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ABSTRACT 
Session Initiation Protocol (SIP) high availability, reliability and 
redundancy are determined by the ability of the core SIP network 
components to offer high quality SIP services in the event(s) of 
high call transactions, link outages, device failures, 
misconfigurations and security attacks. In this context, load 
balancers can be used to achieve redundancy and active load 
balancing of SIP transactions. In load balancing schemes, new 
requests are allocated across available servers using a selection 
algorithm. Although considerable work has been already done for 
Web traffic balancing, little research effort is primarily aiming to 
SIP load balancing. This paper proposes a SIP dedicated load 
balancing solution, which is currently under development within 
the EC funded project SNOCER. We describe in detail our 
balancing scheme, its associated architecture elements and 
provide implementation details showing that it is simple to 
realize, effective, flexible, robust and secure.   

Categories and Subject Descriptors 
C2.1 [Computer Communication Networks]: Network 
Architecture and Design, C.2.2 Network Protocols. 

General Terms 
Design, Reliability, Security. 

Keywords 
Session Initiation Protocol; Load balancing; SIP architectures; 
Redundancy. 

1. INTRODUCTION 
Large scale corporate Voice over IP (VoIP) service may 
necessitate the deployment of multiple servers in order to serve 
transactions requested by several VoIP clients concurrently. 
Multiple installed servers or even clusters of servers aim at 
“absorbing” smoothly heavy VoIP traffic so that VoIP services 

can be delivered unattended without delays contributing to the 
high quality of service (QoS). 

Generally, in load-balancing schemes, new requests are assigned 
to existing servers following a pre-determined algorithm. A 
common selection algorithm targeting in statistical load balancing 
is the well known round-robin scheme [1], which has to be better 
considered as a load distribution option rather than a “pure” load 
balancing mechanism. Another eminent category of balancing 
approaches is weighted or adaptive balancing, which distributes 
requests proportional to the weight assigned to each available 
choice or route. 

More specifically, load balancing can be adaptive or not adaptive, 
depending on whether or not run-time load conditions influence 
load balancing decisions. Adaptive load balancing policies use 
real-time system state information based on various metrics (e.g. 
CPU consumption, free available memory etc), to take load 
balancing decisions, whereas non-adaptive or static load 
balancing do not. In any case, to be able to distribute effectively 
and fairly VoIP traffic in the corresponding redundant servers, the 
introduction of the appropriate balancing mechanism during the 
initiation of the call is considered as the most crucial factor. In a 
VoIP environment the call establishment is accomplished through 
the utilization of standard signalling protocols like H.323, SIP, 
MGCP, etc. However, Session Initiation Protocol (SIP) seems to 
overwhelm all the rest, mainly due to the fact that it has been 
adopted by various standardisation organisations (i.e. IETF, ETSI, 
3GPP) as the protocol to establish multimedia sessions at both 
wireline and wireless world in the Next Generation Networks 
(NGN) era.  There are different ways to calculate the SIP servers’ 
workload and different schemes to deal with it. However, in 
practice, the effectiveness of adaptive load balancing depends on 
the load metrics chosen and on other load run-time parameters 
needed. 

While many load balancing strategies and various techniques (see 
Section 2.1) have been considered and thoroughly tested mainly 
for Web servers, significant research must be targeted towards 
loading-balancing schemes for real-time services. Current SIP 
servers’ implementations do not include native SIP balancing 
modules and usually rely on add-on or peripheral balancing 
methods. To the best of our knowledge, the only SIP-oriented 
balancing scheme is the Vovida’s one (www.vovida.org) which, 
at least until know, is far from being complete [2]. This paper 
focuses on load SIP balancing, proposing a novel but simple 
approach that can be implemented in any SIP realm. We address 
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architecture requirements and describe in detail how the proposed 
solution can be applied, discussing alternative scenarios. As a 
final point, we also touch on some failover issues and security 
parameters that stem from the presentation and are considered 
important for the proposed scheme to work. 

The rest of this paper is structured as follows: Section 2 provides 
a short introductory to balancing techniques focusing on SIP and 
presents our solution in general. Section 3 analyses the anticipated 
balancing scheme in detail presenting its interactions with the 
other architecture components, discussing its advantages and 
showing that is robust and simple enough to realize. Last Section 
concludes the paper and gives pointers to future work. 

