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Abstract

We present a method for producing pairing-friendly, simple, ordinary Jacobian varieties
of genus 2 hyperelliptic curves defined over a prime field Fp. The proposed method heavily
relies on the construction of a suitable p-Weil number and a corresponding quartic CM-field.
Our Jacobians are absolutely simple and for this special class of Jacobians we give the first
examples in the literature with ρ-values below 4, while previous results had in general ρ-values
between 6 and 8. These examples derive from “families” of pairing-friendly Jacobians, which
are basically polynomial representations of the Jacobian parameters.

Keywords: Pairing, hyperelliptic curves, Jacobian, embedding degree.

1 Introduction

An asymmetric pairing is a bilinear, non-degenerate, efficiently computable map ê : G1×G2 −→
GT, where G1,G2,GT are cyclic groups of prime order r with G1 6= G2. A crucial cryptographic
requirement is that the discrete logarithm problem (DLP) is computationally infeasible in all
pairing groups G1,G2,GT. We call G1,G2 the source groups and GT the target group. Initially
the source groups were set as r-order subgroups of ordinary elliptic curves over a finite field,
while the target group was an r-order subgroup of a finite field.

Since elliptic curves are genus 1 algebraic curves, an obvious question is whether pairings
on higher genus curves can be also used in implementations. In this case G1 and G2 consist
of elements in the Jacobian variety of a genus g hyperelliptic curve defined over a finite field.
By [Ber06, Lan06], this can be an advantageous choice especially when g = 2, since genus 2
curves and their Jacobians:
1. are competitive to elliptic curves in performance and security [Ber06, Lan06].
2. result in efficient Tate pairing calculations [FL06].
3. have efficient CM-constructions [LS13, Wen02] and point operations [Can87].
4. have points with smaller size.
This is our motivation for constructing “pairing-friendly”, ordinary Jacobians of genus 2 hyper-
elliptic curves over a prime field Fp, called the base field.

An affine genus 2 hyperelliptic curve C over Fp is defined by the equation C/Fp : y2 = F (x),
where F (x) ∈ Fp[x] is monic with degF ∈ {5, 6}. For any extension k of Fp, we denote by C(k)
the set of all points with coordinates in k satisfying the hyperelliptic curve equation. Unlike
the genus 1 case this set is not a group and hence we cannot define DLP-based protocols on
C(k). However, to each such curve we associate a special object called the Jacobian [Kob89]
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of C/Fp, denoted by J(Fp). This is a 2-dimensional abelian variety, hence an algebraic group,
with order #J(Fp) ≈ p2. The elements of J(Fp) are equivalence classes of zero degree divisors,
defined over Fp, under the linear equivalence of divisors (see Section 2). This can be generalized
to any extension k of Fp. In our context we assume that J(Fp) contains a cyclic subgroup of
prime order r and that it is ordinary, simple and absolutely simple [Mil08] (see also Section 2).

For asymmetric pairings on Jacobians, the source groups are distinct r-order subgroups of
J(Fpk) and the target group is an r-order subgroup of the multiplicative group of the extension
field Fpk . In other words a pairing maps two divisors of order r, defined over Fpk , to an rth root
of unity. This positive integer k is called the embedding degree of J(Fp) with respect to r and
it is the smallest positive integer such that Fpk contains all rth roots of unity. In pairing-based
applications such Jacobians are chosen according to the following rules:
1. The order of the Jacobian has a large prime factor r, i.e. #J(Fp) = hr, for h ≥ 1. This

ensures that J(Fp) (hence J(Fpk)) contains points of order r.
2. The prime r is large enough, so that the DLP in G1,G2 is computationally hard. According

to today’s requirements, r should be at least 256 bit large, to avoid Pollard’s rho attack, with
running time O(

√
r).

3. The embedding degree k is large enough, so that the DLP in GT ⊂ F∗
pk

is as hard as in

G1,G2. In practice Fpk must be resistant to the variants of the number field sieve (NFS)
attack [EMJ17, KJ17, KB16].

4. k is relatively small, for efficient operations in GT. This means that the extension field must
be as large as to ensure security and no larger.

5. The ρ-value ρ = 2 log p/ log r of the Jacobian is close to 1. This saves bandwidth by keeping
the representation of Jacobian elements small. Examples with ρ ≈ 1 are still absent for
ordinary, absolutely simple Jacobians.

Hyperelliptic curves and the corresponding Jacobians satisfying these properties are called
pairing-friendly.

We describe a method for producing pairing-friendly ordinary Jacobians of genus 2 hyperel-
liptic curves defined over prime fields. We present new examples of absolutely simple Jacobians,
with the best reported ρ-values so far in the literature, for various embedding degrees. Par-
ticularly, our examples reduce the ρ-value to be up to 4, while previous results for the same
embedding degrees have in general ρ-values between 6 and 8 [Fre08], or around 8 [LS13].

