
An Agent-Based Focused Crawling Framework for
Topic- and Genre-Related Web Document Discovery

Nikolaos Pappas∗
Idiap Research Institute

Rue Marconi 19
Martigny 1920, Switzerland
nikolaos.pappas@idiap.ch

Georgios Katsimpras
University of the Aegean

Department of Information and
Communication Systems Engineering

Karlovassi 83200, Greece
gkatsimpras@gmail.com

Efstathios Stamatatos
University of the Aegean

Department of Information and
Communication Systems Engineering

Karlovassi 83200, Greece
stamatatos@aegean.gr

Abstract—The discovery of web documents about certain topics
is an important task for web-based applications including web
document retrieval, opinion mining and knowledge extraction. In
this paper, we propose an agent-based focused crawling frame-
work able to retrieve topic- and genre-related web documents.
Starting from a simple topic query, a set of focused crawler
agents explore in parallel topic-specific web paths using dynamic
seed URLs that belong to certain web genres and are collected
from web search engines. The agents make use of an internal
mechanism that weighs topic and genre relevance scores of
unvisited web pages. They are able to adapt to the properties
of a given topic by modifying their internal knowledge during
search, handle ambiguous queries, ignore irrelevant pages with
respect to the topic and retrieve collaboratively topic-relevant
web pages. We performed an experimental study to evaluate the
behavior of the agents for a variety of topic queries demonstrating
the benefits and the capabilities of our framework.

Index Terms—web document discovery, focused crawling,
genre-aware crawling, utility-based agents, link analysis

I. INTRODUCTION

The retrieval of relevant documents to a given topic is
a problem that needs to be addressed nowadays taking into
account the vast amount of web sources. Web search engines
are able to retrieve a set of relevant documents based on a
specific query. However, a number of top URLs returned as
a result may contain irrelevant documents regarding the topic
and some of the documents that a user is seeking are possibly
hidden inside the domains of these URLs. A common thing
one can do is to redefine their query in order to retrieve more
specific results that they are interested in, or to follow the links
starting from some of the top URLs returned.

Trying to solve the above problem automatically, there is
a number of possible solutions. For example, a system that
collects all the URLs from a general web search engine for a
given topic and performs Breadth First Search (BFS) until it
retrieves additional related documents. This method is costly
because the search space increases exponentially in each of
the level of the search depth, and cannot scale easily. Instead
of performing a BFS a system could retrieve additional docu-
ments by using the APIs of the major web search engines and

∗Research performed partly while at University of the Aegean and partly
while at Idiap Research Institute.

by searching on the already indexed documents per domain.
However, using APIs involves some shortcomings such as the
usage and query limitations, but most importantly they rely
completely on third-party entities.

A more efficient solution can be obtained by using focused
crawling techniques i.e. targeting the search from the seed
URLs to pages containing a given topic. Since, a single thread
performing this task might be inefficient, it is common to apply
distributed methods to achieve more efficiency. However, the
scoring between the threads concerns a single relevant path in
the Web. Thus, the retrieved pages rely mostly in the initial
seed URLs which will guide the crawler towards the most
relevant sub space of the Web given that prior information.
Exploiting different relevant paths from subsets of the initial
seed URLs for a given topic has not been examined thoroughly
in the literature. Moreover, to our knowledge there is no
related study that adapts dynamically to the topic, handles
topic ambiguities and balances between topic and genre scores.

In our effort, we tackle the problem of web document
retrieval in an automated and real-time manner using a
cost-effective approach. The proposed framework consists of
utility-based agents that start from a set of initial seed URLs
and perform focused crawling in order to retrieve relevant
documents for a given topic. The agents are able to adapt
to the topic by using an internal weighting mechanism which
combines topic and genre relevance scores of unvisited web
pages. Each agent has a priority mechanism that defines the
next crawling step during search and ignores low scored web
pages based on time tokens. In addition, the agents are able to
handle ambiguous queries using a simple approach based on
a specification of irrelevant context keywords. The proposed
framework can be used for a variety of topics, web genres and
applications such as web document retrieval, opinion mining
and knowledge extraction.

The contribution of the present paper is three-fold. Firstly,
we present an agent-based focused crawling framework that
achieves great parallelism and can be applied to a variety of
web-oriented applications. Secondly, we propose a weighting
mechanism for handling together topic and genre relevance
scores for the retrieval of web documents and thirdly we
introduce an approach for dynamic adaptation to the topic that

is based on the Topic Specific Weight Table described in [5].
The remainder of this paper is organized as follows. In

Section II we present the related work on the field of fo-
cused crawling and web document retrieval. In Section III
we describe the architecture of the proposed framework and
the mechanisms used by the utility-based agents. Finally, in
Sections IV, V we provide our experimental study and in
Section VI we conclude the paper by highlighting some future
work directions.

