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Abstract—We present a small scale sensor network application
as a testbench to explore different setups in terms of hardware/
software, network protocol and data processing/storage scheme
options, focusing on alert-based sensor systems with long idle
times. Our specifications required the deployment of the network
using the MQTT protocol over an encrypted TLS connection.
We focused on using sensor nodes with low-power consumption
profile, as well as on the formalization of the MQTT protocol’s
basic elements, by clearly defining the topic/message scheme used
across the network. In addition, we experimented on how to
combine locally stored information with data from popular cloud-
based platforms and also acquired results regarding the pro-
cessing performance of the nodes using different data exchange
formats and database technologies. Work in progress includes
data preprocessing on the network edge targeting distribution
of the processing power across the network and network-traffic
limitation, and also big data post-processing on server side or on
dedicated high performance nodes to reveal hidden data patterns.
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I. INTRODUCTION

Within the next few years, billions of different types of
connected computing and sensor devices will be used to mon-
itor life in different environments, like home/car applications,
industrial/metropolitan areas, remote wildlife areas and in the
oceans. With the technological progress that has been achieved
during the last decades in domains like networking and In-
ternet of Things (IoT), telecommunications and embedded
electronics, it is now possible for all these devices to form
a huge network acting like a “skin” for our planet [1]. It is
highly likely that even single chip self-powered sensor devices
with networking capabilities can be found in the most remote
areas, pushing data to the Internet. While adding devices to
the network will be a trivial process, computer engineers
already face questions on: i) what kind of network protocol
technologies are suitable for the next years and decades to
support all these new devices, ii) where to store and process
the vast amount of collected data, and iii) how to secure all
these data transmissions, with nearly every computing device
having networking capabilities.

In this paper, by using a small scale sensor network
for environmental and infrastructure monitoring, we try to
provide/improve solutions on the following hw/sw and network
related topics: a) the use of the Message Queuing Teleme-
try Transport (MQTT) machine-to-machine protocol and the
formalization of its data structures (topics/commands format,
use of XML/JSON data format). We chose MQTT because
it has a very small footprint [2] and its implementation is
feasible, even with encrypted data transmissions, on very
small devices. b) Different hw/sw options for the network
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nodes to efficiently handle data in a secure way, c) database
management options to store and share data, d) combining
local data traffic with data stored/retrieved to/from the cloud,
e) data preprocessing on the field to reduce network traffic, and
f) data post-processing (online/offline) on server side to extract
hidden data patterns, using dedicated hardware co-processors,
e.g., Field Programmable Gate Arrays (FPGAs), Graphics
Processing Units (GPUs), etc. The main contribution of our
work is twofold: 1) we improve the formalization of the MQTT
protocol data structures, since no standardized syntax exists at
the moment [3]. Also, since security is the biggest concern
of IT and semiconductor industry [4], as billions of devices
will be connected to the network in the next few years, ii)
we experimented on the encryption mechanism of the MQTT
protocol and how feasible is to apply it, in terms of processing
and power consumption, to very small and resource restricted
devices at network edge. To the best of our knowledge, no
concrete results exist in the literature in this area.

A. Network Topology, Motivation and Design Goals

The topology of our network architecture is presented in
Figure 1. Locally, the highest level of the network is a Linux
server running the MQTT broker (level #2), and managing
the database, which collects incoming data, and an efficient
dashboard to present these data, in a meaningful way, to system
administrators. The server might also have high performance
computing capabilities to process data and may also push data
to other cloud platforms (level #3), like ThingSpeak, Google
Cloud, etc. The server may collect data directly from low level
MQTT client nodes at the edge of the network (level #0), or
intermediate levels with more powerful nodes (level #1) may
filter/compress data to reduce network traffic. Nodes at level
#0 do not establish long-lived connections with the broker
but rather communicate in an alert-based manner to report
data periodically or based on interrup/timeout events. Although
these nodes make use of very low-end hardware, we want them
to be able to: a) connect to the MQTT broker over local/long
range WiFi or 3G/4G networks, b) get into low-power/sleep
mode to save power, but also include hardware that can
support MQTT message encryption using the Transport Layer
Security (TLS) protocol, c) support software execution using
threading and/or interrupts to handle MQTT traffic, as well as
interrupt events from connected sensors, d) support, if possible,
Operating System (OS) and file based software, and e) support
Over the Air (OtA) re-programming and configuration.