In Section 2 we present the necessary background for pairing-friendly 2-dimensional Jaco-
bians and a summary of methods for their construction. We analyze our proposal and demon-
strate our recommendations in Section 3. Numerical results of cryptographic value are provided
in Section 4 and we conclude the paper in Section 5, summarizing our recommendations.

2 Background

Genus 2 Hyperelliptic Curves and Jacobians. Let C be a genus 2 hyperelliptic curve
over a prime field Fp and C(k) the set of points on the curve with coordinates in an extension
k of Fp. Since C(k) is not a group, in hyperelliptic curve cryptography we are working with the
Jacobian J(Fp) of C/Fp [Kob89], which is a 2-dimensional abelian variety and hence an algebraic
group [Mil08]. It is also a quotient group, whose elements are equivalence classes of zero degree
divisors under the linear equivalence of divisors. In particular, two zero degree divisors are
linearly equivalent, if their difference is a principal divisor, i.e. a divisor of a rational function
in the function field of the curve C/Fp [Mil08, OdJ08]. In dimension 2, each equivalence class
consists of exactly two elements.

In this paper we are working with simple Jacobians which are also absolutely simple. A
2-dimensional Jacobian is simple if it does not split over Fp to a product of elliptic curve groups
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and it is absolutely simple, if it remains simple over Fp [Mil08]. We denote by End(J(Fp)) the
endomorphism ring containing all homomorphisms from J(Fp) to itself. One of these elements
is the Frobenius endomorphism, denoted by π, which acts by raising a divisor in J(Fp) to the pth
power. When J(Fp) is simple, the Frobenius endomorphism satisfies a quartic, monic polynomial
P (x) ∈ Z[x] called the characteristic polynomial of Frobenius:

P (x) =

4∏
i=1

[x− σi(π)] = x4 +Ax3 +Bx2 +Apx+ p2, (2.1)

where σi are the embeddings of the number field K = Q(π) into C. Thus, π is an algebraic
integer and also a p-Weil number, meaning ππ = p, where π is the complex conjugate of π. In
our case, J(Fp) will be ordinary and K a quartic CM-field, i.e. an imaginary quadratic extension
of a totally real field [Mil08].

The order of the Jacobian and P (x) are related by #J(Fp) = P (1) [CFA+06]. Additionally,
J(Fp) is ordinary if gcd(B, p) = 1 [HZ02] and it is simple if P (x) is irreducible over Z[x] [OdJ08].
Finally, in order to check if J(Fp) is absolutely simple we use the next fact [HZ02].

Proposition 2.1. Let J(Fp) be a 2-dimensional Jacobian, with characteristic polynomial of
Equation (2.1). Then exactly one of the following holds: (1) J(Fp) is absolutely simple.
(2) A = 0. (3) A2 = p + B. (4) A2 = 2B. (5) A2 = 3B − 3p. In cases (2), (3), (4) and
(5), the smallest extension of Fp over which J(Fp) splits, is quadratic, cubic, quartic and sextic
respectively.

Proof. See Theorem 6, p. 145 in [HZ02].

Pairing-Friendly Conditions. Recall that for asymmetric pairings on Jacobians, G1,G2 are
distinct subgroups of J(Fpk), while GT is an r-order subgroup of the multiplicative group of Fpk ,
where k is the embedding degree. This is the smallest positive integer such that Fpk contains
the group µr of rth roots of unity. Equivalently, it is the smallest positive integer, such that
r | (pk − 1) [Fre08].

Freeman et al. [FSS08] described the conditions for g-dimensional Jacobians to have embed-
ding degree k. Here we are restricted to g = 2.

Proposition 2.2. Let J(Fp) be an ordinary 2-dimensional Jacobian with Frobenius endomor-
phism π and characteristic polynomial of Frobenius P (x) ∈ Z[x]. Let k be a positive integer
and Φk(x) the kth cyclotomic polynomial and suppose that gcd(r, p) = 1 and K = Q(π) is a
quartic CM-field. If

#J(Fq) = P (1) ≡ 0 mod r and Φk(p) ≡ 0 mod r, (2.2)

then J(Fp) has embedding degree k with respect to r.

Proof. See Proposition 2.1 in [FSS08].

Thus, in order to construct ordinary and simple 2-dimensional Jacobians over Fp with embedding
degree k and an r-order subgroup, it suffices to search for a Frobenius endomorphism π ∈
End(J(Fp)) and a quartic CM-field K = Q(π), such that System (2.2) is satisfied. Note that
the second equation in System (2.2) implies that p is a primitive kth root of unity in (Z/rZ)∗.

