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Abstract 

 

The crew planning problem has been successfully 

solved on a loosely connected network of workstations 

(NOW) using advanced computational techniques and 

efficient communication patterns. The parallelization of 

the successful sequential system of Carmen Systems AB 

guarantees that the results are immediately useful and 

applicable to a large number of airlines scheduling 

problems. The parallel pairing generator component of 

the crew scheduling process achieves a linear speedup on 

the number of processors and can be efficiently scaled to 

a large number of processors. The novel parallel 

optimizer approach of the paper also achieves almost 

linear speedups for large problems solved on a small 

number of workstations. The Lufthansa problems that 

were used in our experiments validate our theoretical 

results and prove the value and usefulness of our work. 

 
 

1. Introduction 

 
The use of resource planning optimization techniques 

in industrial applications is imperative for the present 
competitive environment of the global economies and can 

significantly reduce operational costs. A typical example 
is the transportation industry where scheduling 

applications like crew scheduling [9] and crew rostering 
[4] lead to very large and difficult optimization problems 
with long computation times. Solving such problems in 

acceptable time with exact algorithms is impossible due to 
the combinatorial explosion that characterizes most of 

these problems. Heuristics are therefore used in order to 
reduce the search space and improve the computational 
tractability of these problems. In any case the run times of 

the procedures are very high, which makes the use of 

parallel processing necessary [3]. In addition the use of 
parallel processing is driven by the fact that close to day 
of operation solutions are also desired due to the 

continuously changing business environment. 
The application example and the algorithms described 

in this paper were in part supported by the European 
ESPRIT/HPCN project PAROS (Parallel Large Scale 
Automatic Crew Scheduling) [1,24]. The project started 

in 1996 with Lufthansa Deutsche Airlines (LH) as the 
industrial user, Carmen Systems AB, the University of 

Patras and the Chalmers University of Technology as the 
other partners. LH supplied important large problems and 
optimization requirements in the area of crew planning. 

PAROS is an effort to improve the automatic crew 
scheduling system produced and marketed by Carmen 
Systems with the use of high performance computing and 

modeling techniques. Performance improvements will 
allow to consider more realistic scheduling periods while 

giving the marketing department additional time to satisfy 
the market needs.  

The network of workstations that has been selected as 

the parallel processing platform is a cost effective and 
widely available computation model. Computers 

connected through high performance networks can be 
used as parallel machines. The availability of faster 
workstations in the past ten years has allowed the airlines 

to reduce the use of mainframes and thus reduce their 
computational costs. This, however, did create a thrashing 
computational effect when it comes to large combinatorial 

problems. The use of networks of workstations for the 
solution of a single problem minimizes this effect. The 

emphasis was to develop new software for efficient 
coordination and cooperation of networked workstations 
to achieve higher productivity and faster solutions for the 

crew planning problem. While there exist attempts to 
solve the crew planning problem on high end parallel 
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hardware [17], this paper focuses on issues that arise in 
parallelizing this problem on a cluster of workstations. 

The rest of the paper is organized as follows. In section 
2 we describe the crew planning problem and the 
prevailing solution methodology. The parallel algorithms 

developed for the two most time critical components of 
the solution process, the pairing generator and the pairing 

optimizer, are discussed in sections 3 and 4. Theoretical 
performance analysis of the proposed parallel algorithms 
is also presented. In section 5 experimental results from 

typical Lufthansa crew scheduling problems are shown. 
Finally, conclusions and future directions of this work are 
discussed in section 6. 

