	2
	Chapter Error! Style not defined.


	Error! Style not defined.. Incorporating Security Requirements into the Software Development Process
	3



Incorporating Security Requirements into the Software Development Process

T. Balopoulos1, S. Dritsas2, L. Gymnopoulos1, M. Karyda2, S. Kokolakis1, S. Gritzalis1 

1Laboratory of Information and Communication Systems Security (Info-Sec-Lab)

Department of Information and Communication Systems Engineering

University of the Aegean, Samos, GR-83200, Greece

{tbalopoulos,lazaros.gymnopoulos,sak,sgritz}@aegean.gr

2Department of Informatics

Athens University of Economics and Business, GR-10434, Greece

{sdritsas,mka}@aueb.gr

Abstract: Security requirements, such as authentication, confidentiality, authorization, availability, integrity and privacy, are becoming extremely common in software development processes. However, in practical terms, it has been proved that only rarely the developed software fulfils the related security requirements. The reason for this is twofold. On one hand software developers are not security experts and thus they are not competent in selecting and applying the appropriate security countermeasures. On the other hand, many security requirements are intrinsically difficult to deal with. This paper aims to address both of the aforementioned issues and to introduce potential solutions. It starts by analysing the major security requirements, and goes on to explore how they can be mapped into concrete security solutions or/and mechanisms. Then, it examines how the fulfilment of security requirements influences the choice of development methodologies and paradigms (with the emphasis being on the design phase), so that the requirements are effectively satisfied. The discussion covers object-oriented and aspect-oriented programming, the Rational Unified Process, UML and UMLsec, as well as security patterns, with regard to the ways they can support the use of security solutions or/and mechanisms.

Keywords: Security requirements, Development methodologies, RUP, UML, UMLsec, Security patterns

1. Introduction

Building secure applications is an essential requirement for software development. It is generally accepted that security should be “built-in” rather than “added-on”, and as a result researchers and developers strive to devise and implement appropriate security mechanisms throughout the software development life cycle. 

In order to build secure applications, many security requirements need to be adequately addressed during software design and development. For example, applications usually need to identify legitimate users and to provide or deny them with access to resources. Checking the validation of the users’ input is another common requirement, as well as preserving the confidentiality of personal or other sensitive information. A great variety of solutions and mechanisms are available for addressing such security requirements—each having its own advantages, shortcomings, and carrying different implications for the environment in question. So, how can developers decide, for example, on the appropriate encryption scheme to be incorporated in the e-commerce application they develop? Or, which access control schemes should a developer consider as the most appropriate for a CRM application? Such problems are very common, and obstruct the development of security enhanced applications. 

This paper, suggests a high-level classification of many commonly used security requirements, and associates these requirements with the corresponding security mechanisms which are available to developers. The paper also explores the ways that popular software development methods can be adapted or extended to handle secure application development. 

This paper is organized as follows: Section 2 provides a high-level classification and description of the most important and common security requirements, and indicates the necessity of incorporating them early in the software development process and not a posteriori. Section 3 describes how these requirements can be mapped to specific security solutions and mechanisms to fulfil them. Section 4 examines how the issue of incorporating security requirements into software development is accommodated in the context of some of the most widely used development methods. Finally, section 5 presents a brief overview and conclusions, as well as suggestions for future research.

2. Security Requirements

Information systems span most of our everyday business and personal activities, thus necessitating the development of secure applications. But what makes an application secure? This section presents an inclusive (albeit non exhaustive) classification of major security requirements that need to be addressed, in order to develop a secure application.

2.1 Authentication, authorization and access control 

Authentication is the process of verifying an entity’s claimed identity. It follows an identification process, which establishes who that entity claims to be. Identification is the easier process of the two, while authentication requires some more elaborate work on the side of the verifier. 

In most common authentication schemes, the verifier expects to receive “something the user knows”, or “something the user has”, or “something that characterizes the user”, examples of which might respectively be a password, a passport and a fingerprint. Other authentication schemes include examining “what the user does” (e.g. keystroke patterns), or “where the user is” (e.g. geographical location, network address etc.). Depending on the specific needs and requirements, a combination of these methods may be appropriate.

