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Abstract Formal methods are an important tool for
designing secure cryptographic protocols. However, the
existing work on formal methods does not cover privacy-
preserving protocols as much as other types of protocols.
Furthermore, privacy-related properties, such as unlinkabi-
lity, are not always easy or even possible to prove statically,
but need to be checked dynamically during the protocol’s exe-
cution. In this paper, we demonstrate how, starting from an
informal description of a privacy-preserving protocol in natu-
ral language, one may use a modified and extended version
of the Typed MSR language to create a formal specification
of this protocol, typed in a linkability-oriented type system,
and then use this specification to reach an implementation of
this protocol in Jif, in such a way that privacy vulnerabilities
can be detected with a mixture of static and runtime checks.

Keywords Specification of Security Protocols · Privacy ·
Linkability · Dolev–Yao Intruder · Security-typed language ·
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1 Introduction

Formal methods are widely used during the design of cryp-
tographic protocols. By applying techniques concerned with
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the construction and analysis of models and proving that
certain properties hold in the context of these models, formal
methods can significantly increase one’s confidence that a
protocol will meet its security requirements in the real world.

However, existing formal methods focus on the design
of specific kinds of protocols (for example, authentication
and key-exchange protocols), and do not cover the design
of protocols that aim to preserve the privacy of one or more
of its principals. Apparently, privacy-preserving protocols,
such as electronic cash, electronic voting and selective dis-
closure protocols, need more exotic cryptographic primitives
and techniques, such as blind signatures, commitments, zero-
knowledge proofs, mixes and homomorphic encryption, and
require a lower-level abstraction of the underlying crypto-
graphy.

Furthermore, unlinkability and other privacy-related pro-
perties can be dealt with more effectively if they are checked
dynamically during the protocol’s execution. Runtime che-
cking of the protocol’s implementation for privacy-related
vulnerabilities means that protocols should be implemen-
ted on a suitable privacy-preserving framework. Such an
approach also has the advantage that it would be the actual
protocol’s implementation that is being verified, not a pos-
sibly flawed abstraction. Moreover, it implies that the pro-
tocol designer, the protocol implementor, and the end-user
will have different roles to play in the protocol verification
process than if a static formal method is used.

This paper builds on the Typed MSR specification lan-
guage [9,10], as well as on our previous work on Typed
MSR [3–5], and aims to make the language suitable for the
specification of privacy-preserving protocols, as well as for
the specification of a version of the Dolev–Yao intruder [14]
that is designed to attack such protocols.

It also builds on the Jif security-typed programming
language [24–26], and aims to demonstrate how Jif can be
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employed to create a linkability-checking cryptographic
framework, so that linkability vulnerabilities in the imple-
mentation of privacy-preserving protocols can be detected
with a mixture of static and runtime checks.

More specifically, in Sect. 2, we introduce the necessary
terminology and give an overview of the most commonly
employed formal methods for cryptographic protocols, in
Sects. 3 and 4 we present our proposed modifications and
extensions to Typed MSR, in Sect. 5 we show how proto-
cols described in natural language can be formally specified,
in Sect. 6 we introduce the linkability-oriented type system
that type-checks the protocol’s specification, in Sects. 7, 8
and 9 we present how this typed specification can lead to a
Jif implementation that detects linkability, and in Sect. 10
we discuss the protocol verification process from the point
of view of the protocol designer, the protocol implementor,
and the end-user.

2 Privacy terminology and formal methods
for cryptographic protocols

In this section, we introduce the necessary terminology
about privacy, and give an overview of the most commonly
employed formal methods for cryptographic protocols.

2.1 Privacy terminology

In order to provide an accurate overview of this topic, it is
necessary to define the basic terms. These definitions are nee-
ded in order to build more formal descriptions. This section is
based on many papers in the field, but most notably on Pfitz-
mann and Köhntopp’s paper “Anonymity, Unobservability
and Pseudonymity—A Proposal for Terminology” [28].

2.1.1 Names and identity

Many of the concepts we examine here are in some way
concerned with the obfuscation of information which relates
to a principal’s identity. This information can take many
forms, but the classic example is the name. The name of an
individual is intended to be a unique identifier within some
group that allows for that individual to be distinguished from
the other members of that group. The fact that, in the increa-
singly large social groups in which we find ourselves, a clas-
sical name is rarely totally unique does not affect the purpose
of distinguishing those around us by such labels.

When we discuss the anonymity properties of a principal,
we are implicitly assuming definitions of identity. To a large
extent, we can assume that a user of a system may be treated as
a unique individual who performs actions that can potentially
be traced by another individual.

2.1.2 Anonymity

Anonymity may be described at the linguistic level as the
property of being nameless, or having an absence of identi-
fication. To extend this definition to a more common usage
within the field, we borrow from [28]: “Anonymity is the
state of being not identifiable within a set of subjects, the
anonymity set”.

While this definition refers to the anonymity set, an ano-
nymity metric which has since then fallen into disfavor, the
first half of the definition expresses the main purpose of ano-
nymity and as such is of use to us.

Anonymity is the fundamental identity hiding property,
providing total removal of identifying information from its
subject. As such, anonymity has been, and will probably
remain, the focal point for research into identity hiding. Addi-
tionally, anonymity systems are based upon a small set of
possible approaches, Chaum’s mix [11], which is discus-
sed in Sect. 4.2.1, being the most significant of these. The
most active topic of research into identity hiding is there-
fore the finer details of the various subtle variations of these
basic ideas.

Despite this focus on anonymous systems, total anony-
mity is very much a two-edged sword. For certain forms of
application, such as posting to mailing lists or accessing the
world wide web, anonymity can be a highly desirable goal.
Other systems, however, suffer greatly if there is no possibi-
lity of tracking identities. It is not good policy, for example,
to entrust your life savings to an anonymous user claiming
to be a reputable bank. For this reason pseudonymous com-
munication, which provides a certain amount of information
associated with an identity, is required for a number of prac-
tical identity hiding systems.

Sender and recipient anonymity We have defined anony-
mity as the property of being nameless, given certain assump-
tions concerning the meaning of a name. However, this
namelessness is of use only in the context a communicating
system. Communication requires two participants: a sender
and a recipient, where either participant may actually be a
group of individuals.

There are three cases. We may ensure the anonymity of
the initiator of some communication, but leave the recipient’s
identity open to the world. Conversely, it is possible for a
sender to make available their identity, but to ensure that the
recipient of their message remains unknown. This provides
a very different problem to sender anonymity and is also
less focused upon. Finally, it may be desirable for both end-
points of communication to be hidden from observation, by
outside observers or from each other. Each of these forms of
anonymity has its own set of applications, design problems
and potential attacks.
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Message-based and connection-based anonymity The
main body of the current literature focuses strongly on
message-based anonymity, which is an easier problem than
that of anonymity within connection-based systems. There
are, however, some applications (such as remote terminal ses-
sions) which simply cannot be performed effectively using a
message-based approach. For these systems, it is necessary
to use a connection-based approach.

In recent literature, a number of approaches to connection-
based anonymity have been proposed. By far the most
popular of these is the onion routing system presented by
Goldschlag, Reed and Syverson [17]. Onion routing is dis-
cussed in Sect. 4.2.2. The main concern with such systems is
the requirement for low-latency connections and bandwidth
restrictions. Message-based systems inherently cause delays
between data transfer that are unacceptable in connection-
based systems.

The anonymity set The traditional method of quantifying
anonymity is to utilize the cardinality of the set of all parti-
cipants who could have performed an action. This approach
was proposed by Chaum in his paper “Untraceable electronic
mail, return addresses, and digital pseudonyms” [11], where
he utilized the anonymity set quantification to analyze the
anonymity provided by a mix. The point is simple: the larger
the size of the set which could have performed an action, the
stronger the anonymity provided by the system.

However, this quantification, while certainly of some
value, is not considered ideal anymore. The most critical
of the deficiencies of the anonymity set is that it assumes a
uniform distribution of probabilities across the set of parti-
cipants. This assumption is rather naive for a group of hete-
rogenous users [31]. In response to this issue, a number of
alternative quantification methods have been proposed which
seek to deal with both this and other problems inherent in the
anonymity set. These methods include the work of Serjantov
and Danezis [30], as well as the work of Diaz [13], both of
which describe the level of anonymity provided by a sys-
tem through an information theoretic approach, making the
entropy of a set of users the defining factor.

Unlinkability An important underlying component of
anonymity systems is the property of unlinkability. Pfitzmann
and Kohntopp [28], in reasoning about anonymity systems,
propose a viewpoint defined by a set of subjects sending mes-
sages to a set of recipients. In this setting, the critical concept
is an item of interest, defined as the sending or receiving of
a message.

The desirable property of an anonymity system is there-
fore that items of interest are unlinkable to any principal in
the system, and no principal in the system can be linked to a
specific item of interest. This provides a basic definition of

anonymity which, however, does not lend itself to any form
of quantification.

However, based on this definition of linkability, we intro-
duce a qualitative classification of messages with respect to
their effect on the unlinkability of the sending principal in
Sect. 6 of this paper.

2.1.3 Pseudonymity

Pseudonymity, in terms of online systems, is achieved by
having users associated with an at least semi-persistent iden-
tifier. The purpose of this is to allow types of transaction that
rely on user history and behavior, and which are not possible
using a truly anonymous system. This is of particular use in
systems which must provide a level of confidence for users,
or which seek to rely on networks of trust between users, and
thus cannot rely upon a simple one-use session identifier.

Pseudonymity can be achieved through the use of an ano-
nymous infrastructure with user information and history sto-
red within the explicitly transmitted data. If the system upon
which communication relies is inherently anonymous, then
pseudonymity becomes an easier proposition, as data can be
released as chosen by the user without fear of extra informa-
tion leakage from the system.

Pseudonymity may therefore be seen as a problem which
exists at a higher level that anonymity. An anonymous chan-
nel may have some form of persistent user identification
added which is kept secret between the sender and recipient.
Pseudonymity may therefore be viewed less as a primitive
construction and more as a combination of other security
properties such as secrecy, anonymity and authentication.

2.1.4 Privacy

Privacy is a less well-defined property than the others discus-
sed here. Nonetheless, it is what provides the motivation for
almost all of the research which is undertaken in the field.

Brandeis and Warren [7] in 1890 considered the right
to privacy as a natural extension of an individual’s right to
liberty, stating that liberty as a right had initially been enfor-
ced with respect to preventing physical assault. As newer
business models and media coverage started to have signifi-
cant effects on society, intrusion into private lives for public
consumption became of concern to many, and the ideal of
liberty was necessarily extended to include unfair interven-
tion into aspects of a person’s life which could be embarras-
sing or dangerous if publicized.

Real interest in privacy, however, appears to have begun in
the second half of the twentieth century. The United Nations
Universal Declaration of Human Rights [34], finalized in
1948, embodied the right to privacy in its twelfth article:
“No one shall be subjected to arbitrary interference with his
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privacy, family, home or correspondence, nor to attacks upon
his honor and reputation. Everyone has the right to the pro-
tection of the law against such interference or attacks”.

The growing level of personal information stored by com-
puters has brought privacy forward as a right which must
be protected. The varying privacy legislation and regulations
which are being enacted in various countries across the world
are a useful step in preventing the widespread storage and
dissemination of personal information. There are, however,
always parties which seek to bypass these measures for a
variety of purposes. Rather than regulate the storage and
transmission of personal information, advocates of anony-
mity propose to achieve the same goals by preventing such
information ever becoming known.

2.1.5 Trust and reputation

Trust and reputation are closely linked properties, particu-
larly within the context of anonymity systems.

