
C. Lambrinoudakis, G. Pernul, A M. Tjoa (Eds.): TrustBus 2007, LNCS 4657, pp. 125–134, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Design and Implementation of Distributed Access Control
Infrastructures for Federations of Autonomous Domains

Petros Belsis1, Stefanos Gritzalis1, Christos Skourlas3, and Vassillis Tsoukalas2

1 Department of Information and Communication Systems Engineering University of the
Aegean, Karlovassi, Samos, Greece

{pbelsis,sgritz}@aegean.gr
2 Department of Informatics, Technological Education Institute, Athens, Greece

cskourlas@teiath.gr
3 Department of Industrial Informatics, Technological Education Institute, Kavala, Greece

vtsouk@teikav.edu.gr

Abstract. Federations of autonomous domains allow resource sharing in a
highly dynamic manner, improving organizational response times and
facilitating cooperation between different information systems. To accomplish
this, it is essential to provide a scalable and flexible mechanism that allows
security management and acts at application level independently of operating
system or platform. In this paper we present a scalable solution that enables
interoperation between different systems participating in a dynamic federation,
while it also allows the participating systems to retain their autonomy; we
present the software architecture of this distributed access control enforcement
mechanism and describe our implementation choices.

1 Introduction

Over the last decades we have experienced a major shift towards the decentralized,
distributed computing paradigm. The benefits from the realization of distributed
infrastructures are manifold; among else, many challenges have attracted considerable
attention in distributed computing, such as: implementation of sophisticated
knowledge extraction techniques that enable utilization of assets from different
domains; achievement of interoperability between different platforms; performance
issues and last but not least, advances in distributed security models. Most of the
developed security techniques apply at operating system level; other solutions apply
by embedding at each application a customized security mechanism that enables
access to authorized users, before logging in. As a consequence, in order to utilize
resources in distributed infrastructures, a user has to undergo several independent
authorization procedures. This task creates a considerable overhead on each domain,
while it also makes more difficult any attempt for Information System’s integration.
Another parameter that has to be considered is the immediate drop in the degree of
user satisfaction, which can prove to be detrimental in business application scenarios.

While decentralization of administrative control requires that all participating
domains specify their policies in an interoperable manner, there are a number of
challenges related with the ability to transfer the credentials of users in the federated

126 P. Belsis et al.

environment across organizational boundaries [1]. In order to achieve this, there is a
requirement to establish interoperable protocols and to provide support for composite
policy evaluation.

One additional concern regarding the management of distributed systems is related
to heterogeneity, due to the presence of resources of diverse nature. In this paper we
describe a distributed infrastructure utilizing XML technologies for access control
enforcement. The system’s modular components communicate using the Java Remote
Method Invocation (RMI) model. The developed prototype is characterized by its
scalability potential and its platform independency. The contribution of this paper
relies on the following: (i) We present a technique that enables cooperation and
resource sharing between multiple autonomous domains; (ii) we present techniques
that enable user authentication through a single sign-on procedure for all domains,
simplifying thus the authentication procedures to a high degree; (iii) We enable ease
of integration of our access control mechanism with existing platforms, while we
retain platform and operating system independency.

The remainder of the paper is organized as follows. After the brief introduction, we
present the motivation for our research in Section 1; related work and background
literature is studied in Section 2. Section 3 analyses the requirements placed on the
system design and Section 4 raises and discusses issues related to the system’s design
and provides example usage scenarios; Section 5 provides concluding remarks and
directions for future work.

2 Related Work

The problem of defining access control models for multi-domain environments has
recently attracted considerable interest. A number of solutions have been proposed
towards this direction. So far, more emphasis has been placed on implementing
models, than for creating mechanisms that enable secure interoperation between
different domains. In [2] the notion of secure virtual enclaves is being introduced,
where domains complying with the Role Based Access Control (RBAC) model share
resources. In this work the roles and shared resources are specified in advance and
agreed without using technological means, providing thus little support towards the
formation of dynamic coalitions.