2. SIP BALANCING PRELIMINARIES 
2.1 Load Balancing Schemes 
Some well-known solutions in the literature mainly about Web 
servers balancing include the following (here we have made some 
adaptations for the SIP case): 

Round Robin (RR): Upon to a new SIP request, the SIP balancer 
selects the next IP address record for the specific SIP server alias 
name as stored in the Domain Name System (DNS). This solution 
is considered as non adaptive, due to the fact that it does not 
require from the balancer to maintain and update workload 
information from the available SIP servers in the domain. For 
Web balancing this mechanism is built-in into the DNS. One will 
argue that SIP load balancing can be applied directly to the DNS 
as it is already supported for other Web services. Using this 
principle, there is no real need for the balancer independent 
machine. However, the DNS will assign one of IP addresses of 
SIP servers to each address resolving request. As a result, the 
name-to-address mapping will be cached in name servers along 
the path from the DNS all way down to the client and consequent 
address requests reaching the same name servers will be resolved 
with cached addresses. Only after the name-to-address mapping in 
the cache expires, due to Time-to-Live (TTL) field, is possible to 
serve new requests with a fresh RR decision. Additionally, RR is 
proved ineffective when all servers do not have equal processing 
performance and resources. Even the improved Two-Tier-Round-
Robin (RR2) algorithm [3], which takes into account client 
domain information, does not really improve balancing for SIP 
applications. 

Adaptive versus Dynamic Weighting: This means that it is 
selected the server which currently handles the least number of 
SIP transactions or it has the minimum overall workload. This 
category of solutions for Web servers includes Asynchronous 
Alarms (AAlarm) [4], Ibnamed [5] and TENBIN [6] algorithms for 
DNS. For the SNOCER architecture, we propose the following 
general balancing schema: 

- The Load Balancer (LB) module (process or daemon) at fixed 
time intervals (e.g. 30 minutes) requests the current number of 
SIP servers (SRV records) [7] available within the DNS server 
and resolves their Fully Qualified Domain Names (FQDNs). 
Clearly, this means that for each SIP domain, the DNS server has 
multiple SRV records corresponding to (redundant) SIP proxies 
attached to it. 

- After that, the LB at predefined or dynamically assigned 
intervals (say 120 seconds) queries all the available SIP home 

network proxies for information like CPU usage percentage and 
memory consumption. Generally, the following examples of 
“availability” metrics can be taken into account: Performance of 
each server, load average of CPU in each server, network load, 
network distance (hops) between a SIP client and a SIP server, 
vote from users, using predefined availability as add-on to 
dynamic load balancing. Based on the returned data, the LB 
generates a SIP proxy preference list from the least to the most 
utilized. In addition, every SIP Home proxy can send at regular 
thick-time intervals heartbeats to the LB machine saying “I am 
alive”. Therefore, in case a SIP proxy goes down or suffers a 
sudden attack, the LB will be indirectly informed. 

In the proposed load balancing method, when a SIP client 
requests to initiate a SIP call, the proposed entity called “SIP 
Load Balancer” (LB) will perform a selection of the most 
appropriate SIP server, based: (a) on the DNS SRV records of the 
available SIP servers and (b) on various workload metrics 
collected from the existing SIP proxy servers, such as locations of 
the client and SIP server, SIP server load in terms of processing 
transactions, overall workload in each SIP server, etc. Clearly, the 
selection of a certain proxy to serve any initial request is 
completely transparent to the client. One can argue that there is no 
real need for the LB to query each time the SIP proxies 
consuming network bandwidth, rather simply keep locally 
statistics about how many transactions have been assigned to each 
of them. However, this solution is rather static as: (a) does not 
provide real time load metrics because as one or more SIP jobs 
finish in the proxies there is no way to inform back the LB and (b) 
in case a SIP proxy goes down e.g. due to hardware failure, the 
LB will continue to send it new transactions to dispatch. For the 
above reasons, we consider the frequent communication between 
the LB and SIP proxies as mandatory. 

2.2 Load Balancing within SNOCER 
Architecture 
This section describes the use of the load balancing scheme 
within the SNOCER architecture. The LB network element will 
reside inside the internal High Availability Network (HAN) as 
described in Figure 1. Key components of the high availability 
SIP architecture within the SNOCER architecture, as proposed in 
[8], are the following: 
- Bastion Host: This host acts as a gatekeeper into the internal 

VoIP network of the operator. Its assignment is to detect 
basic attacks on the VoIP systems and deny access to 
unsolicited traffic into the network through a firewall. 

- Enhanced SIP Proxy: SIP proxies are enhanced in two ways. 
An integrated IDS system will be able to detect more 
sophisticated attacks on the SIP proxy, which the bastion 
host might have missed. Furthermore, the proxy’s 
performance is optimised through the addition of a 
specialized DNS module to enhance throughput capabilities 
and repel DNS related attacks. 

- The High Availability Network: Key components of the 
VoIP network will be secured trough an internal high 
availability network providing failover capabilities to these 
components. 

- Operator’s console: At a centralized point the status of the 
enhanced VoIP infrastructure can be observed and 
controlled.