 

2. Airline Crew Planning Process  

 
The crew planning department receives the schedule 

from the aircraft scheduling department at regular time 

intervals and has to create legal round trips in such a way 
as to satisfy the crew requirements of all flights. The 
optimal set of trips must comply to the general safety 

regulations, the company operating policies and the union 
requirements, while minimizing total cost. The basic 
activity to be planned is called leg and involves a single 

departure and a single arrival. Legs are connected into 
round-trips also called pairings that depart and return to 

specific crew home bases. Given the flight table and the 
distribution of the crews among the crew bases, the 
planning process may be separated as follows: 

• selection of the flight legs to be covered  

• pairing generation and selection of an optimal set of 
pairings 

• assignment of the pairings to individual crew members 
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Figure 1. Carmen system DFD 

Since the number of possible pairings extends into 
millions and possibly billions obtaining a meaningful set 

of pairings, to be given to the optimization procedure, is 
quite complex and time consuming. The generation of a 

meaningful set of pairings is aided either by special pre-

processing filtering techniques [14] or optimizer feedback 
based processes [16]. The optimization phase involves the 

selection of a set of pairings in order to cover all flight 
legs while minimizing the total solution cost. 

The solution methodology of the Carmen system [2] is 

shown in Figure 1 and is presently in production at Air 
France, Alitalia, British Airways, KLM, Lufthansa, SAS, 

and Swissair. A typical run of the Carmen system consists 
of 50-100 iterations. The main system components are the 
pairing generation and the optimization modules. 

The total number of possible pairings depends on the 
structure of the flight network. A typical short haul fleet 
for Lufthansa has about 800 daily legs and about 5000 

weekly legs. A typical pairing in the fleet contains on the 
average twelve legs, and since a leg can be connected to 

at least ten new legs at each major airport, this produces 
close to 1012 pairings. To reduce the number of pairings 
requires an intelligent generation procedure. The 

optimizer that will be examined and parallelized in this 
paper is quite fast and achieves high quality results for 

problems up to one million pairings. Within the Carmen 
system and for all of the Lufthansa fleets that were tested, 
the generator always requires five to eight times more 

execution time than the optimizer or about 70-85% of the 
total runtime.  

 

3. Parallel Pairing Generator 
 

3.1. Pairing Generation Algorithm Description 

 
The pairing generator creates legal pairings by 

connecting legs to each other. The pairing generator is 

aided by a pre-processed connection matrix that shows the 
acceptable connections between pairs of legs. In addition, 

there exists a legality module that calculates the properties 
of each chain and validates all the applicable rules. The 
connection matrix represents in mathematical terms a 

directed connection graph among the legs. A node of the 

graph corresponds to a leg and an edge represents a legal 
pair-wise connection. The possible non-zero elements of 

the matrix for a typical fleet of 1000 legs can be from 
10,000 to 100,000.  

The most efficient algorithm, with respect to memory 
needs, for the pairing generation process is the depth first 
search (Figure 2). The search always begins from a subset 

of legs known as start legs. The search is limited by a 
maximum number of branches to be considered in each 

node of the search graph. This maximum number of 
connecting branches is known as the search width and its 
typical values range from 10-20 connections. Every leg 

chain is checked for legality. Illegal paths are not further 
investigated which implies that the rules must have a 
monotonic behavior.  
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Input: A set of start legs S = {s1, s2, . . ., sk}, Connection Matrix 
CM,  set of rules R, search width SW(P) as a function of the 
working days covered by P, where P denotes a chain of legs 

procedure GENERATE 
       Work queue WQ← S 

       while (WQ not empty) do 
  node← GET_NEXT(WQ)  

  SEARCH(node) 

       endwhile 

endprocedure 

 

procedure SEARCH(node) 
       P ← ADD(node) 

       if TEST_LEGALITY(P, R) then 

  if P is a COMPLETE  pairing then 
        OUTPUT(P) 

  endif 
  while SW(P) is not violated do 
        r ← GET_NEXT_CONNECTION(node, CM) 

        SEARCH(r) 

  endwhile 
       endif 
       P ← REMOVE(node) 

endprocedure 
 

Figure 2. Serial Pairing Generation Algorithm  

 

