
Oracle-based Logic Locking Attacks:
Protect the Oracle Not Only the Netlist

Emmanouil Kalligeros
Information & Comm. Systems Eng.

Dept., University of the Aegean
Samos, Greece

kalliger@aegean.gr

Nikolaos Karousos
Information & Comm. Systems Eng.

Dept., University of the Aegean
Samos, Greece

nkarousos@aegean.gr

Irene G. Karybali
Information & Comm. Systems Eng.

Dept., University of the Aegean
Samos, Greece

karybali@aegean.gr

Abstract—Logic locking has received a lot of attention in the
literature due to its very attractive hardware-security charac-
teristics: it can protect against IP piracy and overproduction
throughout the whole IC supply chain. However, a large class
of logic-locking attacks, the oracle-based ones, take advantage
of a functional copy of the chip, the oracle, to extract the key
that protects the chip. So far, the techniques dealing with oracle-
based attacks focus on the netlist that the attacker possesses,
assuming that the oracle is always available. For this reason,
they are usually overcome by new attacks. In this paper, we
propose a hardware security scheme that targets the protection
of the oracle circuit, by locking the circuit when the, necessary for
setting the inputs and observing the outputs, scan in/out process
begins. Hence, no correct input/output pairs can be acquired
to perform the attacks. The proposed scheme is not based on
controlling global signals like test enable or scan enable, whose
values can be easily suppressed by the attacker. Security threats
are identified, discussed and addressed. The developed scheme
is combined with a traditional logic locking technique with high
output corruptibility, to achieve increased levels of protection.

Index Terms—hardware security, logic locking, oracle-based
attacks, scan chains, LFSRs

I. INTRODUCTION

The growing cost of semiconductor fabrication and the

high complexity of modern Integrated Circuits (ICs) has

transformed ICs’ production model in the last two decades [1].

Instead of full in-house development (from concept to chip),

some major steps of the manufacturing process, including

fabrication, are, most of times, outsourced. However, the

cost and time-to-market reduction benefits of this approach

are counterbalanced by security vulnerabilities; Intellectual

Property (IP) piracy, overproduction, counterfeiting, reverse

engineering and hardware Trojan insertion have emerged as

significant threats of the semiconductor industry.

Logic locking is a promising hardware security approach

that protects against IP piracy and overproduction. Logic

locking methods insert some additional hardware (usually key

gates in the combinational logic) and a number of extra key

inputs into a design. The added locking hardware renders the

design unusable if the correct key is not applied to the key

inputs. This secret key is written into a tamper-proof memory

by the IC designer, after fabrication. One of the important

advantages of logic locking is that it can protect against an

attacker anywhere in the IC supply chain (SoC integrator,

foundry, test, end user). Although both combinational and

sequential logic locking techniques exist, in this paper we

focus on the combinational ones that, currently, attract a lot

of interest in the literature.
The first combinational logic locking techniques [2], [3]

were vulnerable to the hill-climbing [4] and key sensitization

[5] attacks. For this reason, test-aware [4] and strong logic

locking [5] were proposed. However, everything changed with

the advent of the SAT attack [6]. The SAT attack employs

Boolean satisfiability (SAT) solvers to compute input patterns,

which, along with the correct outputs from a functional copy

of the chip (called, hereafter, oracle circuit) that the attacker

possesses, are used to iteratively rule out sets of incorrect keys,

until the correct or an equivalent key is identified. Although,

key sensitization and hill-climbing attacks were both oracle-

based (i.e., they require the correct circuit responses on specific

inputs1, that are acquired by means of the oracle circuit), the

SAT attack was (and still is) so powerful, that easily defeated

all combinational logic locking techniques of the time. SAT

demonstrated the advantages that an adversary has, when a

strong attack algorithm is combined with correct responses

from the oracle circuit.
After the SAT attack, a tug of war between countermeasures