As stated in Section 1, r must be a large prime so that the DLP in the r-order subgroups
G1,G2 ⊆ J(Fpk) is computationally hard and the embedding degree k must be large enough
so that the DLP in GT ⊆ F∗

pk
is approximately of the same difficulty as in G1,G2. Note that

k should be the smallest such integer, since the extension field Fpk must not be unnecessarily
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large. The ideal case appears when #J(Fp) and r have approximately the same size. Since
#J(Fp) ≈ p2, this means that the ρ-value ρ = 2 log p/ log r must be close to 1 [FSS08]. The
recommended sizes of Jacobian parameters and the security levels that they provide are discussed
in Section 4 (see also [BBC+09]). The simple and ordinary Jacobians having the properties we
studied in this paragraph are called pairing-friendly [Fre08].

Parametric Families. The most common way to produce pairing-friendly Jacobians is to
represent its parameters as polynomials, which when evaluated at certain integers will produce
the actual Jacobian parameters. This idea was first introduced by Brezing and Weng [BW05]
for elliptic curves and generalized by David Freeman [Fre08] for higher dimensional abelian
varieties. In this case the Frobenius endomorphism is represented by a polynomial π(x) ∈ K[x]
with characteristic polynomial of Frobenius P (t) ∈ Q[t]:

P (t) =
4∏

i=1

[t− σi(π(x))] = t4 +A(x)t3 +B(x)t2 +A(x)pt+ p2, (2.3)

for the four embeddings σi : K −→ C and some A(x), B(x) ∈ Z[x]. Such a polynomial repre-
sentation allows us to work with polynomial families of pairing-friendly Jacobians. The precise
definition is the following [Fre08].

Definition 2.3. Let K be a quartic CM-field, π(x) ∈ K[x] and r(x) ∈ Q[x]. The pair [π(x), r(x)]
parametrizes a family of pairing-friendly Jacobians with embedding degree k, if the following
conditions are satisfied:

1. p(x) = π(x)π(x) ∈ Q[x] and p(x) represents primes.
2. r(x) is non-constant, irreducible, integer-valued, with lc(r) > 0.
3. P (1) ≡ 0 mod r(x).
4. Φk(p(x)) ≡ 0 mod r(x), where Φk(x) is the kth cyclotomic polynomial.

By saying that p(x) represents primes we mean that it is non-constant, irreducible, with
lc(p) > 0 and it returns primes for finitely (or infinitely) many x ∈ Z [Fre08]. Condition (3)
ensures that the Jacobian order factorizes as #J(Fp) = h(x)r(x), for some h(x) ∈ Q[x], while
condition (4) implies that p(x) is a primitive kth root of unity in Q[x]/〈r(x)〉. Although r(x) can
be chosen as any polynomial with rational coefficients satisfying condition (2) of Definition 2.3,
it is usually considered as the kth cyclotomic polynomial. Finally, the ρ-value of a polynomial
family [π(x), r(x)] is defined as the ratio:

ρ(π, r) = lim
x→∞

2 log p(x)

log r(x)
=

2 deg p

deg r
.

Previous Constructions. Methods for constructing absolutely simple Jacobians are given
in [Fre08, FSS08, LS13], with ρ-value in the range 6 ≤ ρ ≤ 8. However better ρ-values can
be achieved by non-absolutely simple Jacobians. For example see [Dry12, FS11, GV12, Kac10,
KT08], with generic ρ ≤ 4, where the best results appear in [Dry12], with 2 ≤ ρ < 4. Unfor-
tunately there are still no examples with ρ < 2 for simple, ordinary Jacobians. All methods
in [Dry12, Fre08, FS11, GV12, Kac10, KT08] use polynomial families of pairing-friendly Ja-
cobians. An alternative approach is presented by Lauter– Shang in [LS13]. Representing the
Frobenius element π ∈ K in an appropriate form, they derive a system of three equations in
four variables, whose solutions lead to few examples of absolutely simple Jacobians with ρ ≈ 8.
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Contribution. In this paper we focus on pairing-friendly 2-dimensional, absolutely simple
and ordinary Jacobians. Their construction depends mainly on the choice of the quartic CM-
field K and the representation of the Frobenius endomorphism π. We present a procedure for
constructing polynomial families of pairing-friendly Jacobians based on Lauter-Shang’s [LS13],
Dry lo’s [Dry12] and new polynomial representations of the Frobenius endomorphism. In each
case the problem of constructing the families is reduced to a system of three equations in four
variables. By their solutions we produced polynomial families of 2-dimensional, absolutely simple
Jacobians with the best ρ-values so far in the literature. In particular our families have in general
ρ(π, r) ≤ 4 for various embedding degrees, while previous results had ρ(π, r) between 6 and 8.
Using our families we produced various numerical examples of cryptographic value.