Bonatti et al [3], propose an algebra for the synthesis of an access control policy
out of simpler policies. In their model their language’s expressiveness is analyzed
with respect to first order logic. They show that their language’s formal semantics are
equivalent to first order logic formulations. Even though this work provides a tool for
preliminary feasibility analysis, the exact implementation details to provide support
for coalition formation are missing [3].

Khurana et al [4], define a model for the dynamic management of coalitions based
on a Restricted First Order Predicate Logic (RFOPL) RBAC compliant language RCL
2000. In their model, domains take turns in making proposals about the management
of shared coalition assets resources. A coalition access control matrix is being
formulated keeping records of allowed accesses, while the matrix is being modified
during the negotiation process and as intermediate system states are formed. Their
work also builds upon a negotiation process that defines membership upon roles with

 Design and Implementation of Distributed Access Control Infrastructures 127

predefined access permissions instead of negotiating the permissions according to the
role classified for every specific user, as defined instead in our work.

Another notable approach that builds upon an XML policy language is the X-
GTRBAC framework [1]. This framework provides support for most of the RBAC
concepts, such as Separation of Duty Constraints; it also has an integrated mechanism
for resolving conflicts emerging from ambiguities or conflicting requirements from
the domain specific policies. Unfortunately there are no supporting software tools for
this framework so far. Instead of defining a new language, we have decided to utilize
evolving standards in access controls and extend them appropriately and develop
suitable software tools for multi-domain environments security management. Our
work in addition develops a scalable infrastructure built upon independent modules
that interoperate using evolving standards in access control.

3 Requirements Analysis

Among the basic requirements when developing distributed access control
enforcement infrastructures is the preservation of autonomy. The requirement for
decentralization of administrative control in multi-domain environments poses major
challenges when specifying the framework for access control policy definition.
Decentralization in our framework is achieved by implementing multiple autonomous
domains each one of which is responsible for enforcing local access control policies.
Each policy enables determination of access privileges for role-access-object pairs, in
accordance to the generic Role Based Access Control Model (RBAC) compliant
policy definition.

Our framework builds upon the main principles of the XACML [6] policy
framework which focuses on enabling distributed management of resources. XACML
is an XML based framework for specifying and applying access control for Web-
based resources that supports prohibitions, obligations, and resolution of conflicts.
Our extended authorization framework has the following strong points:

• It is built using standardized technologies, thus providing support for extensions
and enables interoperation between various platforms

• It allows extensions as to support the needs for a variety of environments.
• It allows context-based authorization, by enabling authorization upon examination

of domain related predicates (see also section 4).

Our work extends this single-domain authorization framework to provide support
for role and privilege assignment for users belonging to remote domains. This is
necessary when users from one domain need to be assigned privileges to access data
from other federated domains. In order to achieve this interconnection between
different domains, several issues need to be taken under consideration:

• Access to data should be regulated by specific generic guidelines, applicable for all
the cooperating environments.

• While the data access guidelines should be uniform, enforcement points should be
autonomous and have a large degree of freedom in managing their IT
infrastructure.

128 P. Belsis et al.

• Dynamic nature of the coalition. The number of units who participate in the
cooperating schema is not stable. Units can join or depart at any time, increasing
thus the complexity of the overall management.

• Absence of centralized authorization architecture. Security policies can be defined
locally without the necessity for central management which would endanger the
system’s performance by introducing a single point of failure. It would also not be
consistent to the distributed nature of the system.

• Transparency to the users. The procedures for retrieving i.e. medical-record details,
whether retrieved locally or from a remote domain should be of no difference to
the user.