II. RELATED WORK

Numerous techniques for determining the importance of
unvisited URLs with respect to a query exist in the literature.
Many of them exploit textual information, link structure or
even both. Fish Search [7] and Shark Search [11] were some
of the earliest algorithms for crawling pages based on a query.
The Fish Search algorithm is query driven; starting from a
set of seed pages and it considers only those pages that
have content matching a given query and their neighborhoods.
Shark Search is a modification of Fish Search which differs in
two ways: a child inherits a discounted value of the score of
its parent, and this score is combined with a value based on
the anchor text that occurs around the link in the web page.

A subsequent approach was introduced in [3]. They pre-
sented a naive Bayes classifier to calculate a topic-relevance
score for a fetched page and then used this as a ranking score
of the unfetched child pages. In [14], the authors proposed a
naive Best-First crawler which calculates the cosine similarity
of a crawled page to a topic or a query in order to evaluate
the gain of following the links discovered on that page. In [1]
an intelligent crawler able to learn its way to the topic was
proposed. This method combines page content, URL string
information, sibling pages and statistics about relevant pages
in order to assign a priority value to candidate pages. An
alternative method was presented in [10]. The authors used
a complex knowledge representation method to semantically
associate the documents. All terms that are conceptually
similar to the terms of the topic are retrieved from an ontology.
A similar ontology-based focused crawler but serving in the
domain of transport services is discussed in [9].

Diligenti et al. [8] introduced the concept of context graph
which is a learning-based approach that uses a mixture of both
content measures and backward crawling. Another learning-
based approach, which uses a genetic algorithm to compute
the ranking score for a page, taking into account text and link
characteristics of the fetched pages, is presented in Johnson et
al. [13]. A focused crawler approach that uses reinforcement
learning where the crawler is trained off-line using a collection
of pre-fetched documents and hyperlinks, is proposed in
Rennie et al. [17].

Regarding to link analysis, some of the recent examples are
[15], [4] which exploit information extracted from link anal-
ysis based on URL score, anchor score and relevance score.
Other approaches are based on page rank value. Examples of
this approach are presented in [20], based on To-page rank
value, and in [19], based on T page rank. Others are based

on meta search and content block partition, as in [18]. Jamali
et al. [12] used a combination of link structure of the fetched
pages and the content similarity of a document to a certain
domain. This mixture of link structure and content is used to
compute a ranking score for the candidate unfetched pages.
Other approaches include a rule based focused crawler [2].

Another interesting approach that benefits from the best
answers returned by a Web search engine is discussed in [16].
Specific information from a set of documents is used to query a
Web search engine. The top n results returned from the search
engine are used to train a classifier that is used to guide the
crawlers. A more recent approach by Hati et al. [5] (2010)
calculates the url score based on its anchor text relevancy, its
description from Google relevancy, the cohesive text similarity
with topic keywords and the relevancy of its parent pages. The
relevancy score is calculated on the vector space model. In
[2] the authors proposed an architecture using multiple agents
for cooperative information gathering. Assis et al. (2009) [6]
proposed a genre-based crawling approach. It exploits not only
content-related information but also genre information present
in pages to guide the crawling process.

In our effort, we integrated link (similar to [5]) and genre
(similar to [6]) analysis in a unified agent framework. Our
contribution to the link analysis method described in [5] is
the topic disambiguation, the online TSWT calculation, the
dynamic expansion of TSWT during search, independency
from Google’s description and expiration of low prioritized
URLs based on time tokens (see Section III).

III. THE PROPOSED FRAMEWORK

The architecture of the proposed framework is depicted
in Figure 1. The initial coordination of the agents is per-
formed by the Manager, which is based on a set of starting
parameters (number of agents, number of seed URLs, number
of concurrent requests, categories of web pages i.e. genres,
query), it collects the seed URLs from the Seeding Module and
distributes them to a set of focused crawler agents. The seed
URLs are collected dynamically from the major web search
engines (Google, Bing, Yahoo) and belong to specific genres
(Web, News, Discussions, Blogs)

Fig. 1. The architecture of the proposed framework.

A Focused Crawler Agent (FCA) in our framework could

be defined as a utility-based agent i.e. an autonomous entity
which observes the environment (the visited pages and the
unknown URLs it discovers) and directs its activity (prioritizes
URLs to increase the possibility to find and be directed
towards relevant URLs), in order to achieve a specific goal
(retrieve only relevant URLs for a specific topic during its
activity period1). It also uses existing knowledge (TF-IDF in
vector space, relationship between pages and other metrics)
and previous experience in order to achieve its goal (see
Section 3-A1, 3-A2). The internal memory of the agent can be
accessed by an internal Priority Mechanism (see Fig 1) that is
responsible for deciding on the next action of the agent.