and new attacks has started. The first techniques against SAT

attack were SARLock [7] and Anti-SAT [8]. However, the

signal probability skew (SPS) attack [9] was proposed to defeat

Anti-SAT, while the Double DIP [10] and the Approximate

SAT [11] attacks were proposed against SARLock. Moreover,

both SARLock and Anti-SAT are vulnerable to removal [9],

bypass [12] and bit-flipping [13] attacks. To resist these new

attacks, cyclic logic locking [14] was proposed, but it was sub-

sequently overcome by the CycSAT attack [15]. Concurrently

with cyclic logic locking, TTLock [16] was proposed that was

later generalized to the stripped functionality logic locking

(SFLL) technique [17]. However, recently, functional analysis

attacks on logic locking (FALL) [18] and other attacks [19]

were proposed that defeat SFLL. It is important to note that

all the aforementioned attacks, except for FALL, are oracle-

based ones. However, FALL is not a general-purpose attack

1Actually, the hill-climbing attack can also use the correct responses of
the activated circuit to test patterns, which are provided by the designer for
manufacturing testing purposes.

939978-3-9819263-4-7/DATE20/ c©2020 EDAA

Fig. 1. Basic version of the proposed oracle protection scheme.

like SAT, but it can be applied only to locking methods that

use cube stripping and programmable functionality restoration

[18], like [16], [17]. Apart from FALL, some other oracle-less

logic locking attacks exist [20]–[22]. In this paper though, we

deal with the oracle-based ones, since they constitute a large

class of threats against logic locking.

Oracle-based attacks can be completely prevented if the

oracle circuit is not available to the attacker. Such attacks on

combinational logic locking techniques rely on the circuit’s

scan operation during testing, so as to gain access to the

oracle. Therefore, a simple way to thwart them would be to

permanently disable the scan chains (e.g., via fuses), after

manufacturing testing and before activation. However, this

contradicts the periodic-testing needs of modern ICs [1].

To this end, in this paper we propose a new logic locking

scheme that locks the circuit when scan operation begins, thus

disabling the attacker from acquiring correct input/output pairs

and, hence, performing an oracle-based attack. To the best

of our knowledge, no other oracle-protection logic locking

scheme has been presented in the literature so far. As this is

a new approach on IC protection via logic locking, a possible

threat model is identified and various attack scenarios are

examined. To respond to these attacks, design guidelines and

modifications of the described scheme are proposed. Since

the introduced scheme targets oracle protection, it should be

combined with one of the existing logic locking schemes to

disturb circuit functionality when a wrong key is applied.

Therefore, an additional advantage is that a technique that of-

fers high output-corruptibility can be chosen for this purpose.

This feature (i.e., output corruption), although important, is not

offered by the already existing, state-of-the-art, SAT-resistant

logic locking techniques.

II. THE PROPOSED ORACLE PROTECTION SCHEME

The basic version of the proposed oracle protection (OraP)

scheme is shown in Fig. 1. It consists of a key register that is

configured as a Linear Feedback Shift Register (LFSR – the

reason for this decision will be explained later). Unlocking of

a protected chip is a multi-cycle sequential process. During

that process, the LFSR is fed with multiple seeds (the term

comes from the well-known concept of reseeding in testing),

which are noted as “Key sequence” in Fig. 1. We call it “key

sequence” because it comprises the secret values that the chip

owner stores in the tamper-proof memory. However, none of

these values is the key that unlocks the circuit. The final n-bit

key of the locked combinational circuit is the final state of the

Fig. 2. Circuit of each cell of the key-generating LFSR.

register, when the whole key sequence has been fed to it. At

that point, the shift operation of the LFSR is disabled and the

final key is available at its outputs.

There are a few points that should be clarified about the

above described unlocking scheme. First of all, each individual

part of the key sequence (i.e., LFSR seed) does not have to be

fed into the LFSR right after the other. There can be a number

of LFSR free-run cycles between two reseedings (by having

stored the all-zero value in a memory position and pushing it

to the LFSR in those cycles). Actually, this can also be done

after the last seed, as well. Moreover, the number of free-run

cycles between two seeds does not have to be constant but

can vary. Another issue concerns the volume of the reseeding

points (i.e., the XOR gates) inside the LFSR. In Fig. 1, all

internal LFSR nodes are used for this purpose, which is the

most general case. However, the designer may choose fewer

such points. The same holds for the LFSR’s feedback: not all

internal nodes are connected to it, but only those specified by

the characteristic polynomial. This is why the corresponding

lines are dashed in Fig. 1.