Reputation is a property which associates a level of trust
with a particular user in a system. This allows for future jud-
gements to be made on the past behavior of that user. Repu-
tation is particularly important in commerce systems where
users are required to invest real economic interests in other
users of a system. In many systems, reputation statements
refer to pseudonyms.

2.1.6 Repudiation

Security protocol designers often wish for a party to prove a
certain fact to another party in such a way that it cannot later
be retracted or denied. This is to satisfy the necessity that an
agent which negotiates a contract with another party must
have some method of assurance that this party will honor the
contract. This property is known as non-repudiation.

In anonymity systems, however, it may often be desirable
to prove a fact to another agent at some point in time, but for
this information to be unusable in creating long-term profile
information. The ability to present a piece of information to
an agent but for this information to be valid for no longer
than the course of that single transaction prevents personal
information concerning the agent from being catalogued for
the purposes of future identification.

An important approach towards this form of information
exchange is the zero knowledge proof [16]. This form of
exchange allows for individuals to prove that they hold a cer-
tain piece of information without revealing the information
itself. Whilst this notion is not intrinsically a feature of ano-
nymity systems, it is a closely related information hiding pro-
perty which is of great potential use in achieving anonymity
in realistic systems. Zero knowledge proofs are discussed in
more detail in Sect. 4.1.4.

2.2 Formal methods

Formal methods [18] are an important tool for designing and
implementing secure cryptographic protocols. By applying
techniques concerned with the construction and analysis of
models and proving that certain properties hold in the context
of these models, formal methods can significantly increase
one’s confidence that a protocol will meet its requirements
in the real world.

In the rest of this section we briefly present the formal
methods that formed the basis, or influenced the research
covered in this paper.

2.2.1 Formal logics

Formal logics grew out of a desire to express the logical rela-
tionship between stated concepts, and to allow for generation
of new (true) statements by the application of rules to exis-
ting statements. This allows for propositions to be proved,
based upon facts which are already known and basic axioms
which are assumed to be true.

Formal logics provide a rigorous structure in which the
truth of statements may be ascertained based upon the appli-
cation of given rules and axioms, within the confines of such
rules. The nature of the underlying rules differ between the
various forms of formal logic, dependent upon the scope and
purpose of the logic in question. Different logics express
notions of belief, knowledge, uncertainty or even ignorance
within specific domains.

The application of formal logics to the analysis of secu-
rity protocols was one of the first approaches taken towards
the verification of such systems. Logics have been shown to
detect a range of problems with protocols whilst being reaso-
nably easy to use. However, logics suffer from being a high
level abstraction of a system, and as such may allow flaws
which exist in the protocol to pass undetected.

The BAN logic [8], developed by Burrows, Abadi and
Needham, is possibly the most well-known of all logics which
have been used for analyzing protocols.

BAN is a modal logic which is applied to authentication
protocols with a view to proving their correctness. To achieve
this, the logic allows for the basic assumptions and goals of
some protocol to be expressed as formulas in the syntax of
the logic, along with the steps taken during the running of
the protocol.

When this representation has been made, deduction rules
are applied which provide a logical path from the steps of
the protocol to the desired goals. If this can be successfully
achieved, then the goals of the protocol are held to be true.

BAN relies on a syntax centered around the belief of par-
ticipants, and some simple rules which allow for the beliefs
of an agent to be manipulated. The BAN logic contains many
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constructs and deduction rules. Some basic constructs
include:

• A � X : A sees X , or the message X has been sent to A.
• A |∼ X : A said X at some point.
• A |≡ X : A believes, or has justified belief in, X .
• A |⇒ X : A has jurisdiction over X .
• �(X) : The message X is fresh (i.e. it has not been seen

before).
• {X}K : The message X encrypted with the key K .

These constructions are manipulated using deduction rules
which define the behavior which results from such facts.

BAN has been applied to a number of protocols, most
famously the Needham–Schroeder protocol, which forms the
basis of the widespread Kerberos authentication mechanism.
The BAN logic was shown to detect a flaw in this protocol
which allowed for an attacker to replay information due to a
particular nonce being assumed fresh. It is worth mentioning
that this flaw was already known before it was discovered by
the BAN logic analysis.

There have been a number of logics over the years which
have sought to correct some of the flaws that have been obser-
ved in the BAN logic, such as [32]. None of these have gained
quite the level of acceptance that was observed in the BAN
logic, and the increasing use of process calculi and automa-
ted theorem provers has caused approaches such as these to
be less examined than previously.

2.2.2 Process calculi

Process calculi provide a mathematical notation which allows
for the description of communicating processes in a rigo-
rous fashion. Their focus on communicating processes makes
them promising for the expression of anonymity systems,
which are by their very definition concerned with the com-
munication between entities.

This approach to describing computation has evolved rela-
tively recently in the field of theoretical computer science,
in response to the increasing view of computers as commu-
nicating entities in larger networks rather than stand-alone
machines. The possible applications of process calculi for
security in these networks follow as naturally as the use of
the traditional formal methods in traditional security situa-
tions.

There are two major process calculi in the literature. These
are CSP, which was originally described by Hoare [19], and
the π -calculus of Milner [23] which was developed from
Milner’s earlier calculus, CCS [22]. Both CCS and the π -
calculus provide a Turing complete model of computation
based upon the notion of message passing. Processes in the
calculus may send and receive messages along defined

channels. These messages may represent data transfer or the
name of a new channel, which allows for the dynamic crea-
tion of new topologies in the system. The approaches taken
by each of these calculi are briefly discussed below.

Communicating sequential processes CSP was developed
by Hoare as a method for describing communicating pro-
cesses operating in parallel. The original CSP paper by
Hoare [19] presented the view that: “... input and output are
basic primitives of programming and that parallel composi-
tion of communicating sequential processes is a fundamental
program structuring method”. Therefore, Hoare devised his
calculus around the interaction between these processes.

CSP was the first published calculus which approached
the formal description of software in this fashion, although it
was shortly followed by Milner’s Calculus of Communica-
ting Systems which eventually became the π -calculus. CSP
has gained a wide following in the formal methods commu-
nity, which has led to many interesting developments within
the language such as timing and probabilistic elements. In
addition, there are a number of mature model checkers which
handle CSP-based proofs of systems.

CSP has been applied to the analysis of security protocols,
which are intuitively applicable to a calculus which is based
upon the interaction between communicating parties. CSP
has even been applied to a basic analysis of dining crypto-
grapher networks, by Schneider [29].

π -Calculus The π -calculus was developed as an exten-
sion of Milner’s calculus of communicating systems (CCS),
which was presented in 1980 [22], shortly after the publi-
shing of Hoare’s CSP. Both CCS and CSP went about the
description of communicating processes in a similar fashion
and presented the same level of expressive power.

In seeking to describe communicating processes as they
exist in the networked world which emerged since the deve-
lopment of CCS and CSP, Milner observed that [23]:
“Physical systems tend to have permanent physical links;
they have fixed structure. But most systems in the informatic
world are not physical; their links may be virtual or symbo-
lic... These symbolic links can be created or destroyed on the
fly...”

To solve this problem, Milner extended the basic capa-
bilities of CCS to include mobility. Mobility adds to the
π -calculus the ability for agents to both form new links with
other agents and to destroy old links. An agent may there-
fore begin life in one area of a system and, in the course of
execution, relocate to an entirely new portion of a network.

2.2.3 Strand spaces

Strand spaces [15] is a technique for analyzing cryptographic
protocols, particularly authentication and key distribution
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protocols, at a high level. It uses the Dolev–Yao model of
cryptographic protocols, and models the real-world crypto-
graphic algorithms as abstract operations.

A strand is a sequence of events: it represents either an
execution by a legitimate party in a security protocol, or else
a sequence of actions by a penetrator. A strand space is a col-
lection of strands, equipped with a graph structure generated
by causal interaction. In this framework, protocol correctness
claims may be expressed in terms of the connections between
strands of different kinds.

2.2.4 Typed MSR

Typed MSR [9,10] is a strongly typed specification lan-
guage for security protocols, aiming to discover errors in
their design. It was developed by Iliano Cervesato. It is dis-
cussed in detail in Sect. 3. Typed MSR formed the environ-
ment for expressing many of the results presented in this
paper, because it fitted our requirements of being formal and
of being suitable for the specification of a broad range of
protocols.

More specifically, Typed MSR: (i) is not build around
authentication, like the BAN and the SVO logics, (ii) fea-
tures memory predicates that allow principals to remember
information across protocol executions (needed to handle
the requirement for unlinkability), and (iii) is more formal
than strand spaces, a method that heavily relies on natural
language.

3 The specification language: Typed MSR

The design and analysis of cryptographic protocols are
notoriously complex and error-prone activities. Part of the
difficulty derives from subtleties of the cryptographic primi-
tives. Another portion is due to their deployment in distri-
buted environments plagued by powerful and opportunistic
attackers.

The Dolev–Yao model of security [23, 17] tackles the first
problem by promoting an abstraction that has the effect of
separating the analysis of the message flow from the valida-
tion of the underlying cryptographic operations. It assumes
that elementary data such as principal names, keys and nonces
are atomic rather than bit strings, and views the message for-
mation operations (e.g. concatenation, encryption and digital
signature) as symbolic combinators. The cryptographic ope-
rations are therefore assumed to be flawless.

Iliano Cervesato [9] claims that a significant source of
faulty designs and contradictory analyses can be traced to
shortcomings in the language used to specify protocols. The
popular “usual notation” relies on the Dolev–Yao model and
describes a protocol as the sequence of the messages trans-
mitted during an expected run. Besides distracting the

attention from the more dangerous unexpected runs, this
description expresses fundamental assumptions and requi-
rements about message components, the operating environ-
ment and the protocol’s goals as side remarks in natural lan-
guage. This is clearly ambiguous and error-prone. Strand for-
malizations [19], like most modern languages, represent pro-
tocols as a collection of independent roles that communicate
by exchanging message. While the reference to expected runs
is dropped, the reliance of this formalism on a fair amount
of natural language still makes it potentially ambiguous.

Therefore, Iliano Cervesato proposed a language based
on multiset rewriting, nicknamed MSR, as a formalism for
unambiguously representing authentication protocols, with
the aim of studying properties such as the decidability of
attack detection. The actions within a role are formulated as
multiset rewrite rules, threaded together by the use of dedica-
ted role state predicates. The nature and properties of message
components are expressed in a relational manner by means
of persistent information predicates and to a minor extent
by typing declarations. In particular, variables that ought to
be instantiated to “fresh” objects during execution are mar-
ked with an existential quantifier (this operator can indeed
be used for that purpose in logical specifications).

He then proposed a thorough redesign of MSR and esta-
blished this formalism as a usable specification language for
security protocols (not just authentication protocols). The
major innovations include the adoption of a typing methodo-
logy that subsumes persistent information predicates, and
the introduction of memory predicates and of constraints
on interpreted domains that significantly widen the range
of applicability of this language. He called this formalism
Typed MSR [9,10].

The type annotations of the new language, drawn from
the theory of dependent types with subsorting, enable precise
object classifications, for example by distinguishing keys on
the basis of the principals they belong to, or in function of
their intended use. The typing infrastructure can point to quite
subtle errors, such as a principal trying to encrypt a message
with a key that does not belong to him.

Memory predicates allow a principal to remember infor-
mation across role executions. Their presence opens the doors
to the specification of protocols structured as a collection of
coordinated subprotocols. Memory predicates can be used
to give a specification of the Dolev–Yao intruder that lies
completely within the syntax of MSR roles.