The FCAs upon initialization are registered to a Directory
Service (DS) in the database where they store the relevant
URLs they collect during their search. In addition, using their
Priority Mechanism they send requests to the Scheduler which
uses an ordered stack for each agent and it is responsible for
filtering already visited pages and forwarding asynchronous
download requests to the Downloader. The Downloader re-
quests the pages from the Web and returns the responses
asynchronously to the target agent’s page processing function.

Fig. 2. The FCAs following different crawling paths based on the initial
seed URLS. A usage example of internal priority stack during search is also
displayed for the FCA 1.

Figure 2 demonstrates the different paths that the agents
follow and their internal priority stack. In the beginning, the
FCA requests to download the initial seed URLs that are
received upon initialization. For each URL response, it extracts
the child URLs inside the page and uses its Internal Weight
Mechanism in order to weigh the unvisited URLs and assign
them a priority. When the priority is assigned, the URL is
inserted in its internal ordered priority stack. The next step
is selected by the top r priority URLs using the Priority
Mechanism. Therefore, each FCA can handle r concurrent
requests accelerating the discovery of web pages. The top
r URLs are formed as a request packet and are sent to the
Scheduler. The responses come asynchronously (see Fig. 1)
and the agent continues prioritizing and picking the next top
r URLs to follow.

1The activity period ends when the FCA reaches the maximum number of
relevant URLs (predefined goal) or when it has no further move to make.

At the processing stage of a web page, a simple topic
disambiguation is applied for queries which have ambiguous
meaning; all the URL responses that contain irrelevant context
keywords regarding the topic are ignored as well as their
child URLs. The disambiguation is based on a predefined
specification of irrelevant contexts. Despite the simplicity of
this method, the irrelevant pages are reduced significantly and
the system functionality is satisfied.

A. Internal Weight Mechanism

The Internal Weight Mechanism combines topic and genre
relevance scores of unvisited web pages which are calculated
by using TF-IDF metrics, relations between URLs and infor-
mation about each of the crawled pages from the previous
experience of a FCA. Below, we describe the metrics used
and the final calculation of the link score.

1) TF-IDF Measure in Vector Space Model: Starting with
a set of d documents and a set of t terms; the vector-space
model treats each document as a vector v in the t-dimensional
space Rt. Let the term frequency be the number of occurrences
of term ti in the document dj i.e TFi,j . The weighted term
frequency TFW (dj , ti) measures the association of a term ti
with respect to the given document dj :

TFW (dj , ti) =

{
0 if TFi,j = 0
1 + log (1 + log (TFi,j)) otherwise

}
(1)

Finally, TFW from Formula 1 and inverse document frequency
(IDF) are combined together, which forms the TF-IDF mea-
sure of term ti in a specific document dj .

TF-IDF(dj , ti) = TFWdj ,ti ∗ IDFi (2)

The overall weight wti of a term ti in the collection of
documents d is calculated by the formula:

wti =

j∑
i=1

(TF-IDF(dj , ti)) =
j∑

i=1

(TFWdj ,ti ∗ IDFi) (3)

and the normalized weight Wti is calculated by the formula:

Wti =
wti

wmax
(4)

where wmax is the max weight of a term in the set of terms
t. The FCA keeps in its internal knowledge the weights Wti

for each term ti that it finds during its search. The collection
of documents d along with the set of terms t are dynamically
increasing so that the weights for each term are updated when
a term ti appears in a new document dj . A similar update is
performed for the IDFi when a term appears, with respect to
the collection of documents.

2) Topic Specific Weight Table (TSWT) Construction: The
internal knowledge of the FCA that represents its experience
provides enough information for the creation of a Topic
Specific Weight Table (TSWT) for a number of seed URLs.
The agent takes as input the initial seed URLs, visits them and
stores the TF-IDF metrics in the vector-space model. When the
number of the initial seed URLs is reached then the creation of
the TSWT is performed using the Internal Weight Mechanism.

All the terms that have been addressed during the search are
sorted based on the normalized weight Wti and the top k
words represent the TSWT. An example of a TSWT with size
10 from an execution with query Audi is listed in the following
table. The 10 top results of the Web category of Google was
used as seed URLs and contributed to the forming of the
TSWT table. We can observe that the FCA adapted to the
context of the query Audi (Table I).