As mentioned in Sect. I, the main feature of the OraP

scheme is that it locks the circuit when testing is applied.

To do so, along with every LFSR flip-flop, a pulse generator

circuit [23], drawn in blue in Fig. 2, is utilized. This circuit’s

output is always 1, except for the case that the scan enable
signal makes a transition from 0 to 1 (i.e., it is activated).

At this point, a 0-pulse is produced by the generator. This

pulse resets the flip-flops containing the protected circuit’s key.

Pulse generators are frequently used in VLSI circuits, even

for producing regular clocks in high-end microprocessors [23].

The width of the pulse depends on the length of the generator’s

inverter chain. In Fig. 2, three inverters are shown, which is a

common choice in such circuits. Note that we use a separate

pulse generator for every key-register cell and that these cells

are connected to the locked circuit’s scan chains (as also shown

in Fig. 1). These choices have been done for security purposes

and will be explained in the following Section. We should

also mention that pulse generators are needed only in the

key-register cells and not in the rest of the circuit’s flip-flops.

Finally, since the key register is a special purpose register that

is used, apart from testing, only at the beginning of normal

circuit operation, no extra reset signal is required. The logic-

locking control logic can activate scan enable when normal

operation begins (before unlocking), to reset this register.

A. Security Analysis of the OraP Scheme

As mentioned above, all oracle-guided attacks on combi-

national logic locking techniques, are based on the assump-

940 Design, Automation And Test in Europe (DATE 2020)

tion that access to a functional combinational circuit that is

protected by such a technique, is provided through its scan

chains. So, scan operation is necessary for these attacks to be

applicable. By clearing the key register when scan operation

begins, and before the first scan shift, we ensure that the oracle

circuit will be unavailable when the attacker will try to acquire

the correct outputs for specific inputs, via the scan in – capture
– scan out operation of the circuit.

Mind though that there is a case, in which the oracle circuit

scans out a correct response; this response is the last one of

the unlocked circuit operation, before the scan enable signal is

activated. As a result, one might think that an attacker may be

able to determine a primary inputs’ sequence that will bring

the circuit’s state flip-flops to a required (by the employed

attack) value during unlocked sequential operation, and then

activate scan mode to get the corresponding output. However,

to do so, the attacker should be able to analyze and simulate

the netlist with the correct key values (remember that we refer

to an unlocked-mode state sequence). Since the key values are

not known, this attack scenario is not possible.

From the above discussion, we deduce that since the OraP

locking scheme does not allow the exploitation of the oracle

circuit, all oracle-based attacks that require correct circuit

outputs are thwarted. Such attacks are the SAT attack and

its variants [6], [11], [12] and the hill-climbing attack [4].

Concerning the hill-climbing attack, please recall that instead

of a functional circuit, known test responses of the unlocked

circuit can be utilized to retrieve the secret key. However,

according to the OraP scheme, the circuit is tested locked and,

as a result, any test responses will correspond to the locked

circuit. So, the application of this attack would not reveal the

circuit’s key. SPS and removal attacks [9] are not applicable

to OraP, since the proposed scheme neither has signals with

high probability skew, nor by removing the LFSR and/or the

key gates that are connected to its outputs, the circuit will

unlock. FALL [18] attack is not applicable as well, since OraP

does not use cube stripping and programmable functionality

restoration. We remind that FALL is an oracle-less attack,

targeting specific logic locking techniques. Finally, concerning

the key sensitization attack [5], it should be noted that although

the LFSR values can be propagated to the circuit’s outputs, this

can be done in test mode, in which the circuit is locked and

the LFSR is reset. Therefore, the valid circuit key will not be

revealed.

III. SECURITY THREATS AND COUNTERMEASURES

First of all, let us explain why we avoided a simpler solution

that would involve checking and controlling global signals

like test enable, scan enable or reset. For example, similarly

to what we propose, we could check a chip’s test enable or

scan enable to generate a reset signal to the key register to

clear it, when testing or scan operation begins. However, in

such a case, an attacker in an untrusted foundry could act as

follows: they could fabricate the chip having inserted a Trojan

that, when triggered, would suppress the value of the reset

signal to the key register. By having done so, they could then

buy a functional chip from the open market, trigger the Trojan

(e.g., with a specific input sequence) and use scan mode on

the unlocked circuit to perform an attack and extract the secret

key. It is important to note that the modified by the attacker

chip must maintain its original functionality. This is due to

the fact that fabricated chips return to their legal owner for

activation, which means that they can undergo some standard

tests in the owner’s trusted environment, while side channel

analysis techniques can be also applied to them.