3 Constructing Pairing-Friendly Jacobians

Let C/Fp be a genus 2 hyperelliptic curve for some prime p, with a simple and ordinary Jacobian
J(Fp) and suppose that #J(Fp) = hr, for some prime r, with gcd(r, p) = 1 and h > 0. Let also
k be a positive integer and K a quartic CM-field. We can determine suitable parameters of a
2-dimensional Jacobian by searching for a Frobenius element π ∈ K, such that System (2.2) is
satisfied:

P (1) ≡ 0 mod r and Φk(p) ≡ 0 mod r ⇐⇒ p = ππ ≡ ζk mod r, (3.1)

where P (x) ∈ Z[x] is the characteristic polynomial of Frobenius given by Equation (2.1) and ζk
a primitive kth root of unity.

Since we will be working with polynomial families we need to transfer the above situation
in terms of polynomial representations. This means that the Frobenius endomorphism is a
polynomial π(x) ∈ K[x], with characteristic polynomial of Frobenius P (t) ∈ Z[t] given by
Equation (2.3). The complete process for constructing polynomial families of pairing-friendly,
2-dimensional Jacobians is described in Algorithm 1. We first fix an integer k > 0, a quartic

Algorithm 1 Constructing families of pairing-friendly 2-dimensional Jacobians.
Input: An integer k > 0, a quartic CM-field K, a number field L containing ζk,K.
Output: A polynomial family [π(x), r(x)] of pairing-friendly, 2-dimensional Jacobian variety, with em-
bedding degree k.

1: Find an r(x) ∈ Q[x] satisfying condition (2) of Definition 2.3, s.t. L ∼= Q[x]/〈r(x)〉.
2: Let u(x) ∈ Q[x] be a primitive lth root of unity in Q[x]/〈r(x)〉.
3: For every i = 1, . . . , ϕ(l)− 1, such that l/ gcd(i, l) = k, do the following:
4: Find a polynomial π(x) ∈ K[x], satisfying the following System:

#J(Fp) = P (1) ≡ 0 mod r(x) and p(x) = π(x)π(x) ≡ u(x)i mod r(x) (3.2)

5: If p(x) = π(x)π(x) represents primes return the family [π(x), r(x)].

CM-field K and set L as the number field containing ζk and K. Usually L is taken as the lth
cyclotomic field Q(ζl) for some l ∈ Z>0, such that k | l. In step 1, we construct the polynomial
r(x) such that it satisfies condition (2) of Definition 2.3. If L = Q(ζl), then r(x) = Φl(x).
With this choice we know that the polynomial u(x) = x is a primitive lth root of unity in
Q[x]/〈r(x)〉. Then the primitive kth roots of unity can be obtained by computing the powers
u(x)i mod r(x), for every i = 1, . . . , ϕ(l) − 1, such that l/ gcd(i, l) = k. The fourth step is the
most demanding since we are searching for the Frobenius polynomial π(x) ∈ K[x], such that
the family of Jacobians is pairing-friendly. To come to this conclusion we also need to verify
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that the polynomial p(x) = π(x)π(x) represents primes (step 5). The output of Algorithm 1
is a polynomial family [π(x), r(x)] of pairing-friendly 2-dimensional Jacobians with embedding
degree k and ρ-value:

ρ(π, r) =
2 deg p

deg r
=

2(deg π + deg π)

deg r
≤ 2(2 deg r − 2)

deg r
= 4− 4

deg r
< 4.

This is a significant improvement compared to [Fre08, FSS08, LS13], which for absolutely simple
Jacobians have 6 ≤ ρ(π, r) ≤ 8.

3.1 Lauter-Shang’s Frobenius Elements

Lauter and Shang [LS13] considered quartic CM-fields K = Q(η), with positive and square-free
discriminant ∆K (primitive CM-fields), where η is:

η =

 i
√
a+ b

√
d, if d ≡ 2, 3 mod 4

i

√
a+ b

−1 +
√
d

2
, if d ≡ 1 mod 4

(3.3)

for some a, b, d ∈ Z, where d is positive and square-free. The Frobenius endomorphism π is an
element of K and hence it is of the form:

π = X + Y
√
d+ η

(
Z +W

√
d
)
, (3.4)

for X,Y, Z,W ∈ Q and since π is a p-Weil number, it must satisfy ππ = p, or:

(X2 + dY 2 + α(Z2 + dW 2) + 2βdZW ) + (2XY + 2αZW + β(Z2 + dW 2))
√
d = p,

where (α, β) = (a, b), when d ≡ 2, 3 mod 4 and (α, β) = ((2a − b)/2, b/2), when d ≡ 1 mod 4.
With this setting, the characteristic polynomial of Frobenius is:

P (x) = x4 − 4Xx3 +
(
2p+ 4X2 − 4dY 2

)
x2 − 4Xpx+ p2.