Keyword Normalized Weight
audi 1.0
hwi 0.94
engine 0.70
car 0.68
volkswagen 0.53
autoblog 0.53
race 0.45
quattro 0.30
union 0.28
german 0.22

TABLE I
AN EXAMPLE OF TSWT FOR THE QUERY Audi.

In our effort, the TSWT calculation is performed online i.e.
during the search procedure. Moreover, we discriminate two
categories of TSWT, namely static and dynamic.

The static category refers to a TSWT with a fixed size (i.e.
consisting of a fixed number of keywords). On one hand, if one
uses a very small size of TSWT, the representation of the topic
will be very poor and on the other hand, if one uses a very
big size of TSWT the representation of the topic will be more
abstract (since there will be many keywords contributing and
it will probably overlap with other topics). Our experiments
on the variation of TSWT, showed that the value of 10 (used
in [5]) is not optimal.

The dynamic category refers to a TSWT that is dynamically
expanded during the search. The dynamic expansion of TSWT
is achieved by the addition to the table of a portion of
top weighted keywords of the most relevant pages (based
on a threshold ranging from 0 to 1) met during the search.
Intuitevely, the highly relevant pages to a topic that are found
during search contribute incrementally to the representation of
the topic, thus an even better adaptation to the topic can be
achieved comparing to a static TSWT (see Section V).

3) Relevance Calculation: Let A be the document vector
(containing the weights of each term) and B the vector which
represents the weights in the TSWT or Genre. The relevance
calculation is performed using the cosine similarity measure.
In the case of Genre the vectors are set by default to the value
of 1. Given two vectors of attributes, A and B, we denote:

Similarity(A,B) = cos(θ) =
A ·B

||A|| · ||B||
(5)

The cosine similarity of vectors A and B will range from 0 to
1, since the term frequencies cannot be negative.

4) Link Score Based on TSWT: When a FCA processes a
document it extracts all the URLs contained in it. The Link

Score assigns scores to the unvisited URLs, using existing
internal knowledge and the metadata of hyperlinks. The un-
visited URLs are modeled as an abstract unvisited page along
with the anchor metadata. For each of the child pages p the
Link Score based on TSWT is calculated as follows:

LST (p) = LinkScoreT (p) = AnchorRelevanceScore(p)

+ UrlRelevanceScore(p)

+ CohesiveTextRelevanceScore(p)

+

n∑
i=1

(ParentRelevanceScore(Pi)) (6)

where p is a child page and Pi from 0 to n are the parent pages
of p. The AnchorRelevanceScore expresses the similarity
between keywords in the TSWT (topic keywords) and anchor
text. It is calculated by the following formula:

AnchorRelevanceScore(p) =

∑
i∈(A∩T) (Wi)

s
(7)

where A is the set of keywords in the anchor metadata, Wi the
weight of the keyword i ∈ (A ∩ T), T is the topic keywords
and s the size of the TSWT. This measure is a normalized
percentage of the words appearing in the anchor metadata
with the keywords in the TSWT. The UrlRelevanceScore
expresses the similarity between keywords in the TSWT (topic
keywords) and URL keywords, and is calculated as follows:

UrlRelevanceScore(p) =

∑
i∈(U∩T) (Wi)

s
(8)

Same as before, U is the set of keywords in the URL,
Wi the weight of the keyword i ∈ (U ∩ T) , the T
is the topic keywords and s the size of the TSWT. The
CohesiveTextRelevanceScore is the score of an unvis-
ited page with respect to topics in the sentence its URL
appears. For the cohesive-text, one sentence or group of
meaningful sentences around the anchor link is extracted.
The CohesiveTextRelevanceScore expresses the similarity
between the keywords in the cohesive-text and the TSWT
(topic keywords) and is calculated as before:

CohesiveTextRelevanceScore(p) =

∑
i∈(C∩T) (Wi)

s
(9)

where C is the set of keywords of the cohesive-text, Wi the
weight of the keyword i ∈ (C ∩ T) , the T is the topic
keywords and s the size of the TSWT.

Finally the ParentRelevanceScore is the relevance of a
parent Pi of the page p with the TSWT, calculated with cosine
similarity of the vector A of the parent page with the vector
B of the TSWT.

ParentRelevanceScore(Pi) = Similarity(APi
, BTSWT) (10)

The vectors containing the weights Wi in the Rt space of the
parent page and TSWT accordingly. This score expresses the
relevance of the parent page with the TSWT.