Based on the above threat model, in the following we

describe possible attacks to the proposed OraP locking scheme

and the corresponding countermeasures. Before proceeding,

we should mention that we deal only with attacks at the

logic level. To thwart different kinds of attacks, like optical or

electrical probing, a multi-layered protection approach should

be followed [1]. The OraP scheme serves as one of the layers

of such an approach.

a) Suppress the scan enable signal locally, in every
LFSR cell: The attacker may choose to use a Trojan so

as to suppress the scan enable signal that resets the LFSR

cells. However, since this signal controls the scan operation

of those cells as well, the attacker cannot intervene in the

stem of scan enable to the LFSR, because it will also disable

its scan functionality, as the LFSR is, by design, part of the

scan chains. This is actually one of the two reasons for the

participation of the LFSR cells in the scan chains. The other

one is for improving the fault coverage, as explained in [24]

and will be demonstrated in the following Section.

To disable resetting of every LFSR cell, while, at the same

time, keeping the circuit’s original functionality (see above),

the attacker should at minimum replace the NAND2 gate of

each pulse generator with a NAND3. The extra input will

be driven by the Trojan trigger circuit. Considering an 128-

bit key register, which is a common size in logic locking,

this modification translates to an overhead of, roughly, 64
NAND2 gates2. Mind that this overhead concerns only the

Trojan payload, which is on top of the Trojan trigger circuit,

and that modern side-channel Trojan detection techniques like

[25], can detect very small Trojans in large circuits by using

circuit partitioning and transition-fault test patterns. Therefore,

the chip owner can apply such a technique to detect the Trojan,

after chip activation. To facilitate detection, the LFSR cells

could be kept in the same circuit segment, or, at least, should

not be evenly distributed in different segments.

In general, with the proposed OraP design and some extra

guidelines and modifications that will be discussed shortly, we

try to increase the hardware overhead and, hence, the power

consumption of a possible Trojan, so as to be detectable by

side-channel analysis techniques.

b) Suppress scan enable for the whole LFSR and exclude
it from the scan chains: The attacker, by using a Trojan, may

disable the LFSR altogether when in scan mode (so as to keep

its state – valid circuit key) and exclude it from the scan chains

2Alternatively, the attacker can add a pull-up transistor to the reset input of
every LFSR flip-flop, which, due to its increased width, yields similar cost.

Design, Automation And Test in Europe (DATE 2020) 941

(so as to still be able to apply input vectors and get responses

from the circuit). To achieve the latter, a 2-to-1 multiplexer

should be placed after every LFSR cell that drives a “normal”

circuit flip-flop in the scan chains, so as the LFSR cell to be

bypassed. The select signal of the multiplexer will be driven

by the Trojan trigger circuit.

As a countermeasure that increases the hardware overhead

of such a modification, all LFSR cells should be placed, in

the design phase, before “normal” circuit flip-flops in the scan

chains. In case that multiple LFSR cells have been appointed to

the same scan chain, they should be placed in an interleaved

manner with “normal” flip-flops. In this way, although the

attacker avoids the cost of the modified NAND gate in each

pulse generator (since they control, on a single point, the stem

of the scan enable signal to the LFSR), they have to insert

an additional multiplexer for every LFSR cell. As a result, the

final Trojan overhead would be greater than the previous case.

c) Use a shadow register to store the secret key: A

shadow register is another option for the attacker. It can be

used to store the value of the key register and either apply it to

the circuit during testing, or even scan it out through the scan

chains. In both cases, n flip-flops are needed for the shadow

register, along with n 2-to-1 multiplexers either for connecting

the shadow register to the key gates, or for transforming its

flip-flops to their scan version, so as to connect them in the

scan chains. Therefore, this attack yields a fairly big Trojan

payload circuit.