3.1 Messages

In Typed MSR, messages are obtained by applying message
constructors to a variety of atomic messages. Typically, the
atomic messages include principals, keys, nonces and raw
data. This is formalized by the following grammatical pro-
duction:
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Atomic messages: a ::= A (Principal)
| k (Key)
| n (Nonce)
| m (Raw data)

In Typed MSR A, k, n and m range over principal names,
keys, nonces and raw data, respectively. Raw data denotes
pieces of data whose sole function in a protocol is that they
are transmitted.

The message constructors typically present in Typed MSR
that are of interest to us are those formalized by the following
grammatical production:

Messages: t ::= a (Atomic messages)
| x (Variables)
| t1 . t2 (Concatenation)
| { t }k (Symmetric encryption)
| {{ t }}k (Asymmetric encryption)
| [ t ]k′ (Digital signature)

We use the letter t (possibly sub-scripted) to range over
messages. We write A, k, n and m (possibly sub-scripted)
for atomic constants or variables that are principals, keys,
nonces and raw data, respectively. We also use the letter B
for principals and the letter S for servers (which are also
principals). Note that in Typed MSR, the seriffed letters are
used whenever the object we want to refer to cannot be but a
constant.

To be able to later support blind signatures based on
Chaum’s blinding (see Sect. 4), we assume that the asym-
metric encryption and digital signature message constructors
are based on the RSA cryptosystem.

3.2 Message predicates

Message predicates are the fundamental ingredient of states,
defined in Sect. 3.3. They are atomic first-order formulas
with zero or more terms as their arguments. Their definition
is therefore based on the concept of message tuple, defined
as an ordered sequence of terms:

Message tuples: t ::= . (Empty tuple)
| t, t (Tuple extension)

The predicates that can enter a state or a rewrite rule are
of three kinds:

• First, the predicate N (_ ) implements the contents of the
public network in a distributed fashion: for each (ground)
message t currently in transit, the state will contain a
component of the form N (t).

• Second, active roles rely on a number of role state pre-
dicates, generally one for each rule in them, of the form
Ll(_ , . . . , _ ), where l is a unique identifying label. The
arguments of this predicate record the value of the known

parameters of the execution of the role up to the current
point.

• Third, a principal A can store data in a private memory
predicate of the form MA(_ , . . . , _ ) that survives role
termination and can be used across the execution of dif-
ferent roles, as long as the principal stays the same.

3.3 States

States are a fundamental concept in MSR. Indeed, they are the
central constituent of the snapshots of a protocol execution.
They are the objects transformed by rewrite rules to simulate
message exchange and information update. Finally, together
with execution traces, they are the hypothetical scenarios on
which protocol analysis is based.

A state is a finite collection of ground state predicates.
The syntax of states is formalized by means of the following
grammar:

States: S ::= . (Empty state)
| S, N (t) (Extension with a network predicate)
| S, Ll (t) (Extension with a role state predicate)
| S, MA(t) (Extension with a memory predicate)

Protocol rules (see Sect. 3.5) transform states. They do so
by identifying a number of component predicates, removing
them from the state, and adding other, usually related, state
elements. The antecedent and consequent of a rewrite rule
embed therefore substates. However, in order to be applicable
to a wide array of states, rules usually contain variables that
are instantiated at application time. This calls for a parametric
notion of states and message predicates.

3.4 Types

Typed MSR makes use of types to enforce basic well-
formedness conditions (e.g. that only keys can be used to
encrypt a message), as well as to provide a statically che-
ckable way to ascertain desired properties (e.g. that no prin-
cipal can grab a key he is not entitled to access).

The typing of Typed MSR is based on the notion of
dependent product types with subsorting [2] and the basic
types are summarized in the following grammar:

Types: τ ::= principal (Principals)
| nonce (Nonces)
| shK A B (Shared keys)
| pubK A (Public keys)
| privK k (Private keys)
| msg (Messages)

We use the letter τ (decorated in various ways) to range
over types. Types principal and nonce are used to classify
principals and nonces, respectively. Type shK A B is used to
classify the keys shared between A and B. Type pubK A is
used to classify the RSA public key of A. Type privK k is used
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to classify the private key that correspond to the RSA public
key k. Finally, type msg is used to classify generic messages,
which include raw data, but also all the other stated types.

The notion of dependent product types with subsorting
accommodates the need of having multiple classifications
within a hierarchy. For example, everything that is of type
nonce, is also of type msg—but the inverse is not true. The-
refore, we say that nonce is a subsort of msg. In fact, all
the types listed above are subsorts of msg. We use the nota-
tion τ :: τ ′ to state that τ is a subsort of τ ′.

3.5 Rules

With a slight imprecision that will be corrected as the discus-
sion proceeds, a rule has the form lhs → rhs. Rules are the
basic mechanism that enables the transformation of a state
into another, and therefore the simulation of protocol execu-
tion: whenever the antecedent lhs matches part of the current
state, this portion may be substituted with the consequent
rhs.

It is convenient to make protocol rules parametric so that
the same rule can be used in a number of slightly different sce-
narios (e.g. without fixing interlocutors or nonces). A typical
rule will therefore mention variables x1, . . . , xn that will be
instantiated to actual terms during execution. Typed univer-
sal quantifiers can conveniently express this fact so that rules
assume the form ∀x1 : τ1. . . . ∀xn : τn .(lhs → rhs). This
idea is more precisely captured by the following grammar:

Rule: r ::= lhs → rhs (Rule core)
| ∀x : τ.r (Parameter closure)

Both the right-hand side and the left-hand side of a rule
embed a finite collection of parametric message predicate,
some ground instance of which execution will respectively
add to and retract from the current state when the rule is
applied.

Predicate sequences: P ::= . (Empty predicate sequence)
| P, N (t) (Extension with a network predicate)
| P, L(e) (Extension with a role state predicate)
| P, MA(t) (Extension with a memory predicate)

The left-hand side, or antecedent, of a rule is a finite col-
lection of parametric message predicates guarded by finitely
many constraints on interpreted data. It is therefore given by
the following grammar:

Left-Hand sides: lhs ::= P (Sequence of message predicate)
| lhs, χ (Extension with a constraint)

The right-hand side, or consequent, of a rule consists of
a predicate sequence possibly prefixed by a finite string of
fresh data declarations such as nonces or short-term keys. We

rely on the existential quantification symbol to express data
generation. We have the following grammar.

Right-Hand sides: rhs ::= P (Sequence of message predicate)
| ∃x : τ.rhs (Fresh data generation)

Rules are presented using the format shown in the follo-
wing diagram:

(
Universal
quantifiers

Left-hand
side

→ Existential
quantifiers

Right-hand
side

)Owner

3.6 Roles and protocol theories

Role state predicates record the information accessed by a
rule. They are also the mechanism by which a rule can enable
the execution of another rule in the same role. Relying on a
fixed protocol-wide set of role state predicates is dangerous
since it could cause unexpected interferences between dif-
ferent instances of a role executing at the same time. Instead,
we make role state predicates local to a role by requiring that
fresh names be used each time a new instance of a role is
executed. As in the case of rule consequents, we achieve this
effect by using existential quantifiers: we prefix a collection
of rules ρ that should share the same role state predicate L by
a declaration of the form ∃L : τ , where the typed existential
quantifier expresses the fact that L should be instantiated with
a fresh role state predicate name of type τ . With this insight,
the following grammar defines the notion of rule collection:

Rule collections: ρ ::= . (Empty role)
| ∃L : τ (Role state predicate parameter declaration)
| r, ρ (Extension with a rule)

A role is given as the association between a role owner A
and a collection of rules ρ. Some roles, such as those

implementing a server or an intruder, are intrinsically bound
to a few specific principals, often just one. We call them
anchored roles and denote them as ρ A.

Here, the role owner A is an actual principal name, a
constant. Other roles can be executed by any principal. In
these cases A must be kept as a parameter bound to the role.
We use the syntax ρ∀A to represent these generic roles, where
the implicitly typed universal quantification symbol implies
that A should be instantiated to a principal before any rule
in ρ is executed, and sets the scope of the binding to ρ.
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Observe that in this case A is a variable. With a slight abuse
of notation, we sometimes refer to roles of either kind with
the letter ρ, variously subscripted.

A protocol theory, written P , is a finite collection of roles:

Protocol theories: P ::= . (Empty protocol theory)
| P, ρ∀A (Extension with a generic role)
| P, ρA (Extension with an anchored role)

3.7 A critique of Typed MSR’s encryption

In Typed MSR, symmetric and public-key encryption is
deterministic, i.e. the ciphertext depends only on the plaintext
and the key. However, this is not the case.

Symmetric encryption Block ciphers are indeed determi-
nistic. However, encryption employs block ciphers in various
modes of operation, of which only one—the electronic code-
book (ECB) mode—retains the property of being determinis-
tic. All the others require an initialization vector: a random
block to kick off the process for the first real block, and also
to make the process non-deterministic. Moreover, the ECB
mode is generally not recommended for cryptographic pro-
tocols, as it reveals patterns in the plaintext.

Asymmetric encryption The encryption process of non-
probabilistic public-key cryptosystems, such as the RSA, is
indeed deterministic. However, RSA must be combined with
some form of padding scheme, so that no plaintext encrypts
into an insecure ciphertext. These padding schemes use ran-
dom numbers in order to calculate an appropriate padding
for the plaintext.

Although modeling encryption as deterministic may be
acceptable for the specification of, say, authentication
protocols, it is however unsuitable for the specification of
privacy-preserving protocols, as it can trigger false alarms
for linkability attacks.

4 Privacy-preserving cryptographic abstractions

This section presents Typed MSR abstractions of cryptogra-
phic techniques that are commonly used in privacy-
preserving protocols. These abstractions are either primitive,
i.e. they consist of one or more Typed MSR message construc-
tors, or they are derived, i.e. they are modeled using existing
message constructors.

4.1 Primitive cryptographic abstractions

Our proposed changes and additions are contained in the
following grammatical production:

Messages:
t ::= a (Atomic messages)

| x (Variables)
| t1 . t2 (Concatenation)
| { t }n

k (Symmetric encryption)
| {{ t }}n

k (Asymmetric encryption)
| [ t ]n

k′ (Digital signature)
| #{{ t }}n

k (Probabilistic asymmetric encryption)
| #[ t ]n

k′ (Probabilistic digital signature)
| || t ||n (Commitment)
| 〈t〉k

n (Blinding)
| ZBS( t, ns , k, n f , h ) (Credential proof)
| ZAE ( t, t ′, n, k, h ) (Number’s upper bound proof)
| P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ) (Vote aggregation)

| S(t1, t2, . . . , ti ) (Vote tallying)

As discussed in Sect. 3.7, we need to modify message
constructors for symmetric and public-key encryption to
model the necessary non-determinism. In order to achieve
this, symmetric encryption, asymmetric encryption and digi-
tal signatures are made to depend additionally on a nonce.
Whenever referring to this nonce is of little importance and
we would rather not name it, we denote it using ν().

Moreover, to be able to specify privacy-preserving proto-
cols, we need to add message constructors for probabilistic
asymmetric encryption, probabilistic digital signatures, blin-
ding, commitment, zero-knowledge proofs, vote aggregation
and vote tallying.

We also add types for probabilistic public and private keys:

Types: τ ::= … (see Sect. 3.4)
| pubKP A (Probabilistic public keys)
| privKP k (Probabilistic private keys)

Type pubKP A is used to classify the probabilistic public key
of principal A. Type privKP k is used to classify the private
key that corresponds to the probabilistic public key k.

In the rest of this section, we discuss our newly introduced
message constructors and their properties.