5) Link Score Based on Genre: It is calculated similarly to
the Link Score based on TSWT, but in this case the vector B
consists of a predefined set of genre keyword specifications of
News, Discussions and Blogs. Since no weights have been cal-
culated for the genre keywords the values for the vector is set
to the default value of 1. The formula for the calculation of this
score is similar to Equation 9: LSG(p) = LinkScoreG(p).
When there are multiple genres defined then the above link
score is calculated for each of them and the maximum score
from all these genres is chosen to participate to the final link
score.

6) Final Link Score Based on Combined Weights: The
final score is composed of the combination of the above
mentioned scores with simple summing and with weighted
mean summing. The simple summing is calculated by the
following formula if we set each of the weights to 1. The
weighted mean summing uses the weights wT and wG as open
parameters that sum up to 1. The formula of the Final Link
Score (FinalLS) for a given page p is provided below:

FinalLS(p) = wT ∗ LST (p)

+wG ∗ LSG(p) (11)

where wT is the weight of the Link Score based on TSWT and
the wG the weight of the Link Score based on Genre. Weight
variations for Final Link Score create different Internal Weight
Mechanisms for the FCAs.

B. Priority Mechanism

The Priority Mechanism is activated each time the FCA
crawls a web page. Initially, it orders the priority stack of
the FCA and then, using a predefined range r, picks the top
r prioritized URLs, forms a request and yields them to the
Scheduler with the defined priority accordingly. Before the
rooting to the Scheduler the URL is loaded to the locked
priority Stack (internal structure of the FCA) where every
URL that hasn’t been crawled yet is stored. This stack is used
because there is a possibility that the agent meets the same
URL before it has been crawled (due to the concurrency of
the system). Therefore, before the agent adds or updates a URL
in its priority stack, it checks first whether this link is locked
or not. The procedure described above can be summarized in
the following algorithm.

PRIORITIZE ALGORITHM:
RemoveExpired(PriorityStack)
OrderedPriorityStack = sort(PriorityStack)
TopRUrls = OrderedPriorityStack[:r]
for Url, Priority in TopRUrls do

Lock(Url)
del PriorityStack[Url]
yield Request(Url, Priority)

end for
When a URL is entered to the priority stack by the FCA

apart from the priority, a timestamp is assigned to this URL.
This timestamp defines a limited time for URL to remain in
the priority stack. The Priority Mechanism is responsible for

the deletion of the entries of the priority stack that are very
old and still remaining to the stack (usually low prioritized
URLs). With this method the space of the memory is managed
more efficiently, the FCA obtains the ability to forget, it avoids
visiting low priority URLs in the future and the removed URLs
do not contribute to the weighting scheme.

DELEXPIRED ALGORITHM:
for Url, TimeStamp in PriorityStack do

if HasExpired(TimeStamp) then
del PriorityStack[Url]

end if
yield Request(url, priority)

end for

IV. EXPERIMENTAL SETUP

Taking into account that our framework is intended to be
applied for web document retrieval on the Web, we need an
online evaluation methodology that will be able to satisfy this
purpose. Moreover, it relies on web search engines to collect
the seed URLs for the focused crawling process, thus it was
not feasible to evaluate it offline using a fixed dataset. In
this section, we describe our evaluation methodology and the
evaluation metrics that were used in our experimental study.

A. Evaluation Methodology

In order to evaluate the proposed framework, we performed
experiments that produced web page collections for specific
queries. A crucial parameter is the number of the collected
pages. This is an application-dependent decision since for the
same query different users may demand the discovery of a
few or a lot web pages. In this study, we used a predefined
threshold of pages.

Formally, given a query q, a set of general web search
engines S and a threshold t of crawled web pages, we initialize
our framework and the agents follow their topic-relevant web
paths using the initial seed URLs collected from S. When the
number of crawled web pages becomes equal to t the focused
crawling procedure is then terminated.

B. Evaluation Metrics

Regarding the evaluation metrics, we selected the well-
known precision metric which is commonly used in the
information retrieval domain. The precision estimates the
fraction of the retrieved web documents that are relevant and
is calculated by the following formula:

Precision(q) =
|Relevantq ∩Retrievedq|

|Retrievedq|
(12)

where Relevantq are the documents that contain the query
q and Retrievedq are the documents that were retrieved for the
query q. The above metric is used to evaluate the performance
of the system for a given execution.

Concerning the measurement of the execution time we
simply calculate the time passed from the starting moment
of an execution until the agents reach the predefined threshold
t of crawled pages.

V. EXPERIMENTAL RESULTS

In this section we evaluate the various aspects of our
agent-based focused crawling framework in a realistic web
setting. Starting from the most general aspects we demon-
strate the efficiency of the system in execution time and the
additional exploration of the system compared to a general
web search engine. We continue with more specific aspects
such as disambiguating the topic, the agent’s behavior on
topic adaptation based on TSWT and finally we evaluate the
weighting mechanism for genre-based crawling.