d) Use XOR trees to produce the final key-bit values: It is

well-known that XOR gates are linear circuits, that is, at their

outputs, linear expressions of their inputs are generated. This

feature is extensively exploited in LFSR-based test pattern

compression/ decompression. If we assume that the attacker,

by analyzing the logic locking control logic, can identify the

specific times that LFSR reseedings occur and the number

of free-run cycles after feeding every seed to the LFSR,

they could replace the unknown key-bit values with binary

variables and perform a symbolic simulation of the LFSR

(i.e., simulation with variables instead of binary values). At

the end of this simulation process, each LFSR cell would

contain a linear expression of the variables that have been

fed to it (as their name reveals, LFSRs are linear circuits

too, since they consist only of memory elements and XOR

gates). Consequently, for every LFSR cell, the attacker could

construct a XOR tree that would produce the corresponding

linear expression, and connect it (through multiplexers) either

to the circuit’s key gates or to scan cells for direct output.

First of all, let us clarify that this attack requires separate

registers for every seed in the key sequence that is fed to

the LFSR. This is because only one seed can be at the

outputs of the memory every time, but all of them are needed

concurrently for feeding the XOR trees. The most important

thing though, is that the complexity of the XOR trees depends

on the LFSR’s characteristic polynomial, the number of seeds

fed to the LFSR, the number and positions of reseeding points

inside the LFSR, and the number of free-run cycles between

reseedings. By choosing these features carefully, the resulting

Fig. 3. Modified OraP logic locking scheme.

linear expressions will be complex enough to require big

XOR trees for their implementation, which impose significant

hardware overhead as a Trojan’s payload circuit. This is

exactly the reason for utilizing an LFSR as a key register:

it can “mix up” the seeds’ values and create more complex

linear expressions, as compared to a simple shift register.

e) A hardware Trojan to take advantage of the correct
scanned-out response: Instead of trying to control the key

register, a Trojan may be inserted to control the circuit’s

“normal” flip-flops, in order to take advantage of the only

correct response that the oracle circuit can scan out (refer to

Sect. II-A). This can be done in the following way: an input

to the oracle circuit is calculated, according to the employed

oracle-based attack. This input is shifted into the circuit in

test mode. Since in test mode, the LFSR has been already

reset. When the shift-in operation is completed, the circuit’s

mode is changed by the attacker to normal. At this point,

the (triggered) Trojan disables the reset and enable signals of

“normal” flip-flops and let the logic locking controller unlock

the circuit. After unlocking, the correct key is in the LFSR,

while “normal” flip-flops have the desired (by the attack)

values, since they have not been reset and updated. The circuit

is then let operate for one clock cycle, to capture its response

on those values, and then test mode is activated again to scan

out the response. Note that in this case, the Trojan payload

circuit is fairly small (just a few gates), since a small number

of signals need to be checked or controlled to perform the

described operation.

To respond to this attack, we propose a modification to

the basic OraP scheme of Fig. 1; the basic idea behind

this modification is that we use responses of the locked
circuit for the generation of the correct key. Since, according

to the proposed scheme, circuit unlocking is a multi-cycle

process, during this process the still locked circuit generates

some (wrong) output responses. These responses are normally

stored in the circuit’s flip-flops. However, the attacker disables

these flip-flops for preserving the, necessary for the attack,

input value. Nevertheless, if the responses produced during

unlocking are fed to the LFSR, they become necessary for

unlocking the circuit. As a result, the attacker cannot freeze

the flip-flops because, if they do so, wrong values will be fed

to the LFSR and the correct key will not be generated.

The modified OraP scheme is shown in Fig. 3. Note that

there is no need for extra XOR gates since some of the circuit’s

flip-flops can be chosen to feed half of the LFSR reseeding

points, while the remaining half are driven by the tamper-

942 Design, Automation And Test in Europe (DATE 2020)

TABLE I
HAMMING DISTANCE (HD), AREA AND DELAY OVERHEAD RESULTS

Circuit # Gates # Outputs of comb. LFSR size # Inputs / Ctrl gate [26] HD (%) Ar. Ovhd (%) Del. Ovhd (%)
s38417 8709 1742 256 3 39.45 33.51 14.29
s38584 11448 1730 186 3 50.00 19.73 0