 
Figure 1. General high availability architecture for SIP domains 

 

3. IMPLEMENTATION DETAILS 
The LB is an add-on entity which is responsible to query DNS and 
maintain SRV records of all the available SIP proxies in the 
corresponding domain. For each SIP client’s request the LB is 
responsible to forward the request to the most appropriate SIP 
proxy, in terms of workload, to serve it. In other words, as 
described in Figures 2 and 3, SIP clients firstly communicate with 
the LB entity to find out the best SIP proxy available. If the LB is 
not responding the SIP client can communicate directly with the 
DNS to retrieve all the available SRV records corresponding to 
SIP servers in the domain and select one. 

 
Figure 2. General SIP load balancing architecture 

However, having in mind that until now most SIP clients do not 
support DNS direct transactions, another solution for them is to 
communicate directly with another available SIP proxy in the 
same domain. The IP addresses of the LB and the backup SIP 
proxies can be pre-configured in the SIP client device. As a result, 
the IP address of the most appropriate SIP proxy is selected by the 

LB and while the initial message (e.g. INVITE) goes through the 
LB the subsequent messages for the same session go directly to 
the selected by the LB SIP proxy. 

 

Figure 3. LB Decision Flowchart 
To be more precise, the only SIP message types that need to pass 
through the LB entity are: REGISTER, INVITE, SUBSCRIBE 
and OPTIONS. Naturally, in case the LB is implemented as 
another SIP proxy e.g. the open source Express Router (SER) 
(www.iptel.org/ser/), it will normally insert its own VIA header in 
the incoming SIP message prior to forwarding it to the 
corresponding SIP proxy. This standard (for SIP proxies) VIA-
adding procedure do have undesired implications as all the 
corresponding responses referred to the same session will pass 
through the balancer entity.  
To resolve this problem have proposed the following solutions, 
while the exchanged messages between all the involved entities 
are depicted in Figure 4: 
- One possible solution, is to manage to somehow have the 

LB’s VIA header not inserted at all, inducing this way all the 
consequent messages to go directly to the home SIP proxy in 



charge. For example, this can be done by utilizing the routing 
engine of the corresponding proxy. In the case of SER, it 
would be possible to use the SEND command as described in 
the SER’s developers’ guide [10]. 

- A second alternative is to modify the proxy core source code 
to force it to ignore the VIA-received header added by the 
LB. However, this solution is proxy dependent or 
implementation specific and of course not portable. 

- The final option is to spoof the source addresses (IP and port) 
of packets (e.g. INVITE messages) which are forwarded by 
the LB so that proper routing takes place. According to this 
scenario we set the IP address and port to the address and 
port from which the packet arrived to the LB. By employing 
this solution the LB is more transparent and we don’t need to 
do any changes in the proxy’s source code. 

Figure 4. Call flow between all the involved entities (The Via in 
brackets means optionally (depends on the solution selected, see below) 

One other transparency problem that emerged with the utilization 
of the LB is that the subsequent requests belonging to the same 
dialog must not pass through the LB. For this reason it is 
suggested the SIP proxies in the home network, to introduce the 
Record-Route header field [9]. By doing this, the clients would 
then send follow-up requests regarding that session to the home 
SIP proxy assigned by the balancer in the first place. This should 
then not forward them to the request-URI (the LB) but process 
them by itself. In addition, this solution even has the advantage 
that new calls are load balanced because the route set is valid only 
for one session. 
As already mentioned earlier, an orthogonal to the proposed 
balancing method, as in AAlarm algorithm, is to enable the SIP 
home proxies to dynamically inform at any time the LB entity 
when some workload parameters (e.g. concurrent number of SIP 
transactions) exceed a specified threshold. For example, consider 
the case where suddenly one or more SIP proxies are under a 
DoS/DDoS attack. In fact, this capability requires the installation 

of an appropriate daemon or module in each SIP proxy to monitor 
the corresponding workload metrics. In case that all available SIP 
servers are overloaded, it is selected the one with the least current 
overload. Therefore, it is expected that the SIP home network 
proxies are selected based to the rate of availability as following: 

To be more precise, assume that there exist n operational SIP 
servers in the domain, with availabilities A1, A2, A3,…An, where 
(0 ≤ Ai ≤ Amax) and Amax is the upper bound of the “Availability” 
parameter. Under this situation, the i-th SIP server is chosen by 

the probability ∑ =

n

j j

i

A

A

1 . This situation is depicted in Figure 5. 
Considering also the worst and of course rare case when all SIP 
proxy servers are not desirable or down, the LB can choose one 
SIP proxy randomly and simultaneously display a message to the 
operator’s console). 