One main concern of our work was to be able to efficiently
manage and store incoming data from edge nodes, so that it
becomes easier to process and share the information either in
local level or in the cloud as open data. Shared data, relating to
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local weather, building surveillance, traffic information, etc., in
cloud platforms, can really improve every day life, especially
in small communities like the island of Samos in Greece,
where IT infrastructure is limited. Having open data as a high
level goal, we tried to establish some hard criteria for the topic
names and the content of data messages, the two main data
structures of the MQTT protocol, for which there are no well-
established and accepted formats [3]. Of course, the MQTT
protocol has been utilized in many previous Wireless Sensor
Network (WSN) applications but, most of the times, along with
quite complex and power demanding hardware at the edge of
the network and also without really specifying or providing a
schema of the MQTT data format [5].

In our application, we support the idea that at the edge
of the network, the lowest possible level of hardware should
be used that supports encrypted network connectivity with
low-power consumption. Although MQTT WSN solutions
based on 8-bit uC architectures [6] really favor low power,
unfortunately cannot handle TLS encryption. The use of a
Python based framework along with the Advanced Message
Queuing Protocol (AMQP) has been presented in [7] and while
the protocol favors faster communication throughput using
long-lived node connections, the authors do not provide clear
performance results on the maximum number of supported
nodes or data throughput through the network. Using our
network architecture, we try to provide experimental results
about the MQTT message network throughput supported by
our hardware and also about the maximum number of nodes
that our server/broker can support, by measuring the server
message processing time (refer to Section IV). We have
planned also to measure and report the power profile of our
devices, related to MQTT message traffic and throughput.

II. NETWORK LAYER USING THE MQTT PRrROTOCOL

In our application, we wanted to establish a machine-
to-machine communication, where sensor nodes send short
messages (less than 1K B) to report conditions in a certain
indoor or outdoor area. The MQTT protocol [8] has been used
already in many signaling and control telemetry applications,
so that companies can get millions of products connected to

their servers, and even as a short message chatting platform
(Facebook messenger).

The protocol standard provides the means for the broker
and the client nodes (CN) to create message topics, to which
each node can subscribe and listen to incoming messages or
post data in the form of short messages. The protocol also
specifies three different levels of Quality of Service (QoS)
for the transmitted messages and also provides an encryption
mechanism based on TLS. A connection is made to the broker
and a CN may transmit data or may just listen to some topics.
So, the broker is not aware about the state of the CNs, in
case they are connected but constantly in a passive/listening
mode. Also, despite the fact that there are some restricted/ad-
minsitrative topics, the CNs may freely create new topics and
publish data to them. In terms of message content, the protocol
specifies a type of retained messages (last published data on
the topic) and also a type of last-will message, broadcasted by
the broker in case a CN disconnects in an abnormal way.

In our network, an XML node configuration file is associ-
ated and stored in each network node, including the broker.
This file holds important information about each node: a)
geolocation information, b) type of hardware and attached
sensors, c) type of software and OS, d) type of data types
provided by the sensors, and e) network parameters like ID
and IP address. The content of the configuration file is parsed
during hardware boot by every node and also transmitted by
each CN to the broker during a connection/validation process,
where the broker validates the XML file against a defined
schema. The CN validation process is further explained in the
following sections. After a successful CN node validation by
the broker, the XML configuration file is stored in the database
and associated to the specific CN, while work in progress will
also provide a mechanism so that the server can modify and
update OtA the configuration file of a CN.

Handling of the XML configuration file in our application
is closely related to the formalization of the MQTT protocol
data structures. Each CN, according to the number and type
of attached sensors, is able to automatically create the name
of the topic that will use to publish its data, by extracting
the related fields from its configuration file. In this way, each
CN subscribes to: a) a control topic used to send and receive
commands to/from the broker, b) as many as needed data-
related topics to publish data from its sensors, and c) a number
of system topics to receive broadcasted information from the
broker, e.g., time, network status, etc. The format of these three
topics is the following (system topics start with a ‘$’):
/metworkName/nodelD/country/districtState/cityTown/areaDe-
scription/area/buidling/room/control [(str) command¥*, (str)
parameterl, (str) paramter2, (str) parameter3]

/networkName/nodelD/country/districtState/cityTown/areaDe-
scription/area/buidling/room/sensorDataName [(str) dataType,
(str) dataRangeUnits, (str, int, float) data]
$/metworkName/nodelD/country/districtState/cityTown/areaD-
escription/area/buidling/room/sysTopicName [(str) dataType,
(str;, int, float) data]

where in the control topic the supported command may contain
up to three parameters, and in the sensor data topic the data
type, units and range are provided for each piece of data.
Using these topics’ formats, data from CNs are tagged and
characterized in terms of location and sensor type, while node



administration is very modular, since to add more sensors or
change the location of a CN, only an update to the XML
configuration file is required. By using a standardized format,
collecting data from the topic name or the message content
and storing information to a database on the server becomes
easier, using powerful text processing languages like Python.