b17 29267 1512 256 3 35.39 11.21 0
b18 97569 3343 97 5 29.49 1.80 0
b19 196855 6672 208 5 31.00 1.97 4.51
b20 17648 512 236 3 42.27 27.16 21.21
b21 17972 512 229 3 41.00 25.66 19.40
b22 26195 757 243 3 40.37 18.68 18.84

proof memory. This does not compromise the strength of the

key sequence, since the same sequence can be applied from

half the reseeding points in the double number of cycles. We

should also mention that to have better control on the LFSR

values, the reseeding points of the key sequence should be

interleaved with those from the circuit’s flip-flops. This is not

shown in Fig. 3 for simplicity. The most interesting feature

of the scheme of Fig. 3 is that wrong circuit responses are

necessary for unlocking the correct circuit functionality.

IV. EXPERIMENTAL RESULTS

We have combined the proposed OraP scheme with

weighted logic locking [26], which is a fault-analysis-based

approach with high output corruptibility, and have applied

them to the combinational part of the largest ISCAS’89 and

ITC’99 benchmark circuits. It is well-known that one of the

main disadvantages of SAT-resistant logic locking techniques

is that they offer low output corruptibility, a fact that hinders

their functional-obfuscation ability [1]. Weighted logic locking

combines multiple key inputs in a control gate (AND/NAND)

that precedes every XOR/XNOR key gate, increasing this way

the actuation probability of the key gates and, hence, output

corruptibility. To get output corruption with a high enough

Hamming Distance (HD) over correct responses, for circuits

with many outputs, in our experiments we set 256 as maximum

key size. However, we stopped with smaller key sizes if output

corruptibility with HD = 50% had been achieved, which is

the optimal HD value [3], or if output corruptibility, in terms

of HD, saturated. Concerning the size of the control gates

of weighted logic locking, to reduce hardware overhead we

kept them with three inputs, except for the two larger ITC’99

benchmarks, for which we chose control gates with five inputs.

The corresponding results are shown in Table I. In the first

three columns, information about the utilized benchmark cir-

cuits is provided (name, number of gates without inverters, and

number of outputs of their combinational part). The sizes of

the employed LFSRs (that equal the corresponding key sizes)

are shown in the fourth column, while the number of inputs of

the control gates for the application of weighted logic locking,

is given in the fifth column. HD, area and delay overhead

results are presented in the last three columns of Table I.

For calculating HD, the valid and various random keys, along

with long pseudorandom input sequences (a few hundreds of

thousands of patterns), were applied to the circuits. The ABC

synthesis tool [27] was used to estimate the area (in terms

of gate count) and delay overhead (in terms of number of

levels), after optimizing/resynthesizing both the original and

the protected circuit, using the commands strash → refactor
→ rewrite, as in [12]. We note that in the results of Table I,

we have also taken into account the pulse generator circuits, as

well as the XOR gates required for reseeding the LFSRs and

for implementing their characteristic polynomials (we used

polynomials with a new tap after every eight LFSR cells – this

choice leads to high controllability of the LFSR state through

reseeding, with relatively low hardware cost). The flip-flops

of the LFSRs have not been considered, since the use of key

registers is common to all logic locking techniques [1].

As far as HD results are concerned, as can be seen from

Table I, high enough values have been achieved (on average,

41.4% for the six smaller circuits and 30.2% for the two larger

ones, with too many outputs). Although 50% is the optimal

value for HD, as has been shown in [26], for circuits with a

great number of outputs, smaller HD values are sufficient to

create high ambiguity to the attacker. For example, HD = 31%

for b19 means that, on average, 2068 out of its 6672 outputs

(not always the same) are corrupted, in the presence of a

random key. Output corruption is very important for logic

locking, since it renders the design unusable as a black box,

which is one of the main objectives of hardware obfuscation

[1]. In contrast to state-of-art SAT-resistant logic locking

techniques, OraP allows high output corruptibility since it

thwarts SAT attack and its variants by disabling the oracle.

