualization such that \(\langle O_1, ..., O_n, V \rangle \) is in the extension of \(R \)
 - Function
 > Relation \(R \) such that for every sequence \(\langle O_1, ..., O_n, V \rangle \) in the extension of \(R \), \(R \) is functional in \(\langle O_1, ..., O_n \rangle \)
 E.g., \(+: \{\langle 1 \ 3 \ 4 \rangle \langle 17 \ 23 \ 40 \rangle \langle 2 \ 7 \ 10 \ 12 \ 31 \rangle \} \)
 > The last element of each sequence in the extension of a function is referred to as the value of that sequence

Blocks World

Objects - a, b, c, d, e, table
Blocks World

- **Objects**
 - a, b, c, d, e, table

- **Relations**
 - Above: \{〈a b〉 〈a c〉 〈b c〉 〈d e〉\}
 - Clear: \{〈a〉 〈d〉\}
 - Table: \{〈c〉 〈e〉\}

- **Functions**
 - On: \{〈a b〉 〈b c〉 〈d e〉\}

KIF Syntax

- **Knowledge Base** – Collection of sentences
- **Sentence** – Expression denoting a statement
- **Term** – Expression denoting an object
- **Word** – Letter or digit followed by any number of other legal word characters
 - **Object Variable**
 - Word beginning with “?”
 - E.g., ?x, ?The-First-Murderer
 - **Sequence Variable**
 - Word beginning with “@”
 - E.g., @x, @The-Other-Murderers
 - **Sentence Operator**
 - not, and, or, implies, iff, for all, exists
 - **Constant**
 - All other words
 - E.g., Fred, Block-A, Justice
Term Syntax

- **Constants**
 E.g., Joe, 2

- **Object variables**
 E.g., ?x

- **Function Terms**
 \((\text{function constant} \ <\text{term}>^* \ [\text{sequence variable}]) \)
 E.g., (plus 2 3) (Father-Of Richard) (plus 4 ?x @Other-Addends)

 Denotes the object denoted by the “value” of the function with the given arguments

Sentence Syntax

- **Atomic Sentences**
 \((\text{relation constant} \ <\text{term}>^* \ [\text{sequence variable}]) \)
 E.g, (Parent Richard Earl) (Clear A) (Set-Partition Set1 @Sets)

 Equations
 > \((= <\text{term} > <\text{term}>) \)
 E.g, (= (Father Richard) Earl) (= A B)

- **Logical Sentences**
 \((\text{not} <\text{sentences}>) \)
 \((\text{and} <\text{sentence}>^*) \)
 \((\text{or} <\text{sentence}>^*) \)
 \((\Rightarrow <\text{sentence}> <\text{sentence}>) \)
 \((\Leftrightarrow <\text{sentence}> <\text{sentence}>) \)

- **Quantified Sentences**
 \((\text{forall} <\text{variable}>^*) <\text{sentence}> \)
 \((\text{exists} <\text{variable}>^*) <\text{sentence}> \)
Interpretations

◆ An Interpretation consists of:
 ◆ Universe of discourse (O)
 > The objects and relations in a conceptualization
 ◆ Extension function (ext)
 > Maps a relation into a set of sequences of objects in O
 ◆ Semantic value function (σ)
 > Maps a term to the object in O it denotes
 ◆ Truth value function (τ)
 > Maps a sentence to either “True” or “False

Semantic Value of a Term

◆ Semantic value of a constant
 ◆ σ(<constant>) = <object or relation in O>

◆ Semantic value of a variable
 ◆ σ(<object variable>) = <object in O>
 ◆ σ(<sequence variable>) = (<object in O>)

◆ Semantic value of a function term
 ◆ σ((fn term1 ... term_n)) =
 If σ(fn) is functional in ⟨σ(term1) ... σ(term_n)⟩ –
 Then the object V such that ⟨σ(term1) ... σ(term_n) V⟩ is in set ext(σ(fn))
 Else σ(fn)
 ◆ σ((fn term1 ... term_n @var)) =
 If σ(fn) is functional in ⟨σ(term1) ... σ(term_n) | σ(@var)⟩ –
 Then the object V such that ⟨σ(term1) ... σ(term_n) | σ(@var) V⟩ is in set ext(σ(fn))
 Else σ(fn)
Truth Value of Atomic Sentences