The access control mechanisms that are incorporated into applications include the means and processes through which, the access rights of a logical entity (user or application) requesting access are verified with a concrete degree of precision. The overall process of access control consists of the following three steps:

1. Identification

· The logical subject declares its identity.

· The access control system checks whether the declared identity exists.

2. Authentication

· The logical subject demonstrates that it really is the one it claimed to be.

· The access control system checks the validity of this assertion.

3. Authorization

· The logical subject receives the access rights that were defined for it. 

· The access control system monitors the actions of the subject in order to keep them in line with his/her access rights.

2.2 Availability

Any system, which, upon request, performs its advertised service in a timely fashion, is said to satisfy the property of availability. To achieve availability, it is necessary to ensure that the applications that offer the service have been designed and implemented in such a way as to deal correctly and efficiently with the resources of the host on which they are executed.

2.3 Confidentiality

Confidentiality of information holds when it remains undisclosed to unauthorized entities. Prohibiting unauthorized access to information is essential in applications, which are accessed by many users, especially if the information is sensitive (e.g. personal medical records, commercial agreements). Applying authorization mechanisms (access control) alone is not sufficient for protecting data confidentiality. In these cases, access control is implemented only at the application level, without ensuring that the data stored in a hard disk are not available to unauthorized users. Therefore, applications need to incorporate suitable confidentiality mechanisms, such as data encryption, possibly using a combination of symmetric and asymmetric cryptographic algorithms, while preserving performance and the required quality of service.

2.4 Integrity

Both an application as well as the data it handles must be protected effectively with respect to their integrity. Integrity of information holds when it has not been modified in unauthorized ways. More specifically, a secure application must employ specific mechanisms for protecting: 

· the application itself,

· the data handled, and

· the operating system in which it is executed.

2.5 Accountability: Monitoring and logging

Another major characteristic of secure applications is their capability of monitoring and logging the incidents related to their operation (auditing). This is usually referred to as accountability. The objective of this monitoring and logging is the recognition and the inhibitory confrontation of potential threats. The incidents recorded should be classified in different categories (e.g. based on their origin or their significance), so as to decide on appropriate action to be taken.

Critical applications (e.g. medical or military) in particular, should also employ additional alarming mechanisms. Such mechanisms should be configurable by the administrator of each application, who should be able to set the alarm types and levels.

2.6 Privacy

Besides protecting the confidentiality of data, secure applications need also to incorporate and implement security mechanisms that protect the privacy of the entities that use them (e.g. the users). Thus, applications need to ensure that personal data or information of each entity remains private; that is no unauthorized user can have access to them. Privacy protection should be applied in conjunction to authorization mechanisms; in this way a potential user of the application provides during the process of authorization the essential credentials to be used for preserving his/her privacy (Gritzalis 2004).

3. Security Mechanisms 

In the previous section some of the most important application security requirements were reviewed and analyzed in terms of their contribution to overall security. In this section, security mechanisms that are widely used for satisfying these requirements will be presented. 

3.1 Authentication and authorization mechanisms: Certification

As described above, the process of verifying a user’s identity is called identification, while the process of verifying the correctness of identification is called authentication. Identification is achieved by the use of passwords, Kerberos tokens, SSL tokens, etc. Assigning a unique identification token (e.g. a name, number, tag etc.) to a user provides secure applications with a way to track down the users’ actions, when this is required. When a trusted third party (e.g. a Certification Authority, CA) is involved through the issuance of certificates (e.g. X.509 certificates), the whole process is called certification (Bishop 2003, Anderson 2001).

Secure applications apply authorization mechanisms in order to prohibit entities (e.g. a user or another application) from performing functions without authorization. On the other hand, an entity might choose to limit itself to functions that provide assurance mechanisms. Certificates are used in order to certify authorization and certification information. In this way, special forms of certificates are produced, namely privilege attributes certificates and assurance credentials (Bishop 2003).

3.2 Cryptography 

Cryptography is one of the most commonly used security mechanisms that provide confidentiality and privacy. However, it is a highly active research area, making it very difficult for non-security experts, such as software developers, to follow its advances. Cryptography aims primarily in preserving data confidentiality, but its applicability is not limited to confidentiality. Message Authentication Code (MAC), for example, is a security mechanism that applies cryptography in order to achieve data integrity.