4.1.1 Asymmetric encryption and digital signatures

In order to accommodate homomorphic encryption in the
context of e-voting, we assume the use of an homomorphic
encryption compatible cryptosystem featuring the additive
homomorphic property, such as the Paillier cryptosystem
[27]. Paillier is a probabilistic cryptosystem, so the nonce
used to model the non-determinism employed in its mode of
operation, is assumed to model the non-determinism of the
core cryptosystem as well.

4.1.2 Commitment

Cryptographic commitment allows principals to choose and
commit to a value without revealing it, in such a way that
they are able to prove at a later time that the value they reveal
is indeed the originally committed value.
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Our abstraction of commitment is based on the non-
interactive bit commitment using one-way hash functions.
According to this method, the commitment of a message
is the hash of the concatenation of the message with a salt
value, which we can abstract as nonce n. The fundamental
properties are that observing || t ||n will not reveal the values
of t and n, and that there is only one commitment for each
distinct message-nonce pair. Note that the latter property is
implicit, because Typed MSR messages are atomic and can
solely be constructed by message constructors.

4.1.3 Blind signatures

A blind signature is a form of digital signature in which the
content of a message is disguised (blinded) before it is signed.
The resulting blind signature can be publicly verified against
the original unblinded message in the manner of a regular
digital signature.

Blind signatures are typically employed in privacy-
preserving protocols where the signer and message author are
different parties. In order to prove to the signer a statement
about the blinded message without disclosing the unblinded
message, blind signatures are usually used together with a
zero-knowledge proof.

Our abstraction of blind signatures and blinding is based
on Chaum’s blinding [12], according to which the construc-
tion of a blinded message depends on a blinding factor, which
we can abstract as nonce n, and on a public key k. The funda-
mental property is that if message 〈t〉k

n is signed using private
key k′ (which corresponds to public key k), the resulting mes-
sage can be unblinded using nonce n to produce the digital
signature of message t signed using k′. Chaum’s blinding
assumes the use of the RSA cryptosystem.

4.1.4 Zero-knowledge proofs

A zero-knowledge proof is a method for one principal to
prove to another that a statement is true, without revealing
anything other than the veracity of the statement.

Zero-knowledge proofs are not proofs in the mathematical
sense of the term because there is some small probability that
a cheating prover will be able to convince the verifier of a
false statement. However, there are standard techniques to
decrease the soundness error to any arbitrarily small value.

Credential proof using blind signatures Suppose Alice
wants to get a credential t signed by an authority. To do this
she blinds the credential m times using different blinding fac-
tors, with the credential each time committed with a different
salt value. She then hashes the blinded credentials, together
with the hashing nonce h (chosen by the authority), to deter-
mine the one blinding factor (n f ) and the one salt value (ns)
she will not reveal to the authority (non-interactive cut and

choose). Lastly, she sends to the authority the blinded cre-
dentials, together with the blinding factors and the salt values
that must be revealed. The authority can check that everything
was formed correctly, and can sign 〈|| t ||ns 〉k

n f
.

Our abstraction of a zero-knowledge credential proof
using blind signatures uses a variation of the non-interactive
cut-and-choose protocol used in the selective disclosure pro-
tocol of Holt and Seamons, as described in Sect. 3.2.2 of [20].
Making the cut-and-choose protocol non-interactive has the
following advantages: (i) it eliminates some of the com-
plexity of the zero-knowledge credential proof and allows us
to treat it in the same way as all other message constructors,
(ii) it eliminates at least an extra step from the specification
of the protocol, thus making it easier to reason about, and
(iii) it simplifies the protocol’s implementation.

The fundamental property of message ZBS( t, ns, k,

n f , h ) is that it can convince a principal that t was used in
the construction of 〈|| t ||ns 〉k

n f
without disclosing nonces ns

and n f , as long as it was the principal who chooses the
hashing nonce h.

Number’s upper bound proof using asymmetric encryption
Our abstraction of a zero-knowledge number’s upper bound
proof is based on the work of Boudot [6], who devised a zero-
knowledge proof which is efficient and exact in demonstra-
ting that a committed number lies in a specific interval. The
fundamental property of message ZAE ( t, t ′, n, k, h ) is that
it can convince a principal that the value of t in #{{ t }}n

k is no
greater than t ′ without disclosing message t , nor nonce n, as
long as it was the principal who chooses the hashing nonce h.

4.1.5 Homomorphic encryption

Homomorphic encryption refers to certain properties of pro-
babilistic public key cryptosystems where correspondences
can be proved to exist between functions on a certain group in
the message space and functions on the corresponding group
in the ciphertext space.

Our abstraction of homomorphic encryption is based on
properties of the Paillier cryptosystem [1], and is formalized
in terms of functions P and S. The first property is that

P(#{{ t1 }}n1
k , . . . , #{{ ti }}ni

k ) = #{{ S(t1, . . . , ti ) }}n
k

where k is a public key and t1, . . . , ti are messages. The
second is that, assuming t1, . . . , ti represent the votes to be
considered, S(t1, . . . , ti ) represents the result of the tallying
procedure. The third is that

P(P(#{{ t1 }}n1
k , . . . , #{{ ti−1 }}ni−1

k ), #{{ ti }}ni
k )

= P(#{{ t1 }}n1
k , . . . , #{{ ti }}ni

k )
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which allows for vote aggregation without keeping all the
encrypted votes, but only the result of function P applied to
its previous result and the newly acquired encrypted vote.

4.2 Derived cryptographic abstractions

We now discuss mixes and onion routing, and how these
cryptographic abstractions can be modeled in Typed MSR.

4.2.1 Mixes

Generally considered the father of anonymous communica-
tions, David Chaum first proposed a system for anonymous
email in 1981 [11]. The system he proposed used a special
mail server, called a mix, to process email. A mix is a store-
and-forward device that accepts a number of fixed-length
messages from numerous sources, performs cryptographic
transformations on the messages, and then forwards the mes-
sages to the next destination in an order not predictable from
the order of inputs; the latter is referred to as shuffling. Mixes
enable anonymous communication by means of cryptogra-
phy, scrambling the messages, and unifying them (padding
to a constant size, fixing a constant sending rate by sending
dummy messages, etc.). They support sender anonymity, and
protect from traffic analysis.

Chaum’s mix makes use of deterministic asymmetric-key
encryption and nonce creation.1 Here is how A can send
message t to B using mix M :

A → M : {{ n2 . {{ n1 . t }}ν()

kB
. B }}ν()

kM

M → B : {{ n1 . t }}ν()

kB

Although shuffling is a key property of mixes, our abstrac-
tion considers it part of the underlying cryptography and not
something worth considering when formulating a protocol
specification.

4.2.2 Onion routing

The primary innovation in onion routing [17] is the concept of
the routing onion. Routing onions are data structures used to
create paths through which many messages can be transmit-
ted. To create an onion, the router at the head of a transmission
selects a number of onion routers at random and generates
a message for each one, providing it with symmetric keys
for decrypting messages, and instructing it which router will
be next in the path. Each of these messages, and the mes-
sages intended for subsequent routers, is encrypted with the
corresponding router’s public key. This provides a layered

1 Chaum uses nonce creation in order to guarantee that the asymmetric
encryption result is intractable. In our formalization, this is sometimes
redundant.

structure, in which it is necessary to decrypt all outer layers
of the onion in order to reach an inner layer.

The onion metaphor describes the concept of such a data
structure. As each router receives the message, it peels a layer
off of the onion by decrypting with its private key, thus revea-
ling the routing instructions meant for that router, along with
the encrypted instructions for all of the routers located far-
ther down the path. Due to this arrangement, the full content
of an onion can only be revealed if it is transmitted to every
router in the path in the order specified by the layering.

In Typed MSR, onion routing can be specified in the same
way as a mix, because the number of onion layers is irrelevant
for the abstraction.

5 Case study: specifying e-voting protocols

At this point, we demonstrate how the cryptographic abs-
tractions described in the previous section may be used to
make Typed MSR specifications of two privacy-preserving
protocols: an e-voting protocol based on blind signatures
and mixes, and an e-voting protocol based on homomorphic
encryption.

5.1 Protocol based on blind signatures and mixes

We first give an informal description of the protocol, then list
its security properties, and finally provide a formal specifi-
cation of the protocol in Typed MSR.

5.1.1 Description

Preparing the ballot Alice wants to participate in an elec-
tronic election held by a voting Server. To do this, Alice sends
to the Server a zero-knowledge credential proof for each of
the two possible votes of this election, encrypted using their
shared key. The Server verifies the proofs, checks that Alice
is eligible for voting and that messages v1 and v2 represent
the possible votes, signs the blind commitment of each vote
and sends the signatures back to Alice.

S → A : h1 . h2

A → S : { ZBS( v1, s1, kS , f1, h1 ) .ZBS( v2, s2, kS , f2, h2 ) }ν()

kAS

S → A : [ 〈|| v1 ||s1 〉kS
f1

]ν()

k′
S

. [ 〈|| v2 ||s2 〉kS
f2

]ν()

k′
S

Voting Alice unblinds the signatures of the blinded commit-
ments, which gives her the signatures of the commitments.
She can now cast her vote vB by sending the signature of
the vote’s commitment—together with the vote itself and the
nonce used in the computation of the commitment—to the
Server via a Mix. Alice must also send to the Server all the
other possible votes she possesses, so that they can be can-
celed. Otherwise, Alice could cast more than one (albeit dif-
ferent) votes, thus destroying the election. The Server verifies
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its own signature and, after checking that the commitment is
indeed computed using the data send, it accepts Alice’s vote.

A → M : {{ n2 . {{ n1 . vB . sB . [ || vB ||sB ]ν()

k′
S

. vA . sA . [ || vA ||sA ]ν()

k′
S

}}ν()

kS
. S }}ν()

kM

M → S : {{ n1 . vB . sB . [ || vB ||sB ]ν()

k′
S

. vA . sA . [ || vA ||sA ]ν()

k′
S

}}ν()

kS

Tallying The Server posts the commitment signatures, toge-
ther with the votes and nonces used in their computation, to a
world-readable bulletin board, so that every voter can verify
the election result and check that his vote has been counted in.

5.1.2 Specification

Here is the Typed MSR specification of Alice’s role in the
protocol:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃L : tract × tract × nonce × nonce × pubK S × nonce × nonce × shK A S × privK kS
×nonce × nonce.

∃L ′ : tract × tract × nonce × nonce × pubK S × nonce × nonce × shK A S × privK kS
×nonce × nonce × nonce × nonce × tract × nonce × tract × nonce × principal × pubK M.

∀ A :Σ principal.
∀ S :Σ principal.
∀ M :Σ principal.
∀ v1 :Γ tract.
∀ v2 :Γ tract.
∀ s1 :Σ nonce.

∀ s2 :Σ nonce.

∀ kS :Σ pubK S .

∀ f1 :Σ nonce.

∀ f1 :Σ nonce.

∀ kAS :Σ shK A S .

∀ k′
S :Σ privK kS .

∀ n2 :Σ nonce.

∀ n1 :Σ nonce.

∀ vB :Γ tract.
∀ sB :Σ nonce.

∀ vA :Γ tract.
∀ sA :Σ nonce.

∀ kM :Σ pubK M .