Concerning area and delay overheads, although small, they

are more noticeable in smaller circuits, due to the fact that

we allowed big key sizes, to get output corruptibility as close

to the optimal value as possible. The designer, though, can

exploit the tradeoff between overhead and output corruptibility

for such circuits. However, there is a clear overhead-reduction

trend as circuit size increases, while for the largest ITC’99

benchmarks (b18 and b19), which are more representative of

large industrial designs, both area and delay overheads are

negligible. Please note that 0% delay overhead means that no

key gates have been inserted in a circuit’s critical path(s).

Since, according to the proposed OraP scheme, the protected

circuits are tested locked, we performed a set of experiments to

investigate their testability. We employed the Atalanta ATPG

tool for generating stuck-at fault test patterns, setting high-

effort values to its parameters. Test patterns were generated for

both the original version of each circuit and the one protected

with OraP + weighted logic locking. The tool was allowed to

Design, Automation And Test in Europe (DATE 2020) 943

TABLE II
STUCK-AT-FAULT COVERAGE (FC) AND REDUNDANT + ABORTED FAULTS

RESULTS

Benchmark Original version Protected version
Circuit FC (%) # Red.+Abrt faults FC (%) # Red.+Abrt faults
s38417 99.47 165 99.50 165
s38584 95.85 1506 96.65 1265

b17 97.23 2122 99.08 717
b18 99.43 1513 99.45 1468
b19 99.03 5165 99.21 4254
b20 99.29 324 99.33 318
b21 99.18 381 99.30 340
b22 99.48 352 99.50 346

set any value to the key inputs, since the key register (i.e.,

the LFSR) is connected to the circuit’s scan chains. We note

that for b18 and b19, we first used HOPE fault simulator [28]

with a large number of pseudorandom patterns to reduce the

number of faults handled by Atalanta.
The testability results are shown in Table II. As can be

seen, fault coverage improves for the protected version of all

examined benchmark circuits. This is explained by the fact that

key gates act as control points during testing, while key inputs

act as control inputs. So, if key inputs can be set freely when

the circuit is in test mode, as in the case of the OraP scheme,

then the protected circuit’s testability improves. Actually, in

Table II we can observe that, although the protected circuits

are larger than the original ones, due to the extra control

and key gates they contain and, hence, have more faults, the

number of faults that are identified as redundant or aborted by

the ATPG tool is smaller for the protected circuits. This also

demonstrates the improved testability of those circuits.

V. CONCLUSIONS

To remove from the hands of an adversary their most

important weapon when deploying an oracle-based attack, the

oracle circuit, an oracle protection logic locking scheme, OraP,

was presented in this paper. The baseline functionality of

the OraP scheme is to self-clear its key register when the

circuit’s scan operation is enabled, since the adversary gets

the required oracle responses by means of this operation.

However, to do so in a secure manner, various attack scenarios

were identified and analyzed to help shaping the final version

of the OraP scheme. An important advantage of OraP is

that it can be combined with locking techniques with high

output corruptibility, since attacks like SAT and its variants are

disabled by the unavailability of the oracle circuit. Therefore,

we have ended up with a SAT-resistant scheme that offers high

corruption at the circuit’s outputs, while, at the same time, it

cannot be threatened by any, current or future, oracle-based

attack.

REFERENCES

[1] M. T. Rahman et al., “Defense-in-depth: A recipe for logic locking
to prevail,” CoRR, vol. abs/1907.08863, 2019. [Online]. Available:
http://arxiv.org/abs/1907.08863v1

[2] J. A. Roy, F. Koushanfar, and I. L. Markov, “Ending Piracy of Integrated
Circuits,” IEEE Computer, vol. 43, pp. 30–38, Oct. 2010.

[3] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE Trans.
Comput., vol. 64, pp. 410–424, Feb. 2015.

[4] S. M. Plaza and I. L. Markov, “Solving the third-shift problem in
IC piracy with test-aware logic locking,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 34, pp. 961–971, June 2015.

[5] M. Yasin, J. Rajendran, O. Sinanoglu, and R. Karri, “On improving the
security of logic locking,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 35, pp. 1411–1424, Sept. 2016.

[6] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of
logic encryption algorithms,” in IEEE Int. Symp. on Hardware Oriented
Security and Trust (HOST), 2015, pp. 137–143.