In the following experiments, we used the evaluation
methodology (see Section IV) for ten subsequent executions
and we report the average values of the performance metrics.

A. Concurrent Processing of Requests

Each agent in our framework uses concurrent processing
of the requests chosen as next step for the focused crawl-
ing procedure. We demonstrate the efficiency of the system
regarding the concurrency aspect using a single FCA. For
this experiment we used 50 seed URLs from Google for two
topic queries (Audi, Jaguar) and a predefined threshold t of
150 crawled pages. We varied the number of the concurrent
requests from 1 to 12. The averages in precision and execution
time are displayed in Fig. 3.

Fig. 3. On the left, concurrency versus precision is displayed and on the
right, the average execution time for the queries Audi and Jaguar. The seed
URLs were collected from all genres.

On the left, the average precision remains steady and even
increases for query Jaguar as the concurrency is increased. On
the right, the execution time of the system, as it was expected,
is greatly improved when using concurrent requests greater
than one. The execution time decreases dramatically as the
number of concurrent requests increases. As shown in Fig. 3,
the average execution time for 1 request is about 3-4 minutes
and it decreases to almost 30 seconds when the concurrent
requests become 12.

B. Exploring Beyond the Web Search Engine’s Results

Usually when searching for a topic in a general web search
engine, irrelevant pages may appear in the results. In this
case, one could manually search inside the results to find
more interesting pages or redefine the keywords for their
query. The purpose of focused crawling addresses the above
problems. Intuitively, the seed URLs will be explored in depth
and information that does not appear in the results will be
discovered by the FCAs.

Fig. 4. On the left, the average precision is displayed and on the right, the
additional exploration on common domains with Google for the query Audi.
The seed URLs were collected from News genre.

In order to confirm this assumption we executed the fol-
lowing experiment. For 10 steps during a run of a predefined
threshold t of 500 crawled web pages, we compared the
pages discovered by the FCAs with the top 500 pages from
Google results. In the Fig. 4 we can observe the additional
exploration made by the agent for the query Jaguar taking seed
URLs from Google News genre. The left diagram displays the
average precision of the agent and the right one displays the
additional exploration made compared to Google. About 30%
percentage of the common domains with Google results, are
further explored in depth by the FCAs, so there is a chance
of discovering topic-relevant pages, not displayed for the top
c Google results.

C. Topic Disambiguation

When searching for pages that match an ambiguous topic,
it is very likely some seed URLs or some pages crawled so
far to be irrelevant with the topic. In this case, the focused
crawling procedure may be guided to a irrelevant subspace
of the Web regarding the topic and the performance results
may considerably decrease. To overcome this problem, FCAs
disambiguate the meaning of the topic. Despite the simplicity
of the method, the irrelevant pages decrease dramatically when
disambiguation is applied. In Fig. 5 on the left, we observe the
effect on precision and on the right the increase of irrelevant
pages with and without using disambiguation.

Fig. 5. On the left, the average precision is displayed and on the right, the
number of irrelevant pages for both using or not disambiguation of the topic.
The seed URLS were collected from all genres for the query Jaguar.

As an ambiguous query we used Jaguar (car) in a frame
of 1000 crawled pages with irrelevant context keywords {cat,
animal, jungle, cheetah, tiger, leopard, football, hat, watches,
soccer}. Without using disambiguation many of the pages

Fig. 6. On the left, various values for static TSWT are displayed against the system performance, on the middle, the dynamic addition of keywords to TSWT
with 0.6 similarity threshold and on the right, with 0.8 threshold for three different genres of web pages (News, Discussions and Blogs) and the query Jaguar.

crawled belonged to other contexts (cheetahs, soccer team,
etc.). When using disambiguation we achieved crawling pages
that mostly belong to our desired context (car).

D. Using Multiple Focused Crawler Agents

Apart from performing focused crawling with a single agent,
many agents can be used in order to explore together a set of
seed URLs . This means that an additional exploration in each
segment of the seed URLs will be made. Doing so, we reduce
the search space and each agent focuses on a topic-relevant
path which initiates from a segment of seed URLs.

In Fig. 7 on the left, the performance of three different FCAs
is displayed (FC1, FC2, FC3) for the query Audi. The seed
URLs were collected from three different categories: Web,
News and Discussions and were distributed equally to the
agents in order to perform a search. On the right, we display
the average precision of the three agents compared to the
average precision achieved by a single FCA taking as seed
URLs the sum of the seed URLs of the other three agents.