3.1 Generic Access Control Enforcement Model

The basic operational principles of our framework can be divided in two major
categories: authentication-related and authorization-specific. Authentication is
performed by implementing a mechanism that allows interpretation using SAML [7]
compliant assertions for authenticating credentials. The SAML standard provides
support for various types of authentication information; a SAML assertion provides
information that the requester’s credentials match predefined policy requirements. In
order to provide an efficient and robust mechanism to verify the user’s identity we
have utilised X.509 certificates. Thus, the first task for a user is to provide appropriate
credentials that will allow him/her identification within the domain he/she belongs to.
The SAML assertion issued by the authentication module can be further used by the
access control framework in the presence of multiple policies, eliminating the
necessity for a user to undergo multiple authentication procedures within the context
of the federated environment.

Every solution attempting to enable intra-domain communication should be
characterized by its interoperability and scalability features. Our approach in order to
enable cooperation between different access policies, builds upon a policy mapping
process, which enables roles from one domain to be mapped to another domain [1][9].
In a multi-domain environment, a requester usually originates from a different domain
than the one that the requested resource belongs to. As we already stated in the
previous paragraphs, a basic requirement is related with the credential management in
the federated environment in such a manner that a single sign-on (SSO) mechanism is
provided [12]. By integrating in our authentication mechanism SSO capabilities
through signed SAML statements, different domains in the federated environment
identify authorization decisions already issued by other domains. In addition, our
framework provides support for context-enabled authorization and authentication; this
is achieved by incorporating context related environmental attributes in role
definitions (for example the domain where a user belongs, such as
medical.administration.gov). In cases where a request does not originate from the
same domain with the PDP, the PDP communicates with the coalition registry which
stores information about the available mappings for the requester’s role. Each PDP
contains information about in-mappings consisting information about roles from
remote domains associated with roles to its own jurisdiction and out-mappings for
roles in other domains that its policy is associated with. Our approach thus results in a
distributed implementation of the coalition registry, which only stores information on
a domain-pair basis.

 Design and Implementation of Distributed Access Control Infrastructures 129

Table 1. Xpath based role mapping between roles in two domains

DOMAIN A DOMAIN B

Minister/GenSecretaryB/SectorB2Manager Minister/GenSecretary/SectorBDirector

Typically if we consider that the policy is encoded in XML compatible form, the

coalition registry contains information about role equivalences between different role
hierarchies, which can be encoded by means of XPath expressions [8]. XPath aims at
addressing parts of XML documents. It represents location of data in an XML
document correctly and efficiently, which makes it a suitable language for both XML
query and access control [11]. An example mapping based on XPath is presented in
Table 1. This provides an example of a mapping codification example, where the
XPath expressions identify role equivalences between different role hierarchies.
Therefore we define paths that allow the mapping of roles between different role
schemata. Notice that due to the expressiveness of XPath, one can represent more
complex role mappings in a very compact way, by grouping together equivalent roles
in one XPath expression, without having to write separate rules for each role. The
applicability of such a solution is apparent in case of organizations which operate
under a common framework (example medical organizations, ministries in
e-Government environments, etc).

We enable role mapping to be performed on single-direction basis i.e. a role in one
organization could acquire the permissions of another role on the target domain,
without the opposite being necessary valid. The next section discusses in detail our
proposed approach and we underline the design decisions we undertook in respect to
the system design issues raised in this section.

Upon authentication of the requester, the authorization framework works as
follows: The administrator edits the policy in appropriate format and makes it
available to the PDP. Each request is directed to the Policy Enforcement Point (PEP)
which constructs a XACML request message and directs it to the Policy Decision
Point (PDP). The PDP proceeds by loading the policy from the policy repository and
evaluating the request according to the loaded policy. Accordingly the response is
formulated in an XACML response message and is directed to the PEP which finally
enforces the decision, authorizing or rejecting the request.

4 System Architecture and Implementation

The distributed policy authorization module is realized by means of object-oriented
software architecture, using Java. The system design can be represented using UML
class diagrams. Figure 2 depicts a UML based representation of the software
architecture meta-model, which extends the single-domain XACML’s generic model
by introducing the multi-domain management classes.

The main classes of the model include the following: Rule, Policy and PolicySet.
The Policy class manages those policies which refer to shared target objects. A target
refers to a set of resources under request (Objects requested), the subject (requestor’s
role) and the action intended to be performed over the shared objects.