[7] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, “SARLock:
SAT attack resistant logic locking,” in IEEE Int. Symp. on Hardware
Oriented Security and Trust (HOST), 2016, pp. 236–241.

[8] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, pp. 199–207, Feb. 2019.

[9] M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal
attacks on logic locking and camouflaging techniques,” IEEE Trans. on
Emerging Topics in Computing, 2017.

[10] Y. Shen and H. Zhou, “Double DIP: Re-evaluating security of logic en-
cryption algorithms,” in Great Lakes Symp. on VLSI, 2017, pp. 179–184.

[11] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:
Approximately deobfuscating integrated circuits,” in IEEE Int. Symp. on
Hardware Oriented Security and Trust (HOST), 2017, pp. 95–100.

[12] X. Xu, B. Shakya, M. M. Tehranipoor, and D. Forte, “Novel bypass
attack and BDD-based tradeoff analysis against all known logic locking
attacks,” in Int. Conf. on Cryptographic Hardware and Embedded
Systems. Springer, 2017, pp. 189–210.

[13] Y. Shen, A. Rezaei, and H. Zhou, “SAT-based bit-flipping attack on
logic encryptions,” in Design, Automation & Test in Europe Conference
& Exhibition, 2018, pp. 629–632.

[14] K. Shamsi et al., “Cyclic obfuscation for creating SAT-unresolvable
circuits,” in Great Lakes Symp. on VLSI, 2017, pp. 173–178.

[15] H. Zhou, R. Jiang, and S. Kong, “CycSAT: SAT-based attack on cyclic
logic encryptions,” in IEEE/ACM Int. Conf. on Computer-Aided Design,
2017, pp. 49–56.

[16] M. Yasin et al., “What to lock? functional and parametric locking,” in
Great Lakes Symp. on VLSI, 2017, pp. 351–356.

[17] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and
O. Sinanoglu, “Provably-secure logic locking: from theory to practice,”
in ACM/SIGSAC Conf. on Comp. & Comm. Sec., 2017, pp. 1601–1618.

[18] D. Sirone and P. Subramanyan, “Functional analysis attacks on logic
locking,” in Design, Automation & Test in Europe Conference &
Exhibition, 2019, pp. 936–939.

[19] F. Yang, M. Tang, and O. Sinanoglu, “Stripped functionality logic
locking with hamming distance-based restore unit (sfll-hd) – unlocked,”
IEEE Trans. Inf. Forensics Security, vol. 14, pp. 2778–2786, Oct. 2019.

[20] M. E. Massad, J. Zhang, S. Garg, and M. V. Tripunitara, “Logic
locking for secure outsourced chip fabrication: A new attack and
provably secure defense mechanism,” CoRR, vol. abs/1703.10187,
2017. [Online]. Available: http://arxiv.org/abs/1703.10187v1

[21] P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning guided
structural analysis attack on hardware obfuscation,” in Asian Hardware
Oriented Security and Trust Symposium, 2018, pp. 56–61.

[22] A. Chakraborty, Y. Xie, and A. Srivastava, “GPU Obfuscation: Attack
and defense strategies,” in Design Automation Conference (DAC), 2018,
pp. 122:1–122:6.

[23] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and
Systems Perspective. Pearson, 4th edition, 2011.

[24] M. Yasin, S. M. Saeed, J. Rajendran, and O. Sinanoglu, “Activation of
logic encrypted chips: Pre-test or post-test?” in Design, Automation &
Test in Europe Conference & Exhibition, 2016, pp. 139–144.

[25] F. S. Hossain, M. Shintani, M. Inoue, and A. Orailoglu, “Variation-aware
hardware trojan detection through power side-channel,” in IEEE Int. Test
Conference, 2018, pp. 1–10.

[26] N. Karousos, K. Pexaras, I. G. Karybali, and E. Kalligeros, “Weighted
logic locking: A new approach for IC piracy protection,” in IEEE Int.
Symp. on On-Line Testing and Robust System Des., 2017, pp. 221–226.

[27] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification. Springer Berlin
Heidelberg, 2010, pp. 24–40.

[28] H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault simulator
for synchronous sequential circuits,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 15, pp. 1048–1058, Sept. 1996.

944 Design, Automation And Test in Europe (DATE 2020)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