Cryptography is about using a secret key to transform a piece of data into an indecipherable form. The same or a different key can then be used to recover the original data. The way keys are used to manipulate data is dictated by the cryptographic system in use. A cryptographic system or cryptosystem is a set of procedures, functions and algorithms used to encipher and decipher data. There are two basic types of cryptosystems: symmetric and asymmetric. In a symmetric cryptosystem, the same key is used for enciphering and deciphering the data, while in an asymmetric cryptosystem different keys are used. Thus, in symmetric cryptosystems only one key exists, while in asymmetric cryptosystems there is a private and a public key. Well known symmetric cryptosystems include DES, 3-DES, AES, IDEA, Blowfish, RC4, and RC5. The most commonly used asymmetric cryptosystems are RSA, DSA (Anderson 2001, Menezes 1996).

Table 1: Security requirements and corresponding security mechanisms

	Security Requirements
	Security Mechanism Category
	Security Mechanisms

	Identification

Authentication

Certification
	Authentication

Certification
	Passwords, Digital certificates, Specific authentication protocols

	Authorization

Assurance
	Authorization
	Privilege certificates, Assurance privileges, Proxies

	Confidentiality

Integrity
	Cryptography
	Symmetric cryptosystems (DES, 3-DES, IDEA, Blowfish, RC4, RC5), Non symmetric cryptosystems (RSA, DSA)

	Availability
	Availability tools
	Firewalls, Intrusion Detection Systems, DoS protection mechanisms, Antiviral software

	Privacy
	PETs
	Cryptography, Anonymous re-mailers, Digital signatures, Re-webbers, Cookies management, Privacy networks, Disk/File erasers, Digital certificates, Filters, Infomediaries, Digital tags, Anonymous payment systems

	Accountability
	Report

Logging
	Events auditing systems, Control records analysis systems, Logs


3.3 Availability mechanisms 

The requirement of availability is quite complex, and has dependencies with other security requirements. To deal effectively with availability, secure applications must incorporate the use of a wide range of different security tools and mechanisms, such as firewalls, denial of service (DoS) protection mechanisms, intrusion detection systems (IDSs), and antivirus tools.

3.4 Logging and Report Mechanisms

As mentioned above, secure applications need also to support audit functions. Therefore, secure applications should make use of an auditing system that records all security-related incidents. Recording should be done in such a way that the resulting logs could be used to analyze the incidents at a later time in order to produce useful reports about the level of security that has been achieved. These logs can also be used for other security purposes, such as security forensics.

3.5 Privacy Enhancing Technologies

The use of Privacy Enhancing Technologies (PETs) aims in protecting users’ privacy. They involve complex and hard to implement mechanisms, impeding the overall performance of the systems in which they are applied. Most widely used security mechanisms in this area include cryptography, (blind) digital signatures, cookies management, open profiling standard (OPS), disk or file erasers, content filters or blocking software, digital tags, anonymous re-mailers, re-webbers, privacy networks, onion routing, digital certificates, infomediaries, and anonymous payment systems (Chaum 1990, Chewick 1996, Hagel 1999).

3.6 Security Requirements and corresponding mechanisms

All security mechanisms that have been described in the previous paragraphs can be used to fulfil certain—sometimes more than one—security requirements. Most of them require specialized knowledge and expertise in the area of security, especially those that employ cryptography, while others exhibit similar functionality but require different preconditions and have different drawbacks. Table 1 presents a mapping of the set of requirements a secure application must fulfil, with a list of the corresponding security mechanisms and solutions that developers can employ to fulfil these requirements.

4. Incorporating Security Requirements into Software Development

The previous sections presented the major security requirements that security enhanced applications must fulfil, as well as the corresponding mechanisms that can address these requirements. This section will discuss secure application development, that is the incorporation of security requirements into software development under different programming paradigms, methodologies and practices.

4.1 Object-Oriented Software Development

The object-oriented programming paradigm is an evolution of the structured programming paradigm. The basic property of structured programming is that code is organized in units that have a single point of entry and a single point of exit, i.e. functions and procedures. In object-oriented programming there is the additional property that data are coupled with the functions/procedures that operate on them. The language constructs that define this coupling are called classes. The data and functions/procedures of this coupling are called attributes and methods respectively. Each class can have any number of instances, called objects. Objects of the same class share the same code, but can have different values for their attributes, i.e. they can be in different states. Classes can be related via association and/or via inheritance. With association, a class can use the functionality of other classes to offer higher-level functionality. With inheritance, a class can inherit attributes and methods from another class. 