130 P. Belsis et al.

Fig. 1. The distributed access control infrastructure software architecture design in UML notation

The effect of a Rule indicates the result of a logical (i.e. true or false) evaluation of
the rule. The allowed actions we have provisioned for are “Permit” and “Deny”. A
policy <Target> element specifies the subsets resources, actions and environment to
which the policy applies. Obligation policies may be supported but their existence is
not deemed as necessary, considering our requirements. Obligation policies are likely
to be defined by administrators and their characteristic is that there may be less strict
controls on modifying an obligation policy. For example, a negative obligation policy
may act as a restraining guideline in cases where it is not practical or feasible to issue
a negative authorization policy. Policy interoperation is ruled by a Policy combining
algorithm, implemented by an appropriate class, responsible for resolving conflicts
and ambiguities; depending on the criticality of shared resources, a deny overrides
mechanism specifies the priority of access denial criterion in case of a conflict.
Subject and Resource classes enable including constraint determination and
manipulation in the role-specification schema; for example temporal constraints
(determination of activating and deactivating times for a session) or environmental
constraints that facilitate role management and enable defining a set of actions for a
group of users characterized by common attributes. The distributed PEP and PDP
which enable interoperation in a federated environment have been implemented by
means of appropriate classes.

The PEP handles authorization enforcement and is responsible for formulating the
request for a resource in a XACML compliant message and subsequently forwarding
it to the PDP. Furthermore, the PDP except from reasoning over a specific access
request provides through its interface the ability to edit and load available policies

 Design and Implementation of Distributed Access Control Infrastructures 131

Table 2a (left). An Excerpt from an XACML request. The requester’s attribute is highlighted,
as well as the requested resource. Table 2b (right) XACML response message.

<Request>
<Subject> <Attribute >
 <AttributeValue>secretary@nsf.gov</AttributeValue>
</Attribute></Subject>
 <Resource><Attribute><AttributeValue>
file://record/ResearcherlRecords/PeterDoe
</AttributeValue></Attribute></Resource>

<Action><Attribute><AttributeValue>read
</AttributeValue></Attribute></Action>
</Request>

<Response>

 <Result>

<Decision>NotApplicable

</Decision>

 </Result>

</Response>

from the domain’s policy repository. Our PDP’s interface allows loading policies
from the policy repository and editing them invocating the PolicyUse class. In a
similar manner, the PEP constructs the XACML compatible request (Table 2a) and
also extracts the response from the XACML response (Table 2b) by invoking the
ResponseUse class. All the main modules of the developed prototype represented in
UML notation are represented in Figure 2.

4.1 System Usage Scenario - Implementation Details

When a request for a resource appears, it is directed towards the PEP of the domain
that contains the requested objects. The request includes the requested object, the
subject (requester) and the action (permission) over that resource. Imagine the
following scenario: a doctor who works as a general practitioner in two different
hospitals while located in hospital B, wants to access some files that he/she has
created in hospital A. Since there is a request for files to a remote domain, the
authorization process works as follows: the authentication server issues a signed
credential which will be also recognized by the corresponding module in hospital B;
thus domain B’s authentication module is invoked, evaluating the provided by domain
A’s SAML assertions, allowing a single sign-on procedure for all the participating
domains in the coalition. Accordingly domain A’s PEP identifies the address of all the
cooperating PDP’s and forwards the request to them. Each PDP maintains records of

Fig. 3. Multi-domain access control enforcement

132 P. Belsis et al.

the role equivalences from other domains in its coalition registry; thus hospital’s B
PDP will identify the doctor as one of the roles that should be authorized to access
hospital B resources. The invocation also of the context handler integrated in the
authentication module and using XACML’s context enabled role definition, allows
easily authentication evaluating domain specific attributes for a role (such as the
domain that the request originates from; for example we authenticate all users that
originate from a specific domain like: medical.admin.gov). These attributes can be
easily included in the generic XML-based role definition schema. The issued
credential along with the request is directed to the domain’s PEP which upon
receiving an access request, formulates a XACML compliant message indicating the
requester, the object to be accessed and the permission under request and directs it to
the PDP.