N (h1 . h2)

↓
N ({ ZBS( v1, s1, kS, f1, h1 ) . ZBS( v2, s2, kS, f2, h2 ) }ν()

kAS
)

L(v1, v2, s1, s2, kS, f1, f2, kAS, k′
S, h1, h2)

N ([ 〈|| v1 ||s1 〉kS
f1

]ν()

k′
S

. [ 〈|| v2 ||s2 〉kS
f2

]ν()

k′
S
)

L(v1, v2, s1, s2, kS, f1, f2, kAS, k′
S, h1, h2)

↓
N ({{ n2 . {{ n1 . vB . sB . [ || vB ||sB ]ν()

k′
S

. vA . sA . [ || vA ||sA ]ν()

k′
S

}}ν()

kS
. S }}ν()

kM
)

L ′(v1, v2, s1, s2, kS, f1, f2, kAS, k′
S, h1, h2, n2, n1, vB , sB , vA, sA, S, kM )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀A

Together, the roles of Alice, the Mix and the Server form the
protocol theory.

5.1.3 Security analysis

The protocol has the following security properties:

1. Only registered voters can have votes issued for them.
2. The server cannot link an actual vote with the voter nei-

ther when issuing nor when casting the vote.
3. No voter can have votes issued more than once.
4. No voter can cast more than one vote.

5. All voters can find their vote in the election result.
6. Everyone can verify the election result given the votes.

7. Everyone can count the votes.
8. The server may infringe the elections by casting its own

votes, assuming that there are voters who do not try to
find their own vote in the election result.

5.2 Protocol based on homomorphic encryption

Again, we fist give an informal description of the protocol,
then list its security properties, and finally provide a formal
specification of the protocol in Typed MSR.

5.2.1 Description

Voting Alice wants to participate in an electronic election
held by a voting Server and a Voting authority. To do this,
Alice sends to the Server a zero-knowledge number’s upper
bound proof of the vote vA she wishes to cast, encrypted using
their shared key. The Server checks that Alice is eligible
for voting and verifies that her vote is valid, i.e. that it is
no greater than the maximum allowed vote v′. However, it
cannot decrypt her vote #{{ vA }}n A

kV
, as it is encrypted using

the Voting authority’s public key.
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S → A : h
A → S : { ZAE ( vA, v′, n A, kV , h ) }ν()

kAS

Tallying The Server applies the additive homomorphic
encryption property and computes the election result, encryp-
ted using the Voting authority’s public key. It then sends it to
the Voting authority, encrypted using their shared key.

S → V : { #{{ S(. . . , vA, . . .) }}n
kV

}ν()

kSV

Furthermore, the Server posts the encrypted votes to a public
bulletin board, so that every voter can check that his vote has
been counted in, and also verify the calculation of #{{ S(. . . ,

vA, . . .) }}n
kV

. Finally, the Voting authority posts the result of
the election S(. . . , vA, . . .), as well as nonce n, so that every
voter can verify the election result.

5.2.2 Specification

Here is the Typed MSR specification of Alice’s role in the
protocol:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∃L : tract × tract × nonce × pubK V × shK A S × nonce.

∀ A :Σ principal.
∀ S :Σ principal.
∀ V :Σ principal.
∀ vA :Γ tract.
∀ v′ :Γ tract.
∀ n A :Σ nonce.

∀ kV :Σ pubK V .

∀ kAS :Σ shK A S .

N (h)

↓
N ({ ZAE ( vA, v′, n A, kV , h ) }ν()

kAS
)

L(vA, v′, n A, kV , kAS , h)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∀A

Together, the roles of Alice, the Voting Authority and the
Server form the protocol theory.

5.2.3 Security analysis

The protocol has the following security properties:

1. Only registered voters can vote.
2. The server cannot link an actual vote with the voter.
3. No voter can cast more than one vote.
4. All voters can find their vote in the election result.
5. Everyone can verify the election result given the votes.
6. Everyone can count the votes.
7. The server may infringe the elections by casting its own

votes, assuming that there are voters who do not try to
find their own vote in the election result.

6 A simple linkability-oriented type system

As argued by Pfitzmann and Kohntopp [28] in reasoning
about unlinkability, the item of interest is the sending and
receiving of messages. In this section, we elaborate on this

and propose simple types that qualitatively classify messages
according to their effect on the linkability of the sender.

6.1 Linkability: a historical example

In January 1999, Intel announced that all new Pentium III
processors would include a unique identifier, the Processor
Serial Number (PSN). Although Intel made a utility available
to end-users that would give them the choice of enabling or
disabling the PSN, it was shown that rogue web sites were
able to access the PSN, even if it was disabled.

The PSN did not reveal any personal information of the
end-user directly, but it enabled collaborating web sites to
build access profiles for their visitors by linking them through
the PSN, thus violating their privacy. Furthermore, if one of
these web sites at some time learnt the visitor’s identity (e.g.
due to a transaction that required contact information), the
visitor’s privacy would be significantly violated.

The reason that makes such an attack possible is the
uncommonness of the PSN relative to the end-user group.
The PSN is unique, thus ensuring that users not sharing their
computer will be as clearly distinguishable as possible. If
the PSN could only take 100 or 1,000 uniformly distributed
values, user actions would not be linkable.

The same reasoning applies to all messages directly or
indirectly observable during a protocol’s execution.

6.2 Types

To be able to reason about linkability in privacy-preserving
protocols, we introduce types for tractable, semitractable and
intractable messages:

Types: τ ::= … (see Section 4.1)
| tract (Tractable messages)
| semitract (Semitractable messages)
| intract (Intractable messages)

These types are used to classify messages according to
their commonness in the protocol environment, which we
claim is the defining characteristic of messages being consi-
dered for linkability exposures.

Type tract is used to classify messages that are very com-
mon. Because of the tractable number of their possible values,
we consider that an intruder (regardless of whether these mes-
sages are publicly known or not) is able to to find them out
by successfully employing a brute-force dictionary attack on
them. On the other hand, if a principal reveals the same (trac-
table) message in more than one protocol or subprotocol exe-
cution, the intruder will not be able to link these executions
together (at least not because of this particular message).
Therefore, this classification isolates pieces of information

123



408 T. Balopoulos et al.

on the unlinkability of which it is safe to base the privacy-
preservation properties of a protocol.

Type intract is used to classify messages that are very
uncommon. These are pieces of information not discove-
rable by a brute-force dictionary attack, but on the unlinka-
bility of which it is certainly erroneous to base the privacy-
preservation properties of a protocol.

Type semitract is used to classify messages that are com-
mon enough to be considered realistic candidates for brute-
force dictionary attacks, but not common enough to be consi-
dered unlinkable. It is not safe to base the privacy-preserving
properties of a protocol on their unlinkability.

We now classify each of the standard types according to
their linkability. Private keys, shared keys and nonces should
be regarded as intractable. Principals should be regarded as
semitractable: we should not base the correctness of protocols
on the number of available principals. Public keys should also
be regarded as semitractable for the same reason.

Similarly to the standard types, tract, semitract and
intract should be regarded as subsorts of msg.

The classification of messages that are not keys, nor
nonces, nor principals is dealt with by signatures, which are
described in Sect. 6.3.

6.3 Signatures

Typed MSR has typing rules that check whether an expres-
sion built according to the syntax of messages can be consi-
dered a ground message. These rules systematically reduce
the validity of a composite message to the validity of its sub-
messages. In this way, it all comes down to what the types of
atomic messages are. Typed MSR uses signatures to achieve
independence of rules from atomic messages. A signature is
a finite sequence of declarations that map atomic messages
to their type. The grammar of a signature is given below:

Signatures: Σ ::= . (Empty signature)
| Σ, a : τ (Atomic message declaration)

For our extended type system, we need two signatures.
Signature Σ maps atomic messages to one of the standard
types, and signature Γ maps them to one of the extended
types, i.e. classify them into tractable, semitractable or intrac-
table. We will write t :Σ τ to say that message t has type τ in
signature Σ , and we will write t :Γ τ ′ to say that message t
has type τ ′ in signature Γ . Hence the following two rules:

(Σ, α : τ, Σ ′) � α :Σ τ
(SIG1)

(Γ, α : τ, Γ ′) � α :Γ τ
(SIG2)

6.4 Type rules

We now introduce type rules for all the message constructors
presented in Sects. 3.1 and 4. These rules use the new types

introduced in Sect. 6.2 to further check the groundness of
messages.

Concatenation The concatenation of two messages of the
same type will yield a message of that type.

Γ � t1 : τ Γ � t2 : τ

Γ � t1 . t2 : τ
(CONCAT)

The concatenation of two messages of different types will
yield a message of the least tractable type among the types
of the original messages.

Γ � t1 : tract Γ � t2 : semitract
Γ � t1 . t2 : semitract Γ � t2 . t1 : semitract

(CONCAT1)

Γ � t1 : tract Γ � t2 : intract
Γ � t1 . t2 : intract Γ � t2 . t1 : intract

(CONCAT2)

Γ � t1 : semitract Γ � t2 : intract
Γ � t1 . t2 : intract Γ � t2 . t1 : intract

(CONCAT3)

Note that in Typed MSR concatenated messages can be taken
apart.

Symmetric-key encryption The ciphertext may be conside-
red to be intractable because of the nonce used in the calcu-
lation.

Γ � t : τ Σ � k : shK A B

Γ � { t }ν()

k : intract
(SYMENC)

Asymmetric-key encryption and digital signatures Similar
reasoning applies to asymmetric-key encryption and
digital signatures.

Γ � t : τ Σ � k : pubK A

Γ � {{ t }}ν()

k : intract
(ASYMENC)

Γ � t : τ Σ � k′ : privK k

Γ � [ t ]ν()

k′ : intract
(SIGN)

Probabilistic asymmetric-key encryption and digital
signatures Probabilistic asymmetric-key encryption and
digital signatures may be considered to be intractable because
of the nonce used in their calculation.

Γ � t : τ Σ � k : pubKP A Σ � n : nonce
Γ � #{{ t }}n

k : intract
(PASYMENC)

Γ � t : τ Σ � k′ : privKP k Σ � n : nonce
Γ � #[ t ]nk′ : intract

(PSIGN)
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Commitment Commitments may be considered to be
intractable because of the nonce (salt value) used in the cal-
culation.

Γ � t : τ Σ � ns : nonce
Γ � || t ||ns : intract

(COMMIT)

Blind signatures Blind signatures may be considered to be
intractable because of the nonce (blinding factor) used in the
calculation.

Γ � t : τ Σ � k : pubK A Σ � n f : nonce

Γ � 〈t〉k
n f : intract

(BLIND)

Zero-knowledge proofs The zero-knowledge credential
proof can be considered to be intractable, as three nonces are
used in its calculation. However, we require that the under-
lying message t of a zero-knowledge credential proof is trac-
table in order to protect privacy.

Γ � t : tract Σ � ns : nonce Σ � k : pubK A Σ � n f : nonce Σ � h : nonce
Γ � ZBS( t, ns, k, n f , h ) : intract

(ZEROBS)

The zero-knowledge number’s upper bound proof can be
considered to be intractable, as two nonces are used in its
calculation. However, we require that upper bound t ′ of mes-
sage t is tractable in order to protect privacy.

Γ � t : τ Γ � t ′ : tract Σ � n : nonce Σ � k : pubKP A Σ � h : nonce
Γ � ZAE ( t, t ′, n, k, h ) : intract

(ZEROAE)

Vote aggregation The vote aggregation function P can be
considered to be tractable when applied to zero encrypted
votes (because P() is a known constant), and intractable
when applied to a non-zero number of encrypted votes
(because each probabilistically encrypted vote is intractable).
Furthermore, the unencrypted votes should be considered
tractable for homomorphic encryption to give meaningful
results.

Γ � P() : tract
(AGGBASE)

Γ � t1 : tract Γ � t2 : tract · · · Γ � ti : tract Σ � k : pubKP A
Σ � n1 : nonce Σ � n2 : nonce · · · Σ � ni : nonce

Γ � P(#{{ t1 }}n1
k , #{{ t2 }}n2

k , . . . , #{{ ti }}ni
k ) : intract

(AGGSTEP)

Vote tallying The vote tallying functionS can be considered
to be always tractable.