- **Relational sentences**
 \[\tau((\text{rel} \ \text{term}_1 \ldots \text{term}_n)) = \]
 > true when \(\langle \sigma(\text{term}_1), \ldots, \sigma(\text{term}_n) \rangle \) is a member of set \(\text{ext}(\sigma(\text{rel})) \)
 > false otherwise

 \[\tau((\text{rel} \ \text{term}_1 \ldots \text{term}_n \ \text{@var})) = \]
 > true when \(\langle \sigma(\text{term}_1), \ldots, \sigma(\text{term}_n), \sigma(\text{@var}) \rangle \) is a member of set \(\text{ext}(\sigma(\text{rel})) \)
 > false otherwise

- **Equations**
 \[\tau(= \ \text{term}_1 \ \text{term}_2) = \]
 > true when \(\sigma(\text{term}_1) \) and \(\sigma(\text{term}_2) \) are the same object
 > false otherwise

Truth Value of Logical Sentences

- **Negations**
 \[\tau(\text{not} \ \text{sent}) = \]
 > true when \(\tau(\text{sent}) \) is false
 > false otherwise

- **Conjunctions**
 \[\tau(\text{and} \ \text{sent}_1 \ldots \text{sent}_n) = \]
 > true when \(\tau(\text{sent}_i) \) is true for all \(i = 1, \ldots, n \)
 > false otherwise

- **Disjunctions**
 \[\tau(\text{or} \ \text{sent}_1 \ldots \text{sent}_n) = \]
 > true when \(\tau(\text{sent}_i) \) is true for some \(i = 1, \ldots, n \)
 > false otherwise
Truth Value of Logical Sentences

◆ Implications
 ‣ \(\tau((\implies \text{antecedent consequent})) = \)
 \> true when \(\tau(\text{antecedent}) \) is false or when \(\tau(\text{consequent}) \) is true
 \> false otherwise
 ‣ Note: \(\tau((\implies a c)) = \tau((\text{or} \ (\neg a) \ c)) \)

◆ Logical equivalences
 ‣ \(\tau((\iff \text{sent}_1 \text{ sent}_2)) \) =
 \> true when \(\tau(\text{sent}_1) \) is the same as \(\tau(\text{sent}_2) \)
 \> false otherwise
 ‣ Note: \(\tau((\iff s_1 \text{ sent}_2)) = \tau((\text{and} \ (\implies s_1 \text{ sent}_2) \ (\implies s_2 \text{ sent}_1))) \)

Truth Value of Quantified Sentences

◆ I-variant interpretations
 ‣ Let \(I = \langle O, \text{ext}, \sigma, \tau \rangle \) be an interpretation and each of \(v_1,\ldots,v_n \) be variables.
 ‣ An interpretation \(I' = \langle O, \text{ext}, \sigma', \tau \rangle \) is an I-variant on \(v_1,\ldots,v_n \) if \(\sigma' \) differs from \(\sigma \) at most in what it assigns to one or more of \(v_1,\ldots,v_n \).

◆ Existentially quantified sentences
 ‣ \(\tau((\exists \text{ (} v_1,\ldots,v_n \text{) sent})) = \)
 \> true when \(\tau(\text{sent}) \) is true under some I-variant on \(v_1,\ldots,v_n \)
 \> false otherwise

◆ Universally quantified sentences
 ‣ \(\tau((\forall \text{ (} v_1,\ldots,v_n \text{) sent})) = \)
 \> true when \(\tau(\text{sent}) \) is true under every I-variants on \(v_1,\ldots,v_n \)
 \> false otherwise
Digital Circuit C_1

Russell and Norvig, Figure 8.1

Domain Conceptualization

- **Objects**
 - Circuits
 - Signals
 - Gate types
 - Terminals
 - Gates
 - Signal values

- **Relations**
 - Connected: \langleterminal\rangle \langleterminal\rangle
 - Terminal: \langleterminal\rangle
 - ...