From a technical perspective, there were several issues to consider: first, the need
to provide a means to authenticate all users with a single sign-on mechanism; second,
the necessity to provide a technique to allow efficiently a mechanism for policy
interoperation; third, to provide a technique to reflect easily policy updates, while
retaining the security features of the system.

Communication between the different modules from the remote domains is achieved
using Java’s Remote Method Invocation Model; the reason for selecting this is that it
allows to reflect easily updates in both domains authentication-authorization models and
to reflect also easily policy updates. Figure 3 gives an overview of the generic
architecture of the distributed access control framework. The authenticating module
functions in a way that was presented in the beginning of the current section. The
authorization framework implemented for our experimental federated environment
which consisted of 3 subnets, functions as follows: Each PDP (one for each domain)
through the developed for our evaluation purposes prototype interface provides the
ability to edit and modify policies. The PEP provides through the interface the ability to
formulate requests, and then constructs an appropriate message in XACML format.
Through an RMI call the PEP identifies the PDPs of the cooperating domains and
directs an XACML message. Accordingly the message is parsed by the parsing module
and the original request is identified from the message’s payload. Then the policy is
loaded from the policy repository and finally the request is evaluated against the
available policies. Finally a response message is sent to the PEP which enforces the
decision. For the overall system, the potential impact on the PEP’s performance is small
since there is absence of a centralized PEP; on the contrary, the PEP is implemented in a
distributed manner. We have implemented an experimental topology comprising of
three different domains with different role hierarchies. Each domain comprises of a
different sub-network each one with its own PEP and PDP; these independent modules
communicate using Java RMI. For our evaluation scenario we have directed several
concurrent requests from each domain towards the other, measuring the capability of
our prototype to correctly evaluate those different access requests.

5 Conclusions

In this paper we presented a distributed authorization framework that supports
federated autonomous environments. Among its more distinctive features are: (i) its

 Design and Implementation of Distributed Access Control Infrastructures 133

distributed nature that allows maintenance of autonomy of participating domains; (ii)
credential management using single authentication procedures by means of SAML
assertions (iii) incorporation of context-related parameters in role specification
schemas that effortlessly allow for context-based authentication and authorization.
Moreover we can distinguish its scalability support due to the low complexity of the
role mapping mechanism; we presented its salient features that support
interoperability, since it utilizes XML-based technologies for role specification and
role mapping codification. The fact that the coalition registry is also implemented in a
distributed manner facilitates its deployment as it demands fewer resources and
avoids the existence of a single point of failure as in the case of deploying it in a
centralized manner.

We have presented a prototype implementation as part of an ongoing research
work; throughout the paper we have presented a generic software architecture using
UML notation as well as an operation scenario explaining in detail the role of each
module. So far we have tested our prototype using an experimental setting of three
different domains and the initial findings are promising. Our framework provides the
possibility to apply access controls at application level, providing platform and
operating system independency.

Our architecture supports the satisfaction of the requirements recorded in section 3
by: a) providing access to data for users in the federated domain using the presented
architecture which applies the policy rules for each domain, while it facilitates
autonomy maintenance for all the participating domains; b) by not restricting the
number of domains that join or leave the federation since maintenance of coalition
related information adds only a small amount of information overhead to the coalition
registry; c) there is absence of centralized management. Each domain may cooperate
with each other without intermediate management.

One of the main limitations of our approach is the fact that policy mappings have
to be agreed by means of bilateral service level agreements between domain
administrators; such a limitation though may not always be restrictive, since it is the
case for most federated frameworks [10] such as e-Government alliances, or e-
healthcare coalitions, to regulate under a common framework; moreover, the legal
implications of an inappropriate access to sensitive personal data make automated
coalition formation a risky process. In addition, it has been proved that the problem
of automated negotiation for more than two policies is intractable [5]. In cases also
that there is no direct equivalency in between the different role hierarchies, it is easy
to create a new role on one of the hierarchies so as to provide support for a remote
domain to access only specific shared resources. In addition the complexity of the
approach is by far less than that of creating a global policy out of the component
policies of the individual domains and requires less time to integrate a new role
equivalency in the coalition registry.