By the first equation of System (3.2), the order of the Jacobian must be divisible by r. Combining
the facts that p must be a prime integer, with p ≡ ζk mod r and #J(Fp) = P (1), we are searching
for solutions (X,Y, Z,W ) of the system:

X2 + dY 2 + α(Z2 + dW 2) + 2βdZW ≡ ζk mod r
2XY + 2αZW + β(Z2 + dW 2) = 0

(ζk + 1− 2X)2 − 4dY 2 ≡ 0 mod r

 (3.5)

Remark 3.1. The first and third equation of System (3.5) are solved in Z/rZ and the second
in Q. Such solutions are presented in [LS13], giving examples with ρ ≈ 8. Alternatively, we can
solve all equations modulo r and then search for lifts of X,Y, Z,W in Q, such that the second
equation is satisfied in Q.

Since we are working with polynomial families, we transfer our analysis to Q[x]/〈r(x)〉, for
an r(x) ∈ Q[x] satisfying condition (2) of Definition 2.3 and follow Algorithm 1. We first fix a
number field L = Q(ζl) ∼= Q[x]/〈r(x)〉 for l ∈ Z>0, such that k | l and set u(x), z(x), η(x) as
the polynomials representing ζl,

√
d, η in Q[x]/〈r(x)〉 (see [MF05, SW06]). We set the Frobenius

polynomial:

π(x) = X(x) + Y (x) + η
(
Z(x) +W (x)

√
d
)
, (3.6)
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for some X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉 and the characteristic polynomial of Frobenius
is now expressed in Q[t], with coefficients in Q[x]. In order to construct polynomial fami-
lies of pairing-friendly Jacobians we work as follows. We first solve System (3.5) in Z/rZ
and obtain solutions (X,Y, Z,W ) ∈ Q4. Then we represent these solutions as polynomials
[X ′(x), Y ′(x), Z ′(x),W ′(x)] in Q[x]/〈r(x)〉 and finally we take lifts fX(x), fY (x), fZ(x), fW (x) ∈
Q[x], so that

2X(x)Y (x) + 2αZ(x)W (x) + β
[
Z(x)2 + dW (x)2

]
= 0,

namely the second equation of System (3.5) is satisfied in Q[x], where:

X(x) = fX(x)r(x) +X ′(x), Y (x) = fY (x)r(x) + Y ′(x)

Z(x) = fZ(x)r(x) + Z ′(x), W (x) = fW (x)r(x) +W ′(x)

The field polynomial derives from p(x) = π(x)π(x) and it must represent primes, according to
Definition 2.3. This is equivalent to finding m,n ∈ Z, such that p(mx+ n) ∈ Z[x] and contains
no constant or polynomial factors.

Examples of Absolutely Simple Jacobians.

Let K = Q(η) be a primitive quartic CM-field and ζk a primitive kth root of unity. A solution
of System (3.5) in Z/rZ is represented by the quadruple:

(X,Y, Z,W ) =

(
(
√
ζk + 1)2

4
,±(
√
ζk − 1)2

4
√
d

,±ζk − 1

4η
,±ζk − 1

4η
√
d

)
. (3.7)

Below we give an example derived from the above solution, which first appeared in [Fre08].
Our method can be also extended for arbitrary polynomials r(x) satisfying condition (2) of
Definition 2.3.

Example 3.2. Set l = k = 5 and K = Q(i
√

10 + 2
√

5). Take L = Q(ζ5) and r(x) = Φ5(x), so
that u(x) = x is a primitive 5th root of unity in Q[x]/〈r(x)〉. The representation of

√
5 and η

in Q[x]/〈r(x)〉 is:

z(x) = 2x3 + 2x2 + 1 and η(x) = −2x3 + 2x2.

For i = 4 in Algorithm 1, and for lifts fX(x) = 1/4, fY (x) = 1/20, fZ(x) = 1/8 and fW (x) =
−1/40, we get the following solution [X(x), Y (x), Z(x),W (x)]:

X(x) = (x4 + 2x2 + 1)/4, Y (x) = (x4 + 6x3 + 6x2 + 6x+ 1)/20

Z(x) = (x4 + x3 + 2x2 + x+ 1)/8, W (x) = −(x4 + 3x3 + 2x2 + 3x+ 1)/40

By Equation (3.6) the Frobenius polynomial π(x) ∈ K[x] is:

π(x) = X(x) + Y (x)
√

5 + i

√
10 + 2

√
5
(
Z(x) +W (x)