Γ � S() : tract
(TALLYBASE)

Γ � t1 : tract Γ � t2 : tract · · · Γ � ti : tract
Γ � S(t1, t2, . . . , ti ) : tract

(TALLYSTEP)

7 The Dolev–Yao intruder

The Dolev–Yao abstraction [14] assumes that elementary
data, such as keys or nonces, are atomic rather than strings
of bits, and that the operations needed to assemble messages,
such as concatenation or encryption, are pure constructors in
an initial algebra. Typed MSR fits very well in this abstrac-
tion: elementary data are indeed atomic and messages are
constructed solely by message constructors.

In [9], a standard version of the Dolvel–Yao intruder was
formalized in Typed MSR. In this section, we present a exten-
ded version of the Dolev–Yao intruder, which is able to dis-
cover attacks in privacy-preserving protocols.

It has been proved [33] that there is no point in
considering more than one Dolev–Yao intruder in any given
system. Therefore, we can select a principal, I say, to represent
the Dolev–Yao intruder. Furthermore, we associate I with an
MSR memory predicate MI(_), whose single argument can
hold a message, to enable I to store data out of sight from
other principals.
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7.1 The standard version

The standard version of the Dolev–Yao intruder can do any
combination of the following operations:

• Intercept and learn messages
• Make copies of known messages
• Transmit known messages
• Decompose known (concatenated) messages
• Concatenate known messages
• Decipher encrypted messages if he knows the keys
• Encrypt known messages with known keys
• Sign messages with known keys
• Access public information
• Generate fresh data

The interested reader can refer to [9] for the formal spe-
cification of these operations in Typed MSR.

7.2 An extended version

The version of the intruder that is presented here is an exten-
ded version in two ways. First, one of the intruder’s standard
operations is generalized in line with the new types introdu-
ced in Sect. 6.2. More specifically, we replace the last opera-
tion, i.e. the intruder’s ability to generate fresh data, with two
new operations: the ability to generate fresh intractable data,
and the ability to guess tractable and semitractable data. The
intruder is able either to guess the exact message required for
his/her attack (if this is possible), or to generate a fresh mes-
sage of the required type otherwise. Second, the intruder is
now able to handle messages constructed using the message
constructors introduced in Sect. 4.

We now formally specify the new operations in Typed
MSR.

Generate fresh intractable data The intruder may generate
fresh nonces, fresh private keys, fresh shared keys, as well as
other intractable messages.

( · → ∃ t :Γ intract. MI (t)
)I
(CAP−GEN−I)

Guess tractable and semitractable data The intruder
may guess or get access to public keys, principals, as well as
other tractable or semitractable messages.

(∀ t :Γ tract. · → MI (t)
)I
(CAP−GUESS−T)

(∀ t :Γ semitract. · → MI (t)
)I
(CAP−GUESS−S)

Notice that this rule can be used together with the previous
one to allow the intruder to generate a key-pair by first gene-
rating a fresh private key, and then by guessing the corres-
ponding public key.

Probabilistically encrypt The intruder may probabilisti-
cally encrypt a message given a public key and a nonce.

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ n :Σ nonce.

MI (t)
MI (k)

MI (n)

→ MI
(

#{{ t }}n
k

)
⎞
⎟⎟⎠

I

(CAP−PASYMENC)

Probabilistically decrypt Probabilistic decryption
reveals to the intruder who holds the necessary private key
not only the cleartext, but also the nonce representing the
probabilistic nature of encryption.

⎛
⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ k′ :Σ privKP k .

∀ n :Σ nonce.

MI
(

#{{ t }}n
k

)
MI

(
k′) → MI (t)

MI (n)

⎞
⎟⎟⎟⎟⎠

I

(CAP−PASYMDEC)

Blind messages The intruder may blind a message given a
public key and a blinding factor (nonce).

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n :Σ nonce.

MI (t)
MI (k)

MI (n)

→ MI

(
〈t〉k

n

)
⎞
⎟⎟⎠

I

(CAP−BLIND)

Unblind messages The intruder may unblind a (blinded)
message given the blinding factor (nonce).

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n :Σ nonce.

MI

(
〈t〉k

n

)
MI (n)

→ MI (t)

⎞
⎟⎟⎠

I

(CAP−UNBLIND−MSG)

Unblind signatures The intruder may unblind a (blinded)
signature given the blinding factor (nonce), if the public key
used in the blinding corresponds to the private key used in
the signing.

⎛
⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ k′ :Σ privK k .

∀ n :Σ nonce.

MI
([ 〈t〉k

n ]ν()

k′
)

MI (n)
→ MI

([ t ]ν()

k′
)
⎞
⎟⎟⎟⎟⎠

I

(CAP−UNBLIND−SIG)
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Commit to a message The intruder may commit to a mes-
sage given a salt value (nonce).

( ∀ t :Σ msg.

∀ n :Σ nonce.

MI (t)
MI (n)

→ MI
(|| t ||n

))I

(CAP−COMMIT)

Generate a zero-knowledge proof The intruder may
generate a zero-knowledge proof, given the necessary mes-
sages.

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ ns :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n f :Σ nonce.

∀ h :Σ nonce.

MI (t)
MI (ns)

MI (k)

MI
(
n f

)
MI (h)

→ MI
(ZBS( t, ns , k, n f , h )

)
⎞
⎟⎟⎟⎟⎟⎟⎠

I

(CAP−ZEROBS)

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ t ′ :Σ msg.

∀ n :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ h :Σ nonce.

MI (t)
MI

(
t ′
)

MI (n)

MI (k)

MI (h)

→ MI
(ZAE ( t, t ′, n, k, h )

)

⎞
⎟⎟⎟⎟⎟⎟⎠

I

(CAP−ZEROAE)

Observe a zero-knowledge proof The intruder will get the
information revealed by the zero-knowledge proof.

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ ns :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n f :Σ nonce.

∀ h :Σ nonce.

MI
(ZBS( t, ns, k, n f , h )

) →
MI (t)
MI (k)

MI

(
〈|| t ||ns 〉k

n f

)
MI (h)

⎞
⎟⎟⎟⎟⎟⎟⎠

I

(CAP−ZEROBS−P)

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ t ′ :Σ msg.

∀ n :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ h :Σ nonce.

MI
(ZAE ( t, t ′, n, k, h )

) →
MI

(
t ′
)

MI (k)

MI
(

#{{ t }}n
k

)
MI (h)

⎞
⎟⎟⎟⎟⎟⎟⎠

I

(CAP−ZEROAE−P)

Aggregate votes The intruder may generate2 the image of
zero votes under function P (induction base case).

2 This rule is in fact redundant, as P() is of type tract, and therefore
the intruder is already able to generate it, but is included for the sake of
completeness.

( · → MI(P())
)I
(CAP−AGGBASE)

Furthermore, the intruder may aggregate encrypted votes as
he picks them up by holding their image under function P
(induction step).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

MI(P(#{{ t1 }}n1
k , . . . , #{{ ti−1 }}ni−1

k ))

MI(
#{{ ti }}ni

k )

↓
MI(P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(CAP−AGGSTEP)

Tally votes The intruder may generate3 the image of zero
votes under function S (induction base case).

( · → MI(S())
)I
(CAP−TALLYBASE)

Furthermore, the intruder may tally votes as he picks them
up by holding their image under function S (induction step).

⎛
⎜⎜⎝

∀ t1 :Σ msg.

∀ t2 :Σ msg.

· · ·
∀ ti :Σ msg.

MI(S(t1, . . . , ti−1))

MI(ti )
→ MI(S(t1, . . . , ti ))

⎞
⎟⎟⎠

I

(CAP−TALLYSTEP)

Apply homomorphic encryption properties The intruder
may convert the image of the encrypted votes under func-
tion P to the image of the (cleartext) votes under function S,
and vice-versa.

3 The previous footnote applies here too.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

MI(P(#{{ t1 }}n1
k , . . . , #{{ ti }}ni

k )) → MI(#{{ S(t1, . . . , ti ) }}n
k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(CAP−PENCH−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

MI(#{{ S(t1, . . . , ti ) }}n
k ) → MI(P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(CAP−PENCH−2)

7.3 Demonstrating linkability attacks

Informally, when we say that two executions of a protocol or a
subprotocol cannot be linked to a given principal (usually the
principal whose privacy the protocol is supposed to protect),
we mean that it is not possible for the Dolev–Yao intruder to
find out whether the same principal participated in both occa-
sions, even if he manages to overtake all the other principals
and get hold of their long-term or short-term secrets.

But how can the intruder’s capabilities help in demonstra-
ting such weaknesses in protocols? Consider the case of the
protocol of Sect. 5.1, and suppose that the intruder has access
to all public data, and, additionally, he manages to overtake
the Server, so he has access to all the server’s data as well.
If he is able to deduce the same intractable or semitractable
message seperately in the context of the two subprotocols
(the ballot preparation subprotocol and the voting subpro-
tocol), and if he could not deduce this message without the
information sent by Alice in each context, then we can consi-
der this an attack on Alice’s privacy, as her obtaining the votes
and actually voting are now linked together.

In this sense, we argue that the intruder’s capabilities
create a formal environment in which linkability attacks on
protocols may be demonstrated.

8 The implementation language: Jif

Jif [24–26] is an object-oriented, strongly-typed language
capturing a large subset of the Java language. In Jif, the pro-
grammer must label types with security annotations. The

compiler uses these annotations during type-checking to
ensure noninterference. Jif was developed primarily by
Andrew Myers.

8.1 The decentralized label model (DLM)

Types in Jif are annotated with security labels based on the
DLM. Similar to work in mandatory access control that
tags data with complete access control lists, the DLM allows
for the virtual tagging of data with owners–readers and
owners–writers lists. Each label consists of a set of confiden-
tiality or integrity policies of the form {o :r1,r2, . . . ,rn}
or {o ! : r1,r2, . . . ,rn}, respectively, where o and ri are
principals with o being the owner of the policy and ri being
the authorized readers or writers of the confidentiality or inte-
grity policy.

Furthermore, a label can consist of multiple policies
(allowing for multiple owners of a piece of data).

As an example,int{Alice:} i;declares an int owned
and readable only by Alice (the owner is always implicitly
included in the reader/writer list). The statement String
{Bob ! : Charlie, Dana} str; declares a String
which is owned by Bob but also writable by Charlie and
Dana. Data may also be annotated with multiple policies as
in int{Alice : ; Bob : } j;. The policy on j indicates
that it is owned and readable by both Alice and Bob. In Jif,
when a variable is used in a security label, it refers to its own
label. Thus, using i and str as defined above, float{i;
str} f; declares a float that is owned by both Alice and
Bob and which can be written by Charlie and Dana.
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8.2 Program counter

The label of an expression’s value varies depending on the
evaluation context. This is needed to prevent leaks through
implicit flows: channels created by the control flow structure
itself. To prevent information leaks through implicit flows,
the compiler associates a program-counter label with every
statement and expression, representing the information that
might be learned from the knowledge that the statement or
expression was evaluated.

8.3 Language features

In a Jif method declaration, the return value, the arguments,
and the exceptions may each be annotated with a label. There
are additionally two optional labels in a method declaration
called the begin-label and the end-label. The begin-label spe-
cifies an upper bound on the program counter at the point of
invocation of the method. The begin-label allows informa-
tion about the program counter of the caller to be used for
statically checking the implementation, thereby preventing
assignments within the method from creating implicit flows
of information. When these labels are missing, some conser-
vatives rules are used to assign restrictive default labels:

• Default field label: the empty label, {}. This label is the
least confidential, and the least trusted. This conservati-
vely ensures that no confidential or trusted data can be
stored in the field.