4.1.1 The Rational Unified Process

The Rational Unified Process (RUP) (Jacobson 1999) is the most widespread methodology for the development of object-oriented software. It assigns specific roles and responsibilities in the members of a software development team and strives for the production of software of high quality that satisfies the given requirements and is produced within a specific timeframe and budget.

The RUP prescribes the construction of models, i.e. of semantically rich diagrams of the software that is being developed, which are used to communicate its requirements, architecture and design. These models are compiled in the UML (Unified Modelling Language).

4.1.2 UML

UML is a modelling and specification language that allows for the construction of diagrams of three kinds:

· Structural diagrams (class diagram, object diagram, component diagram, deployment diagram)

· Behaviour diagrams (use case diagram, sequence diagram, activity diagram, collaboration diagram, statechart diagram)

· Model management diagrams (package diagram, subsystem diagram, model diagram)

4.1.3 Building secure applications: UMLsec

UMLsec (Jurjens 2001) is a standard UML extension. It allows for the incorporation of security-related information in UML diagrams and supports mechanisms that verify that the security requirements are indeed fulfilled. However, it does not provide step-by-step instructions for reaching this end. The security requirements that can be expressed and validated using UMLsec include confidentiality, integrity, secure information exchange and access control. The major UML diagrams that UMLsec builds upon are the following (Stevens 2000):

· Class diagrams, which are used to assure that information exchange satisfies the security level stated in the requirements.

· Statechart diagrams, which are used to avoid covert information paths between higher and lower security level entities.

· Interaction diagrams, which are used to verify secure interaction between entities.

· Deployment diagrams, which are used to deal with the security of the physical layer.

4.2 Aspect-Oriented Software Development

Aspect-oriented programming is used to overcome a significant weakness of other programming paradigms (e.g. object-oriented programming), namely their inability to isolate the implementation of certain requirements—which in the aspect-oriented context are referred to as concerns—in a single unit of code (e.g. one class). Such concerns are called crosscutting concerns.

A typical example of a crosscutting concern is keeping an application’s execution log, which usually consists of a list of the code units (e.g. the methods of a class) that were executed, along with other relevant information (e.g. the execution time, or the input and output parameters). In most programming paradigms, this requirement cannot be isolated. In object-oriented programming for example, each method of each class is responsible for keeping the application’s log for itself.

The same applies to many security requirements. For example, the requirement for authorization must take place at each entry point of the application’s code. Even if only one such point lacks the appropriate authorization check, the application has a security hole. Ideally, the implementation of such requirements should be isolated in a single unit of code, so that by verifying the correctness of this unit of code, one could place a great deal of trust in the correctness of the whole implementation.

4.2.1 Building secure applications: Acegi Security System

A useful aspect-oriented framework for incorporating security requirements into software is the Acegi Security System. It is built on top of the popular framework for Java called Spring. Spring does not implement its aspect-oriented features on the language level, but through the use of dynamic bytecode generation, thereby leaving the Java language intact. Acegi uses these aspect-oriented features to offer support for authentication and authorization services.

4.3 Developer Guidelines and Checklists

Developer guidelines and checklists are common in software development. While they do not guide developers in a step-by-step manner, they are nevertheless effective in helping them to avoid certain common pitfalls. For example, a security checklist of a large software company could include the following guidelines:

· Input validation.

· Simple design.

· Reuse code that has been proven to be secure.

· Defensive coding.

· Principle of least privilege.

· No security by obscurity.

· Passwords not transmitted in plaintext.

· Secure weakest link.

In order for such checklists to be as effective as possible, their context must be clear, their effectiveness must be constantly evaluated and their content frequently renewed to reflect the changing environment.

4.4 Security Patterns

Security patterns represent standard solutions to common security requirements. They are an effective method for cataloguing and reusing existing security knowledge, as well as documenting software with security requirements.