The technical challenges that had to be overcome by the proposed approach are
manifold: the architecture of the platform allows ease integration of a large number of
domains, supporting thus scalability to a high extent; in addition the policy mappings
have been implemented using a low cost technique by both means of technical
feasibility and information overhead, something that makes it possible to integrate the
platform over wireless infrastructures that lack hardware resources.

134 P. Belsis et al.

Our future work focuses on providing an automated framework to facilitate
conflict resolution for the participating domains and on testing the validity of our
framework by extensive experimentation for a large number of domains.

References

1. Bhatti, E., Bertino, E., Ghafoor, A.: A Policy framework for Access Management in
Federated Information Sharing. In: IFIP Joint Working Conference on Security
Management, Integrity, and Internal Control in Information systems, Fairfax USA,
December 2005, pp. 95–120. Springer, Heidelberg (2005)

2. Shands, D., Yee, R., Jacobs, J.: Secure Virtual Enclaves: Supporting Coalition Use of
Distributed Application Technologies. In: proceedings of the Network and Distributed
System Security Symposium, NDSS 2000, San Diego, California, USA (2000)

3. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An algebra for composing access
control policies. In: ACM Tranactions on Inormation Systems Security (TISSEC) 5, 1,
1–35 (2002)

4. Khurana, H., Gligor, V.D., Linn, J.: Reasoning about Joint Administration of Coalition
Resources. In: Proc. of IEEE International Conference on Distributed Computing Systems
(ICDCS), Vienna, Austria, July 2002, pp. 429–439. IEEE press, Los Alamitos (2002)

5. Bharadwaj, V., Baras, J.: Towards automated negotiation of access control policies. In:
Proc. of the 4th IEEE International workshop on Policies for distributed Systems and
Networks (POLICY 03), pp. 77–86. IEEE press, Los Alamitos (2003)

6. Moses et al.: eXtensible Access Control Markup Language specification, v.2 Technical
Overview (May 2004) Available: XACML Oasis TC Homepage, http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

7. Hughes et al.: Technical Overview of the OASIS Security Assertion Markup Language
(SAML) V1.1. OASIS (May 2004) http://xml.coverpages.org/saml.html

8. http://www.w3.org/TR/xpath (Accessed May 2006)
9. Belsis, P., Gritzalis, S., Katsikas, S.: A Scalable Security Architecture enabling Coalition

Formation between Autonomous Domains. In: Proceedings of the 5th IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT’05), Athens,
Greece, December 2005, pp. 560–565. IEEE Computer Society Press, Los Alamitos
(2005)

10. Ao, X., Minsky, N.H.: Flexible regulation of distributed coalitions. In: Snekkenes, E.,
Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, Springer, Heidelberg (2003)

11. Malatras, A., Pavlou, G., Belsis, P., Grtizalis, S., Skourlas, C., Chalaris, I.: Deploying
Pervasive Secure Knowledge Management Infrastructures. International Journal of
Pervasive Computing and Communications, Troubador Pub 1(4), 265–276

12. Mukkamala, R., Atluri, V., Warner, J.: A Distributed Service Registry for Resource
Sharing among Ad-hoc Dynamic Coalitions. In: Proc. of IFIP Joint Working Conference
on Security Management, Integrity, and Internal Control in Information Systems,
December 2005, Springer, Heidelberg (2005)

	Design and Implementation of Distributed Access Control Infrastructures for Federations of Autonomous Domains
	Introduction
	Related Work
	Requirements Analysis
	Generic Access Control Enforcement Model

	System Architecture and Implementation
	System Usage Scenario - Implementation Details

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