3.2. Parallelization Approach 

 
An examination of the serial algorithm in Figure 2 

reveals the ability for exploiting parallelism during the 
pairing generation phase. The majority of the computation 

time occurs in the SEARCH procedure. By distributing the 
contents of work queue WQ, thereby dividing the 

computational work among several processors we can 
reduce the computation time. The amount of 
computational work done in the SEARCH procedure for 

each element of the WQ is highly variable and 
unpredictable. This implies that the parallelization must 

incorporate dynamic load balancing mechanisms.  
The parallel programming approach used for the 

parallel generator is the manager/worker model. The 

manager executes the GENERATE procedure and the 
workers execute the SEARCH procedure. The manager 
broadcasts the connection matrix to every worker at the 

beginning of the run. This implies that the parallel process 
involves the distribution of a forest of search trees to the 

available workers. The manager distributes dynamically 
the start legs and the search width information to the 
workers on a worker demand driven manner. The workers 

generate all the legal pairings and return them to the 
manager. The communication between the manager and 

the workers is asynchronous and there is no need for 
communication between the workers. The manager is 
composed of two threads, one responsible for the 

distribution of the input data to the workers and the other 

for collecting the output from the workers. This scheme 
improves the efficiency and the scalability of the parallel 

generator, despite of the centralized nature of the 
manager. The typical mapping involves the assignment of 
each worker to a different processor. 

The design goal of all parallel processing applications 
is to minimize the idle time of each worker and the 

communication among the processors. To minimize idle 
time application specific load balancing is done and an 
overlapping between computation and communication is 

attempted. To minimize communication we use large 
messages, that is, the workers do buffering and 
compression of the pairings in order to reduce the network 

latency penalty and the volume of the communicated data. 
 

3.3. Application Specific Features 

 
Dynamic Load Balancing. Load balancing is achieved 

by implementing a dynamic workload distribution scheme 
in the manager that implicitly takes into account the speed 
and the current load of each machine. The number of start 

legs that are sent to each worker is also changing 
dynamically with a fading algorithm. In the beginning a 
sufficient number of start legs is given and near the end 

only a single start leg is assigned to each worker. This 
scheme attempts to balance the network traffic and the 

load balancing sensitivities. In (1) the number of start legs 
(n) assigned to each worker as a function of the number of 
the remaining start legs (r) is shown. 
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NTOTAL is the total number of start legs for the current 
iteration of the problem, UB is an upper bound for the 

initial work distribution and f(r) is a monotonic decay 
function in [0,1]. The initial work assignment depends on 
the number of processors (P) and NTOTAL and is done 

simultaneously for all the workers. In addition, efficiency 
is also improved by pre-fetching the start legs from the 
manager. A worker requests the next set of start legs 

before they are needed. It can then perform computation 
while its request is being serviced by the manager.  

Because the search tree that corresponds to each start 
leg may be very irregular a further refinement of the load 
balancing scheme is also implemented as the end of the 

pairing generation is approached. The manager decreases 
the granularity of the search tree at a lower level and 

assigns sub-trees to the workers (Figure 3).  

Fault Tolerance. For production level reliability the 
parallel generator is able to recover from task and host 
failures. The notification mechanism of PVM [11] is used 

to provide application level fault tolerance to the 
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generator. A worker failure leads to the loss of some 
pairings that either have not been generated, or have been 

generated but not sent. Consequently, this part of the 
generation tree must be recalculated by some worker task. 
The manager keeps the current computing state of each 

worker and in case of a failure it is used for reassigning 
the unfinished part of the work. 

Original start leg
level 2

decomposition

new

start

chunk

Host A Host B Host C

 

Figure 3.  Decomposition of the search tree 

 

The program that called the parallel generator detects 
the failure of the manager and can start a new manager, as 

the manager uses a checkpointing mechanism to store 
state information. The responsibility of the new manager 
is to reset the workers and to request only the generation 

of the pairings that have not been generated. 