Security patterns can be thought of as specialized design patterns. In this respect, they can be documented and classified in a similar fashion as the one described by the “Gang of Four” (Gamma 1995), that is documentation may fall under the following headings: pattern name and classification, intent, “also known as”, motivation, applicability, structure, participants, collaboration, consequences, implementation, sample code, known uses and related patterns. They can be classified into creational, structural and behavioural patterns.

Table 2 presents some of the most widely known security patterns, classifies them, and asserts their abstraction level as well as which security criteria they fulfil. The security criteria presented are the ones proposed by Viega and McGraw (Viega 2002).

	
	Classification
	Abstraction level
	Secure weakest link
	Practice defence in depth
	Fail securely
	Principle of least privilege
	Compartmentalize
	Keep it Simple
	Promote privacy
	Hiding secrets to trust
	Be reluctant to trust
	Use community resources

	Single Access point
	S
	AHN
	X
	
	
	X
	
	X
	
	
	X
	

	Check point
	S
	AHN
	X
	X
	
	X
	
	
	
	
	X
	

	Roles/RBAC
	S
	AHN
	
	
	
	X
	
	X
	X
	
	
	

	Session
	C
	A
	
	X
	
	
	
	X
	X
	
	
	

	Limited View
	B
	A
	
	X
	
	X
	
	X
	X
	X
	X
	

	Full view with Errors
	B
	A
	
	
	X
	
	
	X
	
	
	
	

	Security Layers
	S
	A
	X
	X
	
	
	X
	
	
	
	X
	

	Authorization
	S
	AHN
	
	
	
	X
	X
	
	X
	
	
	

	Multilevel Security Pattern
	S
	AHN
	
	
	
	X
	X
	
	X
	X
	X
	

	
	Classifications:

C: Creational

S: Structural

B: Behavioural
	Abstraction levels:

A: Application level

H: Host level

N: Network level


Table 2: Security patterns classification (based on Viega’s and McGraw’s 10 principles)

5. Conclusions

This paper focuses on the issue of secure applications development. It starts by presenting a general classification of security requirements, indicating their importance and contribution to application security. It then provides a list of available security mechanisms and tools, which developers can use in order to fulfil these requirements. Finally, the paper discusses how developers, following different paradigms and methodologies, can accommodate security requirements in order to build secure applications. 

The indications and conclusions included in this paper can help software developers seeking to develop secure applications by providing them with a point of reference as to how security requirements can be addressed. It is the authors’ belief, that the information systems security community should more actively embrace the issue of secure applications development. Security patterns are a promising step towards this direction, and we intend to further explore their capability to enhance application security.

Acknowledgments: This work was co-funded by 75% from the European Union and 25% from the Greek Government, under the framework of the “EPEAEK: Education and Initial Vocational Training Program—Pythagoras”.

References

Anderson, R. (2001) Security Engineering. A Guide to Building Dependable Distributed Systems, WILEY. 

Bishop, M. (2003) Computer Security: Art and Science, Addison Wesley.

Chaum, D. (1990) Showing credentials without identification transferring signatures between unconditionally unlinkable pseudonyms. Advances in Cryptology, USCRYPT ’90.

Chewick, W., Bellovin, S. (1996) Firewalls and Internet Security, 2nd edition, Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1995) Design Patterns, Addison-Wesley.

Gritzalis, S. (2004) "Enhancing Web Privacy and Anonymity in the Digital Era", Information Management and Computer Security, Vol.12, No.3, pp.255–288, Emerald.

Hagel, J., Singer, M. (1999), Net Worth: Shaping Markets When Customers Make the Rules, HBS Press.

Jacobson, I., Booch, G., Rumbaugh, J. (1999) The Unified Software Development Process, Addison-Wesley.

Jurjens, J. (2001) Towards development of secure systems using UMLsec, Lecture Notes in Computer Science, 2029:187.

Laddad, R. (2003) AspectJ in Action: Practical Aspect-Oriented Programming, Manning Publications.

Menezes, A., Van Oorschot, P., Vanstone, S. (1996) Handbook of Applied Cryptography, CRC Press.

Stevens, P., Pooley, R. (2000) Using UML. Addison-Wesley.

Viega, J., McGraw G. (2002), Building Secure Software—How to Avoid Security Problems the Right Way, Addison-Wesley.







































































































































































































































































































































































































8
7