• Default argument label: the top label, {* : }. The label
on the type of a formal argument is an upper bound for
labels of actual arguments.

• Default method begin-label: the top label, {* : }. The
method begin-label is an upper bound on the pc of the
caller, and a lower bound on the side effects of the method.
The default method begin label is the most restrictive
label, meaning that the method has no side effects.

• Default method end-label: The join of the declared labels
of any exceptions declared to be thrown. If the method
does not throw any exceptions, or if the declared excep-
tions do not have any labels, the default method end-label
is the bottom label, {* ! : *}.

• Default method return value label: the join of all the argu-
ment labels and the end-label. This is the common case,
as most of the time the value returned by a method is the
result of computation on all of its arguments.

• Default declared exception label: the method end-label.
• Default array base label: the empty label, {}.

8.4 Selective declassification

Jif implements selective declassification. Principals in Jif are
defined external to the program. Each one has a delegation
set containing all the principals it trusts. This forms a runtime

principal hierarchy. Each process maintains an authority set
which contains principals from the runtime principal hierar-
chy. A process is only authorized to declassify policies that
are owned by principals in its authority set.

8.5 Class parameterization

Another feature in Jif which we utilize is class parameteriza-
tion. A Jif class can be parameterized by a principal or secu-
rity label. This means that a class may be defined once and
then be instantiated at various security levels. For example,
we might want a Vector class which contains secret
data and another Vector class that contains public data.
Without having to implement the Vector class multiple
times, it could be parameterized with a label and then instan-
tiated at different levels. In Jif, such a class could be defined
as follows:

public class Vector[principal P]
{
Object{P:}[]{P:} elements;
}

Note that the member array elements has two labels. One
is the label of the Objects stored in the array. The other is
the label of the array itself. Since Vector has been para-
meterized by P, P can now be used throughout the body of
the class to denote a principal. This principal will be instan-
tiated when an object of type Vector is declared, as in the
following code, where Alice and Bob are two principals:

Vector[Alice] vector1;
Vector[Bob] vector2;

8.6 Dynamic labels

Labels and principals can be used as first-class values, repre-
sented at runtime. These dynamic labels and principals can
be used in the specification of other labels, and used as the
parameters of parameterized classes. They can be construc-
ted as shown below:

final label lb = new label
{Alice: Bob; Alice!:*};

8.7 Handling exceptions

One thing which makes Jif particularly challenging for pro-
gramming is handling the information leaks that occur
through function termination, exceptions and side-effects.
For example, an encryption method that throws an
InvalidKey exception releases information about the key
(which is secret data) both by throwing the exception (indica-
ting the key is invalid) and by not throwing the exception, i.e.
by terminating normally (indicating the key is not invalid).
For this reason, it can be advantageous to catch exceptions
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and handle them locally in order to bound information lea-
kage they might cause.

9 A linkability-checking cryptographic framework

This section demonstrates how Jif (a security-oriented exten-
sion of a subset of the Java programming language dealing
with information flow) can be employed in such a way that
linkability vulnerabilities in protocol implementations can
be detected with a mixture of static and runtime checks. The
code presented in this section was compiled with Jif 3.0.

9.1 Linkability-labelling in Jif

In this section, we demonstrate how the theory described in
Sects. 6.4 and 7.2 can be employed in a Jif cryptographic fra-
mework, which can be used to implement privacy-preserving
protocols, such as those analyzed in Sects. 5.1 and 5.2. Our
goal is to enforce the well-formedness of message construc-
tion, as defined by the type rules of Sect. 6.4, and to embed the
Dolev–Yao intruder’s capabilities, as described in Sect. 7.2.
Our scope is the secure handling of intractable messages,
which, as described in Sect. 6.2, if revealed more than once
to the intruder, will be linked together, thus compromising
the anonymity of the sender.

First, we introduce a dynamic label L, which annotates
references to objects depicting intractable information. To
define this label, we need to introduce a special principal,
Linkable, the owner and sole reader of all intractable data.
We place our label L in the Jif interface LinkLabel, so that
every Jif interface/class that needs to use the label can simply
extend/implement this interface.

interface LinkLabel
{
final label L = new label{Linkable:};
}

Then, we establish the interface Message, which all mes-
sage classes must implement. To implement the interface,
message classes must provide the method getObserved
Message, which returns the other messages one learns by
observing the message. These messages are returned one-
by-one by invoking this method and increasing the index
argument at each iteration. At the first invocation, the index
must be0. When the method returnsnull, there are no more
messages to learn.

interface Message extends LinkLabel
{
Message{L} getObservedMessage{L}(int{L} index);
}

We now demonstrate how a selection of message construc-
tors can be expressed as Jif classes implementing the
Message interface.

Nonce A nonce can be created without the knowledge of
any other message. Furthermore, observing a nonce reveals
no other message.

public class NonceMessage implements Message
{
public NonceMessage():{L} { }
public Message{L} getObservedMessage{L}(int{L}

index)
{ return null; }

}

Zero-knowledge credential proof According to capability
(CAP-ZEROBS), in order to create a zero-knowledge cre-
dential proof, one needs to have the underlying message, the
public key of the principal who is to sign the blinded com-
mitment, and two nonces: the blinding factor and the salt
used in the commitment. Furthermore, according to capabi-
lity (CAP-ZEROBS-P), observing a zero-knowledge cre-
dential proof allows one to learn the underlying message,
the public key and the blinded commitment. Note that we
assume the existence of the two classes BlindMessage
and CommitMessage for the blinding and the commit-
ment, respectively.

public class ZeroBlindSigMessage implements
Message
{
final private Message{} t;
final private NonceMessage{L} n_s;
final private PublicKeyMessage{} k;
final private NonceMessage{L} n_f;
final private NonceMessage{L} h;

/* CAP-ZEROBS */
public ZeroBlindSigMessage

(Message{} t,
NonceMessage{L} n_s,
PublicKeyMessage{} k,
NonceMessage{L} n_f,
NonceMessage{L} h):{L}

{ this.t = t; this.n_s = n_s; this.k = k;
this.n_f = n_f; this.h = h; }

/* CAP-ZEROBS-P */
public Message{L} getObservedMessage{L}
(int{L} index)
{
switch(index)
{
case 0: return t;
case 1: return k;
case 2: return new BlindMessage

(new CommitMessage(t, n_s),
k,
n_f);

case 3: return h;
default: return null;
}

}
}
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Conditional messages According to capability (CAP-
UNBLIND-SIG), observing a blinded signature reveals the
signature only if the observer knows the blinding factor.
To be able to incorporate such dependencies in method
get ObservedMessage, we introduce the class
ConditionalMessage. The constructor of this class
takes as arguments the conditionally observed message, and
the message the observer needs to know in order to observe
the first. If multiple messages are needed to specify the condi-
tion, they can be concatenated into a single message.

This new message constructor is denoted in Typed MSR
as C(t1, t2), and in order to incorporate it into the extended
version of the Dolev–Yao Intruder (discussed in Sect. 7.2),
we need to include the following intruder capability:

( ∀ t1 :Σ msg.

∀ t2 :Σ msg.

MI(t1)

MI(C(t2, t1))
→ MI(t1, t2)

)I

(CAP−COND)

Notice that this message constructor does not model any
new cryptographic primitive or technique. Its sole purpose
in our model is to support the Message interface of our Jif
framework.

9.2 Runtime linkability-checking

Having in place a mechanism to annotate linkable messages,
we now focus on message sending with runtime checking of
possible linkability exposures.

We first argue that, in the general case, this checking can-
not be done at compile time, as the following pseudocode
illustrates:

send_message(m);
if (theorem)
send_message(m);

Suppose that message m is linkable. If this is the case, then
sending it twice would cause a linkability exposure. But, if it
was possible to have this check done at compile time, then we
would have a compiler capable of proving any theorem. The-
refore, in the general case, we can do no better than runtime
checking for linkability exposures. Although such an attempt
raises the complexity of the overall solution, it also has the
advantage that it is the actual protocol’s implementation that
is being verified, not a possibly flawed abstraction.

Our proposed approach is based on having a single point in
the Jif program that is able to send messages to the network,
which distinguishes between linkable and other messages, is
able to store and search through all previously sent messages,
and will throw an exception when an attempt is made to send
a message that could be linked with a previous one.

interface Network
{
void send(Message m)
throws PossibleLinkabilityException;

Message receive();
}

If the message is not linkable, it is freely send on the network.
However, if it is linkable, then it is send only if the following
conditions are met:

1. The message has not been previously sent.
2. The linkable messages inferred by the intruder from this,

and all previously sent messages, have not been sent
before.

Otherwise the PossibleLinkabilityException is
thrown.

Regarding the latter condition, the linkable messages infer-
red by the intruder can be found using the method described
in Sect. 7 of [9]. The method is presented (and expanded to
include rules for our introduced cryptographic primitives) in
Sect. 9.3.

Therefore, implementing the send method involves: (i)
storing all previously sent messages, and (ii) using a theorem
prover that works on these stored messages (axioms) and on
the rules of Sect. 9.3 to check whether the message to be sent
can be inferred from the stored messages. If the last statement
is proved (i.e. it is a theorem), the message is not sent.

9.3 Message inference

The intruder’s capabilities were formalized as Typed MSR
rules in Sect. 7.2. However, these rules are too non-
deterministic to use in a model checking simulation to unco-
ver attacks on protocols. What is needed is an operational
version of the intruder, which retains the intruder’s capabili-
ties, while not allowing him to undo his own work.

As proposed in [21], to construct this version we have
the intruder decompose messages he learns into atomic mes-
sages, store these atomic messages, and then use them to
construct new complex messages. In other words, we parti-
tion the actions of the intruder into three distinct constituents:
message decomposition, storage of elementary information,
and message construction. The memory predicate MI(_) is
replaced by the following memory predicates:

1. DI(_): intended to contain messages while they are disas-
sembled into their elementary constituents

2. AI(_): intended to contain atomic messages learnt this
way

3. CI(_): intended to contain messages while they are used
to construct more complex ones

Therefore, we have the following rules for interception
and transmission:
(∀ t :Σ msg. N(t) → DI(t)

)I
(DECOMPOSE−INIT)

(∀ t :Σ msg. CI(t) → N(t)
)I
(COMPOSE−END)
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We always keep a copy of intercepted messages, so that we
can use information we acquire in the future to break them
into more atomic messages:

(
∀ t :Σ msg. DI(t) → DI(t)

CI(t)

)I

(DECOMPOSE−COPY)

Atomic messages acquired during the decomposition pro-
cess, will be moved in the appropriate memory predicate:

(∀ a :Σ atm. DI(t) → AI(t)
)I
(MEMORIZE−ATOMICS)

Finally, the atomic messages are used to feed the composi-
tion process (copying is required as these messages may be
needed later):

(
∀ a :Σ atm. AI(a) → AI(a)

CI(a)

)I

(COMPOSE−COPY)

We now express the intruder capabilities of Sect. 7.2 using
our new memory predicates.

Generate fresh intractable data The intruder may generate
fresh nonces, fresh private keys, fresh shared keys, as well as
other intractable messages, as long as they are atomic.

( · → ∃ t :Γ intract. ∃ t :Σ atm. AI (t)
)I
(L−CAP−GEN−I)

Guess tractable and semitractable data The intruder
may guess or get access to public keys, principals, as well as
other tractable or semitractable messages, as long as they are
atomic.