Dynamic Task Creation and Local User Priority. 
Another powerful feature of the parallel pairing generator 

is its ability to utilize the availability of new processor 
nodes and to return to their owners machines that must not 
be used in the parallel virtual machine any longer. It is 

possible to add, a new host at any time to the virtual 
parallel machine, and this will cause a new worker to be 

started automatically. The system also respects the 
workstation owner’s priorities. This is implemented with 
the suspend/resume set of services. In simple terms, the 

worker suspends its operation if the machine load (CPU, 
memory, swap space) is over a specified limit and 

resumes its operation if the machine load is below a 
specified limit. When a worker is in suspend mode it is 
considered blocked and the manager keeps this worker in 

a list of suspended tasks. Periodically, the manager 
requests from the worker information concerning its 
machine load and if the load is below the specified limit 

the manager moves the worker to the active list of 
workers. If the worker remains in suspend mode for a long 

period of time, it is considered as failing, and is removed 
completely from the system. The rate of the load checking 
operation defines the performance overhead; interaction 

of about once every minute creates a very small 
performance overhead (<0.1%). 

 

4. Parallel Pairing Optimizer 

 

4.1. Pairing Optimization Problem Definition 
 

The pairing optimization problem is modeled as a set 

covering or set partitioning 0-1 constraint satisfaction 
problem [20], A small number of general capacity 
constraints also exist but are not considered in this paper. 

Let A = ( aij ) be a 0-1 mxn matrix and C = ( cj ) be a 
vector of size n. Let the sets M = {1, … ,m} and N = {1, 

… ,n} correspond to the rows and columns of A. The 

value cj ( j ∈ N ) represents the cost of column j (pairing 

j). We assume, without loss of generality, that cj ≥ 0, ∀ j 

∈ N. We say that a column j ∈ N covers row i ∈ M, if aij 

= 1. We say that a subset of columns S ⊆ N is a solution 

to the set covering problem, if for each row i ∈ M, there is 

at least one column j ∈ S with aij≠0. The target of the 

optimization algorithm is to select the subset S that 
minimizes the sum of the corresponding cj’s. In 
mathematical terms the problem can be written as 

m in c xj j

j N∈
∑       (2) 

NjMixxats j

Nj

jij ∈∈∈≥∑
∈

 , },1,0{ ,1..  (3) 

where xj = 1 if j ∈ S and xj = 0 otherwise. The large 
problems we are most interested in have up to one million 

variables and typically between a few hundred to a few 
thousand constraints. They are very sparse, usually having 
only 5 to 10 nonzero entries per column. 

The set covering problem is NP-hard, and many 
algorithms have been proposed for exact [10] as well as 
approximate problem solutions [7,27]. The exact 

approaches are often based on the branch and bound 
search technique, which although can be successfully 

parallelized on the NOW architecture [5,19], has a 
prohibitive computation time for very large problems. 
Since our goal was to solve large crew scheduling 

problems the approximate solution algorithm proposed in 
[27] was selected for parallelization. This is also the 

algorithm used in the current serial Carmen system and is 
particularly efficient for this class of problems.  

 
4.2. High Level Optimization Description 

 
The optimization algorithm can be categorized as an 

iterative Lagrangian relaxation heuristic algorithm [25]. 

The algorithm manipulates the Lagrangian cost vector c , 

which is initialized to the cost vector C. The goal of the 
manipulation is to create a sign pattern for the elements of 

c , which corresponds to a feasible solution S (usually 

well within 1% of the optimum), given that ∀ xj ∈ S, c j  < 

0. In the sequential algorithm all the problem constraints 
are iterated, one at a time, updating the corresponding 

c entries.  The algorithm is summarized in Figure 4. 
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Input: 0-1 mxn constraint matrix A, cost vector C 

c ← C, κ ← 0, ∀ i ∈ M si ← 0 

repeat  
for each constraint i do 

ri ← CANCEL( c , si)  // cancel out the last contribution  

r
-
, r+ ← SELECTION(ri) // select the critical values r-, r+

  

si ← CONTRIBUTION(r-, r+,κ ) // compute new contribution  

c ← UPDATE(ri, si)  // update c to its new value 

endfor 

 κ ← INCREASE(κ ) // κ  parameter sets the convergence speed  

until no sign changes  in c  

for each variable j ∈ N do 

if c j < 0 then xj ← 1 else xj ← 0 
  

Figure 4. Serial Optimization Algorithm 

 
r

i represents a local temporary copy of the c entries that 

correspond to constraint i, r- and r
+ are the smallest and 

the second smallest entries of r
i, also called critical 

variables for a particular constraint, si is the contribution 

of constraint i to c and κ  ∈ [0,1). For each constraint i 
there exists a unique sparse vector si, due to the fact that 

the algorithm requires the cancellation of the previous 

contribution to c before a constraint is iterated again.  
 