Fig. 7. On the left, the average precision is displayed for three agents (FC1,
FC2, FC3) using seed URLs from Web, News and Discussions genres and on
the right, the average performance of those three agents versus a fourth one
(FC4) that uses the sum of the seed URLs of the former for the query Audi.

The precision of the FC4 agent is higher than the other
three agents, mostly because FC4 had larger prior information
(seed URLs) and it was guided toward the path of the
most relevant URLs. On the other hand the diversity of the
explored URLs by FC1, FC2, and FC3 was greater than FC4.
In addition, the system achieves great parallelism and it is
more computationally efficient by using more than one agents
(similarly to the experiment described in Section V-A).

E. Topic Specific Weight Table (TSWT)

The FCAs at the their initial stage try to learn an amount of
relevant keywords represented by the TSWT. In the Internal
Weight Mechanism the dynamic increase to the TSWT during
the search of an agent is supported. The most relevant pages
that were visited by the agent contribute their most highly
weighted keywords to the TSWT based on a minimum rele-
vance threshold Tr.

We compared the performance of static versus dynamic
TSWT in various web genres of seed URLs for the query
Jaguar (Figure 6). For the static TSWT case, we varied the
size of the TSWT from 0 to 1000 using a predefined threshold
t of 400 crawled pages. For the dynamic TSWT case, in each
experiment, the size of TSWT was set to 100 terms while we
varied the relevance threshold T in range {0.6, 0.8} and the
percentage of terms added to the TSWT from 0% to 80%.

In Fig. 6, we can observe that there is a clear improvement
in the precision when using a static TSWT of 50 size for all
the web genres. For the Blogs categories though, the precision
is affected strongly when varying the size of the TSWT.
This sensitivity that appears to the variation of TSWT size
is possibly caused by the noise (diverse content) that exists
in this specific genre. For the dynamic TSWT with an initial
size of 100 terms, an improvement to the precision can be
observed for 50% TSWT percentage addition to the 0.6 and
0.8 relevance threshold.

F. Genre-based Crawling

Apart from the weighting of URLs based on TSWT, we
examined the weighting of URLs based on the Genre of the
web page and also based on the combination of them. The
goal is to obtain topic-relevant documents that belong to one
or more genres. The genre of a web page can be Blogs,
Discussions or News and is defined by a keyword specification
representative of each genre. In the following experiment, we
study the effect of genre crawling to the performance of the
FCAs on the Web (Figure 8). For the experiments a predefined
threshold t of 500 crawled pages was used.

In Fig. 8, we display the average precision of the guided
search based on individual genres (News, Discussions, Blogs),
multiple genres using combined weights with TSWT (0.5 ∗

Fig. 8. Performance comparison of weighting strategies for genre crawling
on Web. Individual and multiple genres are considered for the query Jaguar.

TSWT +0.5∗Genre) and multiple genres with simple score
summing (TSWT + Genre). The seed URLs for the individual
genres were collected accordingly from the genres provided
by the general web search engine (News, Discussions, Blogs)
and for the other were collected from all genres (Web).

We observe that the best performance in precision is
achieved by using simple summing (TSWT + Genre) and that
the performance is decreased when searching for individual
genres. The multiple genre search with combined weights
(0.5 ∗ TSWT + 0.5 ∗ Genre) appears to have the lowest
precision. This does not imply that the results retrieved by the
FCA are not satisfying. The loss in precision has to do with
the search path of the agent and the selection of its next step
i.e. the agent takes into account topic and genre information
to prioritize URLs for his next move. Thus, the results have
less topic-relevant documents, which nevertheless belong to
the genres that the agent is searching for.

VI. CONCLUSIONS AND FUTURE WORK

We presented a focused crawling framework composed of
utility-based agents that achieves great parallelism and can
be applied to a variety of web-oriented applications such
as web document retrieval, opinion mining and knowledge
extraction. We proposed a weighting mechanism for handling
together topic and genre relevance scores of unvisited web
pages for the retrieval of web documents. Using genre-based
crawling is particularly useful when there is a requirement for
discovering user-generated content (user comments, reviews
and discussions). News, Discussions and Blogs are page genres
that usually contain such content which can be exploited for
further processing. Finally, we introduced an approach for
dynamic adaptation to the topic that is based on the Topic
Specific Weight Table (TSWT) and is able to enhance the
performance of the system.

As future work, we are planning to use this framework
for discovering opinions about various topics in the task of
opinion mining. In addition, we would like to experiment with
more sophisticated methods for topic disambiguation and the
exchange of information between the agents.

VII. ACKNOWLEDGEMENTS

Our research work was supported by the European
Union through the inEvent project FP7-ICT n. 287872
(see http://www.inevent-project.eu). The authors thank Andrei
Popescu-Belis and Thomas Meyer for their helpful remarks.