III. CLIENT NODES (CNS) SPECIFICATION

Our network configuration on the edge consists of two
kinds of client nodes: a) ESP8266 and b) Raspberry Pi, both
equipped with software that has a rigid but easily expandable
structure. The low-power and efficient Espressif ESP8266 WiFi
SoC integrates a 32-bit single core RISC processor clocked at
S8OMHz (up to 160M H z), combined with 160K B of RAM
and External Flash support (up to 16M B). Considered as
open hardware, ESP8266 modules come in many variations
from different vendors. For our implementation, the NodeMCU
development kit was used with an ESP8266 (ESP-12E) WiFi
module from Ai-thinker, providing an additional 4M B of
Flash memory (ROM). The SoC has various interfaces includ-
ing GPIO and ADC for digital and analog inputs and out-
puts. As measurement devices, a digital temperature/humidity
DHT?22 sensor was used, along with an analog/digital flame
sensor. Raspberry Pi 3 Model B was our board of choice as a
second edge node. This version of the popular board computer
utilizes a 64-bit quad core 1.2GHz processor and 1GB of
RAM for more demanding tasks. Combined with Raspberry
Pi Camera V2 module, this node handles images and video
streams for further analysis and object recognition. In terms of
software, we adopted an OS based approach for all the nodes,
so that we can easily handle encryption certification files and
other file-based operations, and also be able to support, using
interrupts/threads, at least the two concurrent operations of: i)
MQTT message traffic and ii) sensor data acquisition.

The nodes are constantly connected and able to respond
to commands in the control topic. We introduced three client
functional modes (INITial, ACTIVE, BLOCKED) that define
the connection status of the CNs. During INIT mode, each
node is validated by the server according to the content of
its XML file and the server sets its functional mode either to
ACTIVE or BLOCKED. While in ACTIVE mode, a severity
mode should also be set by each CN, related to the status of the
acquired measurements. The default severity mode after boot
is NORMAL, in which the CN acquires measurements every
60sec. Every change in the severity mode is reported to the
server using dedicated commands in the control topic. Changes
of the severity mode are triggered by the CNs, according to
data preprocessing functions applied on acquired data. This
process allows critical conditions already identified on the
field, to be indicated by the CNs with severity mode changes,
while further data post-processing is done on server side. The
sensor sampling interval is decreased to 40sec in WARNING
mode and to 20sec in DANGER mode.

For the ESP boards we used the MicroPython OS [9].
This lite version of Python 3 has many CPython functions on
a small package, well suited for uCs. MicroPython provides
a Python programming (cross-)platform (all nodes running
Python) with a dedicated file system. It features OtA file
updates, making prototyping extremely versatile. File system
offers multi-directory distributed coding with separated Python
modules that increases flexibility and code maintenance. Dur-
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Fig. 2. MQTT main topics and available functional/severity modes for CNs

ing code development we came across major RAM memory
issues, solved with memory optimized programming and ker-
nel recompilation to increase memory utilization. A lot of
effort was required, using multiple interrupt service routines,
to implement a pseudo-thread mechanism in Python (MicroPy-
thon does not support real threads) to handle concurrently
the MQTT client and sensor data acquisition. Using also a
data regression function, ESP generates a linear model of the
temperature measurements, to handle severity mode transitions
according to the temperature increase/descrease rate.

The Raspberry board hosts a Linux Debian 9 OS (Raspbian
Stretch), equipped with Python packages to run our project’s
scripts. As a programming language we used Python 2.7 to
take advantage of its cross-platform compatibility and get all
of our CNs running similar Python code. The main purpose of
the Raspberry node is to capture images on a timed interval
and communicate directly with cloud services, like the Google
Vision API, for basic image analysis. Analysis result are
filtered and provided to the MQTT server for storage and
further analysis. In this way, the Raspberry node provides
data to the local MQTT network, but also uses powerful
processing resources from the cloud. Work in progress includes
a mechanism to be developed, so, if required, images can be
transferred from the Raspberry board to the server for further
analysis, using an SFTP connection (MQTT does not favor file
transfers). Severity mode transitions are handled according to
the type and number of identified objects on the images, while
the mode transition rules can be changed on the fly (type of
identified objects that trigger transitions) using commands on
the control topic. Figure 2 summarizes the main MQTT topics
and the functional/severity modes of the CNs.

Both nodes in our setup exchange TLS encrypted messages,
using locally stored certificates. On the ESP8266 board we had
to heavily optimize our code and recompile the MicroPython
kernel in order to save some KBs of memory. To the best of our
knowledge, the ESP8266 board (NodeMCU) is the smallest,
very low-power, embedded CPU plus WiFi transceiver com-
bined System on Chip (SoC), that, along with the MicroPython
OS, can handle concurrently the MQTT encrypted messages,
sensor data acquisition and support OtA software updates.