4.3. Parallelization Approach 

 

The parallelization of the optimization process must be 
done within a single iteration in order to retain the 
convergence characteristics of the method. The first 

parallelization attempt used a row-wise decomposition 
approach. Theory and results on this scheme can be found 
in [12]. A second approach based on the column-wise 

decomposition of the problem called variable based 

decomposition (VBD)[1] was pursued.  

The VBD approach is realized by distributing subsets 
of variables (columns) to each processor. Each processor 

is then responsible for a part of c  and the corresponding 

part of the A-matrix. Some of the operations needed for 
the constraint update can be conveniently done locally 
(e.g., CANCEL, UPDATE), but the CONTRIBUTION 

operation requires communication. Each worker process, 
first executes in parallel the SELECTION operation to 

find the local minimum values, and then communicates 
them to the manager process. The manager calculates and 
broadcasts to the workers the contribution si of the current 

constraint i to the reduced cost vector. Lastly, the workers 
perform the UPDATE operation and proceed with the next 

constraint. The communication involves the transmission 
of a large number of small messages, which makes the use 
of an efficient low latency communication network an 

imperative requirement. The VBD advantage is the small 

communicated data volume, which is proportional to the 
number of worker processes and the constraints of the 

problem. Load balancing is very important for the VBD 
approach and a simple and effectively strategy is to send 
randomly selected variables to each worker process 

[23,26].  
It can be observed that the main performance issue of 

the VBD approach is the requirement to perform O(m) 
synchronization operations per global iteration. To 
overcome this and based on the fact that constraints 

without common variables can be iterated independently, 
such groups should be found [21]. If we consider the 
constraint dependence graph where the nodes are the 

problem constraints and the edges connect constraints 
with common variables, the problem of identifying groups 

of independent constraints can be solved as a graph 
coloring problem. All the constraints colored with the 
same color are independent. The fact that the graph 

coloring problem is NP-hard is not so crucial, since there 
is no need for an optimal solution but for a reasonable 

approximation [22,26]. A non-optimal fast graph coloring 
algorithm based on [18] is used for the creation of 
constraint groups. If a constraint set g contains only 

independent constraints, then the CONTRIBUTION 
operation can be performed group-wise for all |g| 
constraints at once. The UPDATE operation can now be 

delayed till the end of each constraint group. The benefit 
of this approach is that without changing the convergence 

characteristics of the algorithm we have managed to 
reduce the number of the communicated messages and 
synchronization steps from the total number of constraints 

to the number of independent constraint groups. This 
strategy was first done on an SGI Origin 2000 at the 

Chalmers University of Technology, with a speedup of 7 
when 8 processors were used [22,26]. However, it can not 
be used directly on a conventional network of 

workstations due to the high latency of the 
interconnection network. To make this strategy more 

viable for NOWs a low latency communication network is 
needed [6,15] with hardware routers, which allows 
simultaneous communications of all processors. In 

addition, an optimized message passing implementation 
[8] is necessary, which eliminates memory copies and 
uses an efficient protocol stack. 

To overcome the limitations of traditional and 

inexpensive networks an algorithmic improvement of the 
previous parallel algorithm was attempted. The variation 

is based on a “lazy” updating procedure of c . Only the 

common variables with the constraint group that will be 
iterated next (PARTIAL_UPDATE operation, see Figure 
5) are updated. The reduced cost vector is then fully     

updated (FULL_UPDATE operation), based on the 
contributions of the previous constraint group, during the 

time the manager process calculates the contribution to c  

of the current constraint group. This approach overlaps 
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computation with both communication and previous idle 
time due to synchronization, given that the full cost vector 

update takes a significant amount of time. The 
computation time is slightly increased, and the relaxation 
may have no benefit at all in the extreme case of a 

problem with a structure that does not permit the creation 
of constraint groups with a small number of common 

variables among them. Figure 5 shows a high level 
description of the lazy VBD worker algorithm.   