- **Functions**
 - Type: \langlegate\rangle \rightarrow \langlegate type\rangle
 - In: \langleindex\rangle \langlegate\rangle \rightarrow \langleinput terminal\rangle
 - Out: \langleindex\rangle \langlegate\rangle \rightarrow \langleoutput terminal\rangle
 - Signal: \langleterminal\rangle \rightarrow \langlesignal value\rangle
Electronic Circuit Domain Theory

- Connected terminals have the same signal

  ```
  (=> (Connected ?t1 ?t2)
      (and (Terminal ?t1) (Terminal ?t2) (= (Signal ?t1) (Signal ?t2))))
  ```

- Relation “Connected” is commutative

  ```
  (<=> (Connected ?t1 ?t2) (Connected ?t2 ?t1))
  ```

- The signal at a terminal is either on or off

  ```
  (<=> (Terminal ?t) (or (Signal ?t On) (Signal ?t Off)))
  ```

- A gate has at least 1 input terminal and 1 output terminal

  ```
  (=> (Gate ?g) (and (Terminal (In ?g 1)) (Terminal (Out ?g 1))))
  ```

OR and AND Gates

- OR gate’s output is off when both of its inputs are off

  ```
  (=> (Type ?g OR)
      (and (Gate ?g)
          (<=> (Signal (Out 1 ?g) Off)
          (and (Signal (In 1 ?g) Off) (Signal (In 2 ?g) Off))))))
  ```

- AND gate’s output is on when both of its inputs are on

  ```
  (=> (Type ?g AND)
      (and (Gate ?g)
          (<=> (Signal (Out 1 ?g) On)
          (and (Signal (In 1 ?g) On) (Signal (In 2 ?g) On))))))
  ```
XOR and NOT Gates

- **XOR gate's output is on when its inputs are different**

 => (Type ?g XOR)
 (and (Gate ?g)
 (Terminal (In 2 ?g))
 (<=> (Signal (Out 1 ?g) On)
 (not (= (Signal (In 1 ?g)) (Signal (In 2 ?g))))))

- **NOT gate's output is different from its inputs**

 => (Type ?g NOT)
 (and (Gate ?g)
 (not (Signal (Out 1 ?g) (Signal (In 1 ?g))))))

Circuit C₁ Representation

- **Gates**
 (Type X₁ XOR) (Type X₂ XOR)
 (Type A₁ AND) (Type A₂ AND)
 (Type O₁ OR)

- **Connections**
 (Connected (Out 1 X₁) (In 1 X₂)) (Connected (In 1 C₁) (In 1 X₁))
 (Connected (Out 1 X₁) (In 2 A₂)) (Connected (In 1 C₁) (In 1 A₁))
 (Connected (Out 1 A₂) (In 1 O₁)) (Connected (In 2 C₁) (In 2 X₁))
 (Connected (Out 1 A₁) (In 2 O₂)) (Connected (In 2 C₁) (In 2 A₁))
 (Connected (Out 1 X₂) (Out 1 C₁)) (Connected (In 3 C₁) (In 2 X₂))
 (Connected (Out 1 O₁) (Out 2 C₁)) (Connected (In 3 C₁) (In 1 A₂))
Family Relationships

- **One’s uncle is** –
 - The brother of one’s father or mother, or
 - The husband of one’s aunt
- \((\iff \text{uncle ?y}) \ (\exists ?x \ (\text{uncle-of ?y ?x})) \)
- \((\iff \text{has-uncle ?x ?y}) \ (\text{uncle-of ?y ?x})) \)
- \((\iff \text{uncle-of ?x ?y}) \)
 - \((\exists ?z \ (\or \ (\and \ (\or \ (\text{mother-of ?z ?y}) \ (\text{father-of ?z ?y})) \ (\text{brother-of ?x ?z})) \ (\and \ (\text{aunt-of ?z ?y}) \ (\text{husband-of ?x ?z}))) \)

- **A widow is a woman who has lost her husband by death and has not remarried**
- **???