√
5
)
,

Setting the field polynomial as p(x) = π(x)π(x) we conclude to:

p(x) =
1

5
(x8 + 2x7 + 8x6 + 9x5 + 15x4 + 9x3 + 8x2 + 2x+ 1),

which is integer-valued for all x ≡ 1 mod 5. The characteristic polynomial of Frobenius P (t)
has integer coefficients and it is irreducible over Z. Additionally none of conditions (2)–(5) of
Proposition 2.1 is satisfied and the middle coefficient B(x) of P (t) satisfies gcd[B(x), p(x)] = 1.
Thus the pair [π(x), r(x)] represents a polynomial family of pairing-friendly, absolutely simple,
ordinary, 2-dimensional Jacobian varieties with embedding degree k = 5 and ρ(π, r) = 4.
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3.2 Generalized Dry lo’s Frobenius Elements

The following analysis is based on Dry lo [Dry12]. Let K = Q(ζs,
√
−d), for a square-free d > 0

and some primitive sth root of unity ζs. For quartic CM-fields K there are two cases to consider:

1. If
√
−d /∈ Q(ζs), then ϕ(s) = 2 and so s ∈ {3, 4, 6}.

2. If
√
−d ∈ Q(ζs), then ϕ(s) = 4 and so s ∈ {5, 8, 10, 12}.

We take the Frobenius element π ∈ K as a linear combination of ζs and
√
−d:

π = X + Y
√
−d+ ζs

(
Z +W

√
−d
)
, (3.8)

for some X,Y, Z,W ∈ Q. Setting X = Y = 0 we recover Dry lo’s Frobenius elements [Dry12]
leading to non-absolutely simple Jacobian varieties. We study the case

√
−d /∈ Q(ζs) and

construct the equations derived from System (3.1).
Let ζs be a primitive sth root of unity where s ∈ {3, 4, 6} and so ϕ(s) = 2. Condition ππ = p

of System (3.1) is equivalent to:[
X2 + Z2 + d(Y 2 +W 2) + (ζs + ζs)(XZ + dYW )

]
+
[
(ζs − ζs)(XW − Y Z)

]√
−d = p

The coefficients A,B of the characteristic polynomial of Frobenius are:

A = −
[
4X + 2(ζs + ζs)Z

]
, B = 2p+ (A/2)2 + d(ζs − ζs)2W 2

and so the second condition, namely #J(Fp) ≡ 0 mod r implies:

[p+ 1 +A/2]2 + d(ζs − ζs)2W 2 ≡ 0 mod r

According to the above analysis, System (3.2) is transformed to:[
X2 + Z2 + d(Y 2 +W 2) + (ζs + ζs)(XZ + dYW )

]
≡ ζk mod r

XW − Y Z = 0

[p+ 1 +A/2]2 + d(ζs − ζs)2W 2 ≡ 0 mod r

 (3.9)

We are working with polynomial families and so we fix the number field L = Q(ζl) ∼= Q[x]/〈r(x)〉,
where r(x) = Φl(x), for some l > 0, such that

√
d, ζs, ζk ∈ L. In particular this is done by

setting l = lcm(s,m, k), where m is the smallest positive integer such that
√
d ∈ Q(ζm). Then

the generalized Dry lo Frobenius polynomial π(x) ∈ K[x] becomes:

π(x) = X(x) + Y (x)
√
−d+ ζs

(
Z(x) +W (x)

√
−d
)
, (3.10)

for some X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉 and its characteristic polynomial is P (t) ∈ Q[t]
as in Equation (2.3), with coefficients in Q[x].

Examples of Absolutely Simple Jacobians with s = 3.

We give a few examples of polynomial families obtained by the solutions of System (3.9) for
s = 3. Such a solution is the following:

X = Y = [(
√

3d+ 1)(ζk − 1) + (
√
−d+

√
−3)(ζk + 1)]/[2

√
−3(d+ 1)]

Z = W = [(ζk − 1) + (ζk + 1)
√
−d]/[

√
−3(d+ 1)]

(3.11)

For the second equation of System (3.9) there is no need to take any lifts, since Solution (3.11)
satisfies this equation in Q. We then expect that the constructed Jacobian varieties will have
ρ(π, r) < 4.
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Remark 3.3. In the following examples the characteristic polynomial of Frobenius P (t) satisfies
P (1) ≡ 0 mod r(x), but has rational coefficients. It can be transformed to a polynomial with
integer coefficients by applying a linear transformation t → (MT + N), so that for every t ≡
N mod M , we have P (t) ∈ Z.