IV. SERVER NODE (SN) SPECIFICATION

In our network topology, we use a server PC that acts
both as the MQTT network broker and a network client. A
64-bit 3.3GHz Intel i3 processor with 3GB of RAM can
handle all the tasks of our small scale network. The server
hosts an Ubuntu 16.04 OS and is used as: a) MQTT broker,



b) database (DB) and DB management, and c) Web Server for
data visualization and cloud services communication.

As MQTT broker, we used the Mosquitto Broker with the
MQTT protocol ver. 3.1. The broker forces TLS encryption
to all the clients, as well as password protected connection.
Encryption is achieved with server self-signed certificates. To
store and manage our data efficiently, we chose the Post-
greSQL database that offers the advantages of relational DBs
(indices, triggers, structured data) and some non-SQL DB
characteristics (JSON data type), without any major sacrifice
on speed. For data visualization and other web services inte-
gration, our node acts also as a web server, providing open
data in the widely acceptable JSON format.

The server’s software is also implemented in Python 2.7
as a state machine, to realize the several states related to
the CNs functional/severity modes implementation model. As
previously described, a configuration file in XML format that
follows a specific XML schema is used for every node, as
node identity. There is a strict process of node validation upon
connection to the broker that strengthens node integrity. The
configuration files of all nodes are stored in our database along
with live data, such as the functional and the severity mode of
each node. In the event of an invalid configuration file, the node
attempting the connection is blocked. The main task of the
SN is to receive all incoming messages from clients, perform
message analysis, handle the data and respond accordingly.

A multi-threaded approach was used in Python to develop
the software on the server, demonstrating the potential of the
language in parallel processing environments. In our imple-
mentation, we handle the message load by using two buffers
and a function that checks for messages periodically. The main
buffer holds all incoming messages by continuously checking
the broker, while a parallel thread ensures constant availability
by moving the captured messages to a second (temporary)
buffer for further actions. The content of this buffer is filtered
according to message topic and sensor data are stored into the
DB using 1 thread per message. With this approach, our low-
end server can easily process and store large bursts of sensor
measurements from a single client, averaging on a satisfying
60 messages/sec without message loss. To simulate multi-
client conditions, we developed some benchmarks that include
simultaneous bursts from more clients. For our benchmarks,
we used a sample sensor data message (<1KB) that we send
to the server repeatedly, using QoS of level 2, to ensure that the
message is delivered exactly once. As we can see from Table I,
throughput tends to decline either with increased client count
or burst size. The last case with 500 connected clients sending
1 msg. each is the most realistic one, as it simulates a common
condition in alert-based networks. We simulated the 500 clients
using separate threads running in parallel, achieving an average
delay of 14msec between messages. It is very encouraging that
our server manages to maintain its peak performance under
these circumstances. Experiments with level 1 QoS messages
showed a 40% increase in performance, due to the faster
transmission process. Work in progress includes hardware up-
grades and software optimizations. Python code, state machine
diagrams (SN, CN), and the CN XML configuration file and
schema can be found in our code repository [10].

V. CONCLUSIONS AND WORK IN PROGRESS

We presented a small scale MQTT-based sensor network
implementation to i) explore different setups on the formaliza-

TABLE 1. SERVER MESSAGE THROUGHPUT FOR DIFFERENT # OF CNS

AND SIZE OF MESSAGE BURSTS (MESSAGE SIZE <1KB)

# of CNs | # of messages (burst size) / CN | Stored messages / sec
1 1000 70
1 2000 65
1 10000 44
10 1000 34
500 1 71

tion of the protocol data structures. We experimented also ii) on
the use of very low-power sensor nodes to handle concurrently
encrypted message traffic and sensor data acquisition. More
powerful nodes are used to iii) combine locally available data
with powerful hardware cloud-based services. Moreover, our
work includes iv) experimenting with database setups, using
non-SQL and relational characteristics, to efficiently store
sensor measurements and expose them as public open data.
Working on these four different areas of a sensor network
setup, we believe that we have established a standardized way
on how to setup a network with the use of the MQTT protocol,
based on alert-based sensors and on how to store, expose and
combine acquired data with cloud based information and ser-
vices. Work is in progress to increase the size of our network,
using FPGA-based nodes to implement data preprocessing
and reduce network traffic and server processing load. Also,
work is in progress to finalize the server dashboard, connect
it to popular cloud platforms to improve data visualization
and alert triggering (emails, sms, etc.), implement big data
post-processing algorithms using dedicated server hardware to
discover hidden data patterns in the acquired measurements,
and optimize the use of the network by small communities in
terms of infrastructure and environmental monitoring.
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