REFERENCES

[1] C. C. Aggarwal, F. Al-Garawi, and P. S. Yu. Intelligent crawling on the
world wide web with arbitrary predicates. In Proceedings of the 10th
international conference on World Wide Web, WWW ’01, New York,
NY, USA, 2001. ACM.

[2] J. Akilandeswari and N. Gopalan. Design of an enhanced rule based
focused crawler. First International Conference on Emerging Trends in
Engineering and Technology, 2008. ICETET ’08., 2008.

[3] S. Chakrabarti. Focused crawling: a new approach to topic-specific web
resource discovery. Computer Networks, 31(11-16), 1999.

[4] X. Chen and X. Zhang. Hawk: A focused crawler with content and link
analysis. e-Business Engineering, 2008. ICEBE ’08, 2008.

[5] A. K. D Hati, B Sahoo. Adaptive focused crawling based on link analy-
sis. Education Technology and Computer ICETC 2010 2nd International
Conference on (2010), 4, 2010.

[6] G. T. de Assis, A. H. F. Laender, M. A. Gonçalves, and A. S. da Silva.
A Genre-Aware Approach to Focused Crawling. World Wide Web, 2009.

[7] P. M. E. De Bra and R. D. J. Post. Information retrieval in the world-
wide web: making client-based searching feasible. Comput. Netw. ISDN
Syst., 27(2), 1994.

[8] M. Diligenti, F. Coetzee, S. Lawrence, C. L. Giles, and M. Gori. Focused
crawling using context graphs. In Proceedings of the 26th International
Conference on Very Large Data Bases, VLDB ’00, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[9] H. Dong, F. K. Hussain, and E. Chang. A transport service ontology-
based focused crawler. Proceedings of the 2008 Fourth International
Conference on Semantics, Knowledge and Grid, 2008.

[10] M. Ehrig and A. Maedche. Ontology-focused crawling of web doc-
uments. In Proceedings of the 2003 ACM symposium on Applied
computing, SAC ’03, New York, NY, USA, 2003. ACM.

[11] M. Hersovici, M. Jacovi, Y. S. Maarek, D. Pelleg, M. Shtalhaim, and
S. Ur. The shark-search algorithm. an application: tailored web site
mapping. Computer Networks and ISDN Systems, 30(17), 1998.

[12] M. Jamali, H. Sayyadi, B. B. Hariri, and H. Abolhassani. A method
for focused crawling using combination of link structure and content
similarity. In Proceedings of the 2006 IEEE/WIC/ACM International
Conference on Web Intelligence, WI ’06, pages 753–756, Washington,
DC, USA, 2006. IEEE Computer Society.

[13] J. Johnson, K. Tsioutsiouliklis, and C. L. Giles. Evolving strategies for
focused web crawling. In T. Fawcett and N. Mishra, editors, ICML.
AAAI Press, 2003.

[14] F. Menczer, G. Pant, P. Srinivasan, and M. E. Ruiz. Evaluating topic-
driven web crawlers. In Proceedings of the 24th annual international
ACM SIGIR conference on Research and development in information
retrieval, SIGIR ’01, New York, NY, USA, 2001. ACM.

[15] A. Pal, D. S. Tomar, and S. C. Shrivastava. Effective Focused Crawling
Based on Content and Link Structure Analysis. Journal of Computer
Science, 2(1), 2009.

[16] G. Pant, K. Tsioutsiouliklis, J. Johnson, and C. L. Giles. Panorama:
extending digital libraries with topical crawlers. In Proceedings of the
4th ACM/IEEE-CS joint conference on Digital libraries, JCDL ’04, New
York, NY, USA, 2004. ACM.

[17] J. Rennie and A. McCallum. Using reinforcement learning to spider the
web efficiently. In Proceedings of the Sixteenth International Conference
on Machine Learning, ICML ’99, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[18] Y. Sun, P. Jin, and L. Yue. A framework of a hybrid focused web
crawler. Future Generation Communication and Networking Symposia,
2008. FGCNS ’08. Second International Conference on, 2, 2008.

[19] F. Yuan, C. Yin, and J. Liu. Improvement of pagerank for focused
crawler. Eighth ACIS International Conference on Software Engineering,
Artificial Intelligence, Networking, and Parallel/Distributed Computing.
SNPD 2007., 2, 2007.

[20] Y. Zhang, C. Yin, and F. Yuan. An application of improved pagerank
in focused crawler. Fourth International Conference on Fuzzy Systems
and Knowledge Discovery, 2, 2007.