 

Input: A subset of variables Vk⊆N, cost vector C(Vk), set of 

constraint groups G = {g1, g2, …, gr}, where gi = {i | i ∈ M, ∀ j 

∈ gi i and j are independent} 

Worker Algorithm: 

c ← C(Vk), κ ← 0, ∀ i ∈ M si ← 0 

repeat  

for each constraint group gi ∈ G do 

for each constraint i ∈ gi  do 

ri
 ← CANCEL( c , si)  

r-
local, r

+
local ← SELECTION(ri) // local values are selected 

B ← BUFFER(r-
local, r

+
local) 

endfor 

SEND(B, manager) // manager computes CONTRIBUTION of gi  

c ← FULL_UPDATE(sgi-1) // update with the contributions of 

the previous constraint group  

sgi ← RECEIVE(B, manager)  // receive from manager the 

contribution of group gi 

c ← PARTIAL_UPDATE(sgi)  // do only the necessary updates 

for next group, leave work for later  
endfor 

κ ← INCREASE(κ  )    

until no sign changes  in c  

for each variable j ∈ Vk do 

if c j < 0 then xj ← 1  else xj ← 0 

endfor 
 

Figure 5. High-level “lazy” VBD Algorithm 

 
The size of the reduced cost vector c  for each processor 

k is |Vk| and the contribution of a constraint group s
gi, is 

the combination of the contributions s
i of the constraints 

of the group gi. 

 

4.4. Theoretical Performance Analysis 

 
The modeling of the execution time for a global 

iteration of the optimization algorithm as a function of the 

problem size, the number of processors and other 
algorithm and hardware characteristics is attempted. The 
analysis assumes that we have balanced distribution of 

work and an unloaded network with no special structure, 

on which global operations require P messages. TP

iter
is 

the iteration time on P processors, NZ and m are the 
number of non-zero entries and the rows in the constraint 

matrix respectively, ts and tw are  the communication 
latency and cost per word characterizing the 

interconnection network and tc is the time to complete a 
basic floating-point operation. 

 

Sequential Algorithm 

 The serial implementation has iteration time 

 

T
iter

tc NZ m tc tc NZ tc NZ1 1 2= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ≅ ⋅ ⋅λ µ λ λ       (4) 

 

where λ, λ1, λ2, µ are constants. The first term 
corresponds to the execution time of the operations 

CANCEL and SELECTION, the second corresponds to the 

CONTRIBUTION operation, and the third to the UPDATE 
operation. Based on profiling results the first and third 

phases take over 95% of the total execution time, which is 
equally divided among them. 

 

Analysis of the “lazy” VBD approach 

In the basic VBD approach the first and the third phase 

of the algorithm is parallelized, having as a trade-off m+m 
global reduction/broadcast operations. The expected 
speedup is thus 

 

S
P T

P m t T

iter

s

iter≅
⋅

⋅ ⋅ ⋅ +
1

2

12
    (5) 

 
In the next paragraphs we make a more detailed 

analysis of the VBD approach with the constraint groups 
and the lazy update as in theory, and in practice, proved to 

be the most successful parallelization technique. 
For each constraint group the required communication 

will be the communication time for each worker process 

to send the local r
-
 and r+ values to the manager process 

and the communication time required by the manager 
process to send back to the worker processes the 

computed values.  
 

t t p tgroup

comm

s r w

i

q

k

P

= ⋅ + ⋅
==
∑∑2

11

( )    (6) 

 
where pr and ps is the volume of the communicated data 
per constraint in words, and q is the number of constraints 

in the group. In our implementation pr = ps. If the problem 
constraints are partitioned in NG independent constraint 
groups, using a coloring algorithm,  the required 

communication time will be  
 

T t P NG t P m p t
COMM group

comm

i

NG

s r w= = ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
=
∑

1

2 2   (7) 