Summarizing the above paragraphs, the SNOCER solution is DNS 
independent, so it does not require any modification or extension 
to existing DNS records or mechanisms nor to the core source 
code of the employed SIP proxy to act as LB. The only actual 
requisitions are: 

(a) The addition of the LB independent machine implemented as 
an existing SIP proxy (e.g. SER). The SIP server is only 
required to support DNS-SRV records but this functionality 
is already mandatory by the SIP standard (RFC 3261) [9]. 
Moreover, the employment of a standard SIP server to serve 
as the LB means that there is no need to develop from the 
scratch a lot of new software. Only the decision-and-forward 
engine and the communication modules with the proxies have 
to be implemented. Note, that in case of a large SIP network, 
including many SIP proxies, we can realize a LB solution 
consisting of several geographically distributed SIP proxy 
clusters controlled by equal number of LBs. 

(b) A daemon or process running in each SIP home network 
proxy sending heartbeats, collecting workload metrics and 
handling the incoming queries from the LB and optionally, 

(c) Inform in an asynchronous fashion the LB when a certain 
threshold is violated. 

(d) All SIP home network proxies use either one shared or more 
(mirrored) databases. 

In our opinion the most compatible with the RFC 3261 of 
heardbeating functionality is the utilization of  SIP-Specific Event 
Notification [11] due to the fact that, it has been designed as a 
framework by which SIP components can request notification 
from remote nodes indicating that certain events have been 
occurred. In this case the LB forks and send a SUBSCRIBE 
request to all the available SIP proxies. Consequently proxies 
responds to SUBSCRIBE request with NOTIFY message. LB 
needs to refresh subscriptions on a periodic basis using a new 
SUBSCRIBE message on the same dialog as defined in RFC 
3261. When a certain SIP proxy does not send NOTIFY messages 
during a pre-set time period then it is considered unavailable. The 
body of NOTIFY messages can carry all the necessary 
information like CPU load, memory consumption or even 
introduce new headers like WORKLOAD_INFO. Such a header 
can have the following general structure: WORKLOAD_INFO = 
{CPU_USAGE, MEMORY_CONSUMPTION, etc}. However, 
such information must be considered vulnerable to malicious 
modifications it is suggested to utilize S/MIME to protect either 
the header or the body from malicious modifications. Moreover, 
the exchanged messages (see Figure 6) are lightweight having 



minimum impact on home SIP proxy servers’ performance and 
network bandwidth. In case the SIP proxy initiates the 

communication only the last two arrows are present. 
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Figure 5. Example of selection rate 

In addition, for security reasons, the exchanged messages between 
the LB and the SIP proxies can be signed using symmetric or 
asymmetric key technology to protect against replay attacks, 
tampering and man-in-the-middle attacks. For instance, messages 
can be protected using the de-facto TLS protocol [12]. Last but 
not least, to increase LB availability it is also possible to have one 
or more backup mirrored balancers to defend against possible DoS 
or DDoS attacks, physical or human disasters, etc. The most 
practical solution to this issue enables the backup LB to take over 
the IP address of main LB in the case of main LB’s failure. 
Additionally, we must utilize some type of heart beating between 
the main and the backup(s) LB to ensure the latter is alive. This 
can be easily ensured by using standard HA built into e.g. the 
Linux operating system (http://linux-ha.org). 

Figure 6. Indicative communication protocol between the 
Balancer and SIP proxies 

We should also mention that user location database is another 
important issue that is related with the balancing scheme. There 
are two alternatives. First, to use a shared by all proxies database 
and secondly to have more databases that are replicated real-time. 
As the first solution introduces a sensitive single point of failure 
we intent to select the second one. However, this issue remains out 
of the scope of this paper. 

4. CONCLUSIONS 
As VoIP deployments continue to increase and become adopted 
by more and more commercial organisations, reliability and 
availability issues turn out to be increasingly important. In this 
context, balancing the load of SIP transactions raises as a major 
factor in terms of high availability, redundancy and QoS. Despite 
the different balancing approaches that have been proposed and 
developed for Web applications, until now, no SIP-oriented 
complete balancing solution has emerged. 

In this paper we describe a complete, lightweight SIP load 
balancing scheme which is currently under development in the 
context of EC SNOCER project. Several implementation issues 
were analysed including architecture, components, interactions, 
etc, showing that the anticipated balancing method is practical and 
above all easy to implement. We also touch upon some 
complementary questions like failover and security that we would 
like to continue investigating. Currently, we are planning to 
thoroughly evaluate the projected solution, which is almost 
finished, in terms of robustness and performance. As future work, 
we would like to expand this study considering clusters of SIP 
proxies controlled by different LBs. Furthermore, considering that 
the LB is a sensitive and tempting for the attackers’ network 
entity, it is of our interest to systematically probe the security 
parameters e.g. threats that may be compromise its smooth 
operation. 
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