Example 3.4. Let l = 24, so that L = Q(ζ24). Set r(x) = Φ24(x) and u(x) = x. For s = 3 and
d = 6, the representation of

√
−6 and

√
−3 in Q[x]/〈r(x)〉 is:

z(x) = −2x7 − x5 + x3 − x, w(x) = 2x4 − 1,

respectively. For i = 3 in Algorithm 1 we have k = 8 and by Solution (3.11):

X(x) = Y (x) = (2x7 − 3x6 + 3x5 − 2x4 − x3 + 3x2 + 1)/21

Z(x) = W (x) = (−2x7 − 3x6 + 3x5 + 2x4 − 2x3 − 3x− 4)/21

The Frobenius polynomial is represented by Equation (3.10), while the field polynomial is cal-
culated by p(x) = π(x)π(x). We find that this is integer-valued for every x ≡ {7, 19} mod 21.
It is easy to verify that none of the conditions (2)–(5) of Proposition 2.1 is satisfied and also
gcd[B(x), p(x)] = 1. Thus the pair [π(x), r(x)] represents a family of absolutely simple, ordinary,
pairing-friendly, 2-dimensional Jacobians with embedding degree k = 8 and ρ(π, r) = 3.5.

In Table 1 we give more families derived by Solution (3.11). The integer l > 0 defined the

Table 1: Absolutely simple Jacobians from Solution (3.11).

l k d i x ρ(π, r)

24

3

6

16 {87, 144} mod 147

3.5000
4 18 {5, 103} mod 147

12 2 {16, 94, 104} mod 147

24 17 {10, 20} mod 21

number field L = Q(ζl) and the 2nd column is the embedding degree, obtained by taking the ith
power (4th column) of ζl. The 3rd column is the square-free integer d > 0 defining the CM-field
K = Q(ζ3,

√
−d). The column x refers to the congruence that the inputs of p(x) must satisfy,

in order to obtain integer values. Finally the last column is the ρ-value of the family. In all
cases of Table 1, the characteristic polynomial of Frobenius P (t) has content equal to 1/7, which
disappears by setting t ≡ N mod 7, for some N ∈ Z/7Z.

3.3 Alternative Representation

An alternative representation of a quartic CM-field is K = Q(
√
d1,
√
−d2), for some d1, d2 ∈ Z>0,

with d1 6= d2, such that [K : Q] = 4. Additionally, K2 is an imaginary quadratic extension of
the totally real field K1. Then π ∈ K is:

π = X + Y
√
d1 +

√
−d2

(
Z +W

√
d1

)
, (3.12)

for some X,Y, Z,W ∈ Q. By the property of π being a Weil p-number, we get:

(X2 + d1Y
2 + d2Z

2 + d1d2W
2) + (XY + d2ZW )

√
d1 = p

and the characteristic polynomial of Frobenius is

P (x) = x2 − 4Xx3 + 4
(
X2 − d1Y 2

)
x2 − 4Xpx+ p2. (3.13)
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Additionally, the condition #J(Fq) = P (1) ≡ 0 mod r is equivalent to

(p+ 1 + 2X)2 − 4d1Y
2 ≡ 0 mod r. (3.14)

Using the fact that p ≡ ζk mod r, we conclude to the following system:

X2 + d1Y
2 + d2Z

2 + d1d2W
2 ≡ ζk mod r

XY + d2ZW = 0
(ζk + 1 + 2X)2 − 4d1Y

2 ≡ 0 mod r

 (3.15)

For polynomial families we set L = Q(ζl) ∼= Q[x]/〈r(x)〉, where l ∈ Z>0 is an integer, such
that

√
d1,
√
−d2, ζk ∈ Q(ζl). This is done by choosing l = lcm(m1,m2, k), where m1,m2 are the

smallest positive integers for which
√
d1 ∈ Q(ζm1) and

√
−d2 ∈ Q(ζm2). Then the Frobenius

polynomial π(x) ∈ K[x] is:

π(x) = X(x) + Y (x)
√
d1 +

√
−d2

(
Z(x) +W (x)

√
d1

)
(3.16)

for X(x), Y (x), Z(x),W (x) ∈ Q[x]/〈r(x)〉. Note that we need to find the polynomial represen-
tation z1(x) and z2(x) of

√
d1 and

√
−d2 respectively in Q[x]/〈r(x)〉.

Absolutely Simple Jacobians.

We give a few examples of polynomial families obtained by solving System (3.15). Such a
solution is:

X = −d2Z, Z =
(
(ζk − 1)− (ζk + 1)

√
−d2

)
/
(
2(d2 + 1)

√
−d2

)
Y = W, W = −

(
(ζk + 1) + (ζk − 1)

√
−d2

)
/
(
2(d2 + 1)

√
d1
) (3.17)

For the second equation of System (3.15) we do not need to take any lifts, since Solution (3.17)
satisfies this equation in Q. Again we expect that the Jacobian families will have ρ-values less
than 4. Such examples are presented in Table 2.