 
With the lazy variable update the idle time of the 

worker processes is minimized because the 

communication time ( T
COMM

) and the manager 

computation time tend to overlap with the computation 

time used by the worker during the update of the cost 
vector (FULL_UPDATE operation). The idle time of the 
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worker processes with the “lazy” variable update can be 
approximated as 

 

T
P T T

PIDLE

COMM

iter

≅
⋅ ⋅ −

⋅
max( , )0

2

2
1   (8) 

 
However, a computation overhead TOVER is introduced 
 

T t
OVER c i

i

NG

= ⋅ ⋅
=
∑λ γ2

1

   (9) 

 
where γi is the number of common variables between each 
consequent pair of constraint groups. This is due to the 
fact that additional calculations have to be done to 

determine and partially update the reduced cost vector. 
The expected parallel iteration time would thus be 
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   (10) 

 
For a reasonable number of processors and for large 

problem instances, T iter

1 is much larger than the required 

communication time, and the third term of (10) tends to 

zero, and thus  
 

T t
T

P
P

iter

c i

N G

iter
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which makes the expected speedup equal to 
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Figure 6. “Lazy” VBD speedup curves 

for various problem sizes 

Based on (12) the expected speedups for various 

problem sizes of the “lazy” VBD approach are presented 
in Figure 6. We have assumed an Ethernet based NOW 
(tc=0.0293µs, ts=1500µs, tw=5µs), 80 constraint groups 

from the graph coloring and 5% of the non-zeros of a 
processor common between subsequent constraint groups. 

 

5. Experimental Results 

 
We have measured the performance of the parallel 

generator and the parallel “lazy” VBD optimizer 
implementation, using typical crew scheduling problems 

from Lufthansa. In addition, we report results of the first 
prototype that integrated the parallel modules in the 
Carmen system for the same problems. The experiments 

have been performed on a network of HP715/100 
workstations interconnected by standard 10Mbps 

Ethernet. All workstations used were of almost equal 
speed (2.89 SPECint95). The implementation of the 
parallel generator used the PVM message passing library 

[11] version 4.3, while the implementation of the 
optimizer used the HP-MPI optimized library [13] version 

1.2. PVM provides support for dynamic resource and 
process control and robustness, used by the parallel 
generator application. MPI supports asynchronous and 

non-blocking communication operations, which help the 
overlap between computation and communication, which 
is vital for the parallel optimizer. All the programs were 

written in ANSI C++. The values presented were obtained 
with exclusive use of the processors and the network.  

 
Name dl_kopt dl_splimp dl_gg wk_gg 

legs 1087 946 946 6196 

pairings 159073 318938 396908 594560 

CPUs  time in seconds  

1 10860 20760 26460 31380 
2 5563 10797 13771 16834 
4 2804 5448 7061 8436 
6 1892 3686 4536 5338 
8 1385 2797 3466 4312 
10 1112 2181  2818 3288 

 

Table 1. Results of parallel generator 

 
The parallel generator and optimizer were tested with 

four different problems of various sizes. In Table 1 we 

can see the characteristics of these problems and the 
runtimes of the parallel generator for different number of 
workstations. The parallel generation time decreases in all 

cases almost linearly with respect to the number of 
workstations used. 

The output of the generator module then became the 

input to the optimization filtering module as it is shown in 
Figure 1. The filtering module attempts to reduce the size 

of the constraint matrix by finding equivalent columns and 
rows and eliminating duplicate or redundant elements. In 
Table 2 we give the characteristics of the filtered 

problems and the performance results of the parallel 
“lazy” VBD optimizer with NZ representing the number 

of non-zero elements and s the sparsity ratio of the matrix.  
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Name dl_kopt dl_slimp dl_gg wk_gg 

Legs 705 641 643 5287 

Pairings 156197 316958 393908 590063 

NZ 1826456 4074017 4555324 9890583 

s (%) 1.65697 1.98101 1.79009 0.51 

CPUs Time in seconds 

1 951.53 1498.13 2763.12 4071 

2 634.54 932.14 1493.57 2035.48 

3 365.90 739.76 1001.13 1380,53 

4 259.32 434.19 752.89 1041.76 

 

Table 2. Results of  “lazy” VBD optimizer 

 

The quality of the solution remains as in the sequential 
execution while the speedup that is achieved is quite 
significant. Particularly, for the larger problem lh_wk_gg, 

the speedups are excellent. because a small number of  
large constraint groups exist for this problem. 