(∀ t :Γ tract. ∀ t :Σ atm. · → AI (t)
)I
(L−CAP−GUESS−T)

(∀ t :Γ semitract. ∀ t :Σ atm. · → AI (t)
)I
(L−CAP−GUESS−S)

Probabilistically encrypt We consider this to be part of the
construction phase.

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ n :Σ nonce.

CI (t)
CI (k)

CI (n)

→ CI
(

#{{ t }}n
k

)
⎞
⎟⎟⎠

I

(L−CAP−PASYMENC)

Probabilistically decrypt We consider this to be part of the
destruction phase.

⎛
⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ k′ :Σ privKP k .

∀ n :Σ nonce.

DI
(

#{{ t }}n
k

)
DI

(
k′) → DI (t)

DI (n)

⎞
⎟⎟⎟⎟⎠

I

(L−CAP−PASYMDEC)

Blind messages We consider this to be part of the
construction phase.

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n :Σ nonce.

CI (t)
CI (k)

CI (n)

→ CI

(
〈t〉k

n

)
⎞
⎟⎟⎠

I

(L−CAP−BLIND)

Unblind messages We consider this to be part of the des-
truction phase.

⎛
⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n :Σ nonce.

DI

(
〈t〉k

n

)
DI (n)

→ DI (t)

⎞
⎟⎟⎠

I

(L−CAP−UNBLIND−MSG)

Unblind signatures This is not so obvious. We believe that
this capability can be used both in the destruction and in the
construction phase.

⎛
⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ k′ :Σ privK k .

∀ n :Σ nonce.

DI
([ 〈t〉k

n ]ν()

k′
)

DI (n)
→ DI

([ t ]ν()

k′
)
⎞
⎟⎟⎟⎟⎠

I

(L−CAP−UNBLIND−SIG−1)

⎛
⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ k′ :Σ privK k .

∀ n :Σ nonce.

CI
([ 〈t〉k

n ]ν()

k′
)

CI (n)
→ CI

([ t ]ν()

k′
)
⎞
⎟⎟⎟⎟⎠

I

(L−CAP−UNBLIND−SIG−2)

Commit to a message We consider this to be part of the
construction phase.

( ∀ t :Σ msg.

∀ n :Σ nonce.

CI (t)
CI (n)

→ CI
(|| t ||n

))I

(L−CAP−COMMIT)

Generate a zero-knowledge proof We consider this to be
part of the construction phase.

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ ns :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n f :Σ nonce.

∀ h :Σ nonce.

CI (t)
CI (ns)

CI (k)

CI
(
n f

)
CI (h)

→ CI
(ZBS( t, ns , k, n f , h )

)
⎞
⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−ZEROBS)

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ t ′ :Σ msg.

∀ n :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ h :Σ nonce.

CI (t)
CI

(
t ′
)

CI (n)

CI (k)

CI (h)

→ CI
(ZAE ( t, t ′, n, k, h )

)
⎞
⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−ZEROAE)

Observe a zero-knowledge proof We consider this to be
part of the destruction phase.
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⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ ns :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubK A.

∀ n f :Σ nonce.

∀ h :Σ nonce.

DI
(ZBS( t, ns, k, n f , h )

) →
DI (t)
DI (k)

DI

(
〈|| t ||ns 〉k

n f

)

⎞
⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−ZEROBS−P)

⎛
⎜⎜⎜⎜⎜⎜⎝

∀ t :Σ msg.

∀ t ′ :Σ msg.

∀ n :Σ nonce.

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ h :Σ nonce.

DI
(ZAE ( t, t ′, n, k, h )

) →
DI

(
t ′
)

DI (k)

DI
(

#{{ t }}n
k

)

⎞
⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−ZEROAE−P)

Aggregate votes We consider the induction base case to be
part of the construction phase.

( · → CI(P())
)I
(L−CAP−AGGBASE)

We also consider the induction step to be part of the construc-
tion phase.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

CI(P(#{{ t1 }}n1
k , . . . , #{{ ti−1 }}ni−1

k ))

CI(#{{ ti }}ni
k )

↓
CI(P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−AGGSTEP)

Tally votes We consider the induction base case to be part
of the construction phase.

( · → CI(S())
)I
(L−CAP−TALLYBASE)

We also consider the induction step to be part of the construc-
tion phase.

⎛
⎜⎜⎝

∀ t1 :Σ msg.

∀ t2 :Σ msg.

· · ·
∀ ti :Σ msg.

CI(S(t1, . . . , ti−1))

CI(ti )
→ CI(S(t1, . . . , ti ))

⎞
⎟⎟⎠

I

(L−CAP−TALLYSTEP)

Apply homomorphic encryption properties We believe that
these capabilities can be used both in the destruction and in
the construction phase.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

DI(P(#{{ t1 }}n1
k , . . . , #{{ ti }}ni

k )) → DI(#{{ S(t1, . . . , ti ) }}n
k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−PENCH−1)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

DI(#{{ S(t1, . . . , ti ) }}n
k ) → DI(P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−PENCH−2)
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

CI(P(#{{ t1 }}n1
k , . . . , #{{ ti }}ni

k )) → CI(#{{ S(t1, . . . , ti ) }}n
k )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−PENCH−3)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∀ A :Σ principal.
∀ k :Σ pubKP A.

∀ t1 :Σ msg.

· · ·
∀ ti :Σ msg.

∀ n1 :Σ nonce.

· · ·
∀ ni :Σ nonce.

∀ n :Σ nonce.

CI(#{{ S(t1, . . . , ti ) }}n
k ) → CI(P(#{{ t1 }}n1

k , . . . , #{{ ti }}ni
k ))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

I

(L−CAP−PENCH−4)

The important point here is that the implicit assumption
found in the message inference mechanism of Typed MSR
that each capability of the Dolev–Yao intruder can either be
used constructively or destructively is not valid in the case of
the capability to unblind signatures and to apply the homo-
morphic encryption properties. This is because: (i) in the
destruction phase it may be beneficial to use these capabili-
ties in order to continue the search for atomic messages, and
(ii) in the construction phase it is not (always) the case that
using these capabilities means that the intruder undoes his
own work.

9.4 Anonymity

As already stated in Sect. 8.1, Jif’s original scope is access
control; hence, it is very natural to use Jif to label user data
as public or private. Therefore, with little extra effort, our
proposed linkability-checking framework can be extended
to prevent the release of (suitable labeled as private) data
that disclose the identity of the user. This means that the
user’s anonymity is protected both indirectly by not relea-
sing linkable data, and also directly by not releasing identity-
disclosing data.

10 The protocol verification process
of the cryptographic framework

Implementing protocols on the proposed framework as a
means to enforce privacy requirements implies that the pro-
tocol designer, the protocol implementor, and the end-user

will have different roles to play in the protocol verification
process than if a static formal method is used.

Other (static) formal methods, such as the BAN logic, are
useful to the protocol designer, which uses them to prove pro-
perties about an abstraction of his protocol’s natural language
specification. However, the formal method is useless to both
the protocol implementor and to the end-user; the former
must find other means to ensure his implementation (based
on the protocol’s natural language specification) retains all
the the security properties, and the latter simply hopes that
this has been achieved.

On the other hand, implementing protocols on the pro-
posed framework changes things significantly. The proto-
col designer creates a formal specification of his protocol
in the extended Typed MSR, and is able to attempt linkabi-
lity attacks using the extended Dolev–Yao intruder, as des-
cribed in Sect. 7.3. He then passes the formal specification
to the protocol implementor, who uses it to implement the
protocol on the framework. His task is more straightforward
than before, as the framework implements all the necessary
cryptography and encapsulates the type annotations of the
formal specification into Jif linkability labels. Furthermore,
the framework itself during the testing phase will alert the
protocol implementor about linkability issues that may be
caused either by design vulnerabilities or by implementation
bugs. In the former case, the protocol designed will have to
be notified and revise the protocol specification. As far as
the end-user is concerned, he can be assured (to the extent
he trusts the framework) that any remaining design vulnera-
bilities or implementation bugs will not pose a threat to his
privacy.
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11 Summary and conclusions

In this paper, we demonstrate how a privacy-preserving pro-
tocol described in natural language can be formally speci-
fied in a modified and extended version of the Typed MSR
language, and typed in a linkability-oriented type system,
assuming that a suitable abstraction of the protocol’s crypto-
graphy is included in our proposed Typed MSR extensions.
Furthermore, we demonstrate how this typed specification
can be used to reach an implementation of the protocol in
Jif, in such a way that privacy vulnerabilities can be detected
with a mixture of static and runtime checks.

More analytically, in this paper we make the following
points:

1. We argue that the Typed MSR specification language
should not model encryption (both symmetric and asym-
metric) as deterministic, not only because this is not how
encryption is usually employed in practice, but more
importantly because this makes the language particularly
unsuitable for the specification of privacy-preserving
protocols (Sect. 3.7).

2. We propose high-level abstractions for blind signatures,
commitments, homomorphic encryption and zero-
knowledge proofs (Sect. 4).

3. We argue that making the zero-knowledge proofs non-
interactive results in having protocol specifications that
are easier to reason about and to implement (Sect. 4.1.4).

4. We demonstrate that augmenting the standard language
with the new message constructors make it expressive
enough to specify privacy-preserving protocols, such as
e-voting protocols (Sect. 5).

5. We argue that a simple type system that exists in parallel
with Typed MSR’s type system is able to enforce basic
message well-formedness, and to track message linkabi-
lity (Sect. 6).

6. We propose an extended version of the original Dolev–
Yao intruder based on our linkability-oriented type sys-
tem and the new message constructors (Sect. 7).

7. We argue that the extended version of the Dolev–Yao
intruder creates a formal environment in which linka-
bility attacks on privacy-preserving protocols may be
demonstrated (Sect. 7.3).

8. We illustrate how the above may be incorporated into a
framework built on the Jif language, in such a way that
linkability vulnerabilities in protocol implementations
may be detected with a mixture of static and runtime
checks (Sect. 9).

9. We argue that some privacy-related properties are not
always easy or even possible to prove statically, but need
to be checked dynamically during the protocol’s execu-
tion. Although such an attempt raises the complexity of
the overall solution, it also has the advantage that it is the

actual protocol’s implementation that is being verified,
not a possibly flawed abstraction (Sect. 9.2).

10. We argue that the implicit assumption found in the mes-
sage inference mechanism of Typed MSR that each capa-
bility of the Dolev–Yao intruder can either be used
constructively or destructively is not valid in the case
of our introduced message constructors (Sect. 9.3).

12 Future work

In our view, further work based on the results obtained from
this paper can follow these major directions:

1. The implementation of the underlying cryptography of
the linkability-checking cryptographic framework, as
described in Sect. 9.1. We need to be able to convert
Message objects to and from byte arrays. Some of the
cryptography, like encryption and digital signatures, can
easily be implemented using suitable providers for the
Java Cryptography Architecture (JCA). The rest of the
cryptography, like blind signatures and zero-knowledge
proofs, will be harder to implement.

2. The integration of the cryptographic framework with a
theorem prover, fed with the axioms and rules of Sect. 9.3,
and the implementation of the runtime linkability checks
of Sect. 9.2. The first can be achieved using, for example,
the Java Theorem Prover (JTP), developed by Gleb Frank
at Stanford University. The later, given that the theorem
prover is in place, is just a matter of invoking it and sto-
ring the results.

3. The creation of a library of cryptographic primitives,
abstracted as Typed MSR messages and intruder capa-
bilities, and implemented in our Jif cryptographic fra-
mework. This will significantly increase the domain of
protocols this work will apply to.
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