Consequently, the granularity of the computation work is 
coarse-grained, the communication with the manager is 
sparse and the idle time is close to zero. In addition, the 

structure of the problem, which is characterized by long 
and sparse constraints, makes the overlap between 

consequent constraint groups minimum. This implies that 
the overhead term is also minimized. From the 
experimental results it can be concluded that the 

theoretical analysis does hold and the ability to use 
networks of existing workstations for this work is 
validated. For the problems of this experiment the use of 

more workstations does not improve the execution time. 
As it can be seen from Figure 6 about eight workstations 

can be maximally used efficiently for practical crew 
scheduling problems. 

The parallel have been integrated in a prototype 

system, coexisting with the sequential Carmen 
components. These sequential components take 5-15% of 

the total runtime on the average, depending on the size of 
the problem. We run the test problems with the prototype 
system and we report the results in Table 3. The total 

runtime of the parallel system is the sum of the parallel 
generation time, the parallel optimization time and the 
time spent in the sequential components of the system. 

The execution of the serial Carmen system on an 
equivalent machine is also reported. We reduced the 

execution time about five times for the three problems, 
and four times for the last problem. The last problem is a 
large weekly scheduling example where the problem 

initialization time as well as the connection matrix pre-
processing is significant, which increases even further the 

proportion of the sequential components. 
 

 Parallel prototype Serial  

 

name 

Generator 

(10 CPUs) 
Optimizer 

(4 CPUs) 
Sequential 

Part 
 

Total 

 

Total 
 

Speedup 

dl_kopt 1112 259.32 909.44 2280.7 12992.6 5.69 

dl_slimp 2181 434.19 2225.81 4841.0 24483.9 5.05 

dl_gg 2818 752.89 2922.31 6493.2 32145.4 4.95 

wk_gg 3288 1041.76 6381.18 10710. 41832.1 3.90 

 

Table 3. Results of the Carmen system with the 

integrated parallel modules 

 

6. Conclusions and Future Work 
 

In this paper we presented the prevailing methodology 
for the solution of the crew planning problem and parallel 
algorithms for the solution of the main steps of this 

process. The architecture assumed in the paper and in the 
ESPRIT/HPCN research project PAROS, involves the use 

of existing interconnected workstations. The idea has been 
to better utilize the existing infrastructure for the solution 
of hard and time consuming combinatorial problems that 

appear in the context of airline crew scheduling.  
The parallelization of the generator and the optimizer 

have given rise to new business advantages of the Carmen 

System product. Detailed analysis of the various 
parallelization approaches for both the generator and the 

optimizer are presented and the experimental results of 
the best parallel algorithms on a set of real Lufthansa 
problems is presented. The improved performance of the 

system can be used to solve larger problems and/or to 
increase the problem solution quality. The speed and 

quality of these parallel methods are therefore critical for 
the overall efficiency of an airline. The demand for such 
processes increases even further with the ongoing 

deregulation of the airline operations in Europe. 
On a more technical level, an attempt will be made to 

avoid the generator manager collection of all the pairings 
produced by the generator workers. This collection is 
currently performed due to the fact that a global filtering 

operation must be done. If this global filtering could be 
done in parallel, there would be no need to collect all the 
pairings thus reducing the communication expense of the 

system. Another implication of this could be that the 
generator workers could in practice be the same with the 

optimization workers. In addition, the parallelization of 
the connection matrix creation and preprocessing step 
before the generation will be also examined because it has 

become now the system bottleneck. Lastly, the synthesis 
of the “lazy” VBD approach with the sub-problem 

selection approach of [26] will be investigated. 
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