Remark 3.5. Like Remark 3.3, in the examples of Table 2 P (t) has rational coefficients. It can
be transformed into a polynomial with integer coefficients by applying a linear transformation
t→ (MT+N), so that for every t ≡ N mod M , we have P (t) ∈ Z. An analogous transformation
is also required for p(x).

Table 2: Absolutely simple Jacobians from Solution (3.17).

l k d1 d2 i x ρ(π, r)

56
7

7 2
8 {34, 58, 70} mod 84

3.6667
28 2 {5, 47, 70} mod 84

40
8

10 2
5 {5, 9, 21} mod 30

3.7500
20 18 {19, 25} mod 30

The 5th column refers to the powers i, so that l/ gcd(l, i) = k, while the 6th column refers
to the congruence that the inputs x of the field polynomial must satisfy, in order for p(x) to be
an integer.
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4 Implementation and Numerical Examples

The process of generating suitable Jacobian parameters, given a polynomial family [π(x), r(x)]
is summarized in Algorithm 2. This involves a simple search for some x0 ∈ Z, such that r(x0) is
a large prime of a desired size. Additionally we require p(x0) to be a large prime. In all inputs
[π(x), r(x)] of Algorithm 2 we need to ensure that p(x) is integer-valued. This means that there
must be integers a, b ∈ Z, such that p(x) ∈ Z, for all x ≡ b mod a. Algorithm 2 outputs the
parameters (π, p, r). Using these triples we can generate a 2-dimensional Jacobian J(Fp), with
r | #J(Fp) and Frobenius endomorphism π.

Algorithm 2 Generating suitable parameters for 2-dimensional Jacobians.

Input: A polynomial family [π(x), r(x)] and a desired bit size Sr.
Output: A Frobenius element π, a prime p and a (nearly) prime r.

1: Find a, b ∈ Z, such that p(x) ∈ Z, for every x ≡ a mod b.
2: Search for x0 ≡ b mod a, such that r(x0) = nr, for some prime r and n ≥ 1.
3: Set π = π(x0), p = π(x0)π(x0) and r = r(x0)/n.
4: If log r ≈ Sr and p is prime, return (π, p, r).

In all examples we considered pairing-friendly parameters of Jacobians providing a security
level of at least 128 bits. These parameters are chosen according to Table 3, originally pre-
sented [BBC+09]. In this table we describe the sizes of the prime r, the extension field Fpk and

Table 3: Bit sizes of parameters and embedding degrees for various security levels.

Security Subgroup Extension Field Embedding Degree

Level Size Size ρ ≈ 2 ρ ≈ 3 ρ ≈ 4

128 256 3000− 5000 12− 20 8− 13 6− 10

192 384 8000− 10000 20− 26 13− 17 10− 13

256 512 14000− 18000 28− 36 18− 24 14− 18

the ρ-values, for which we achieve a specific security level. Note that we consider only ρ-values
in the range [2, 4], since examples of ordinary Jacobians with ρ < 2 are unknown. Below we give
a few numerical results.

Example 4.1. By Example 3.4 for K = Q(ζ3,
√
−6), with l = 24 and k = 8:

x0 = 4360331437 ≡ 7 mod 21, n = 1, ρ = 3.4766, log r = 256, log p = 445
r = 13066402029544023936014888184609183735900934642949490442553073853117

4381452561
p = 17104631628304699763110198214722643301043699660523612969956484320506

5855733868250024048761970211501639650588258201899642085549804939611

The Frobenius element is given by Equation (3.8), where:

X = 19977689332165391591174792446457449401947760321021273055515383733481/7
= Y

Z = − 19977689345910463237518246909307679021587331482569818571002780858907/7
= W
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Example 4.2. By Table 2 for K = Q(
√

7,
√
−2), with l = 56 and k = 7:

x0 = 2598994 ≡ 34 mod 84, n = 1, ρ = 3.6438, log r = 511, log p = 931
r = 90224949054824406421561049829718588152075304690567472332332687394914

73066039292219239167201726638118449868190013063767741523986037176815
281479499089989361

p = 21239904668904333817709973155338690623300385802352294001328562007042
61835179582741593234260532283276861550703401273437279190497560011579
27702369069893259173431774628165850170870695988445770188791263194455
22756402197057566307655766948839347408923900736910854533045150375678
369784389

The Frobenius element is given by Equation (3.16), where:

X = − 25696905011664630705833341687313930844434718089380678968458180995099
2963637523888068136787166925109022918932740112208519677615493671272/3

Y = 95408680352830419349196275581747456931500685432234298288318648109643
04269787178041064158774558393289517649330206883526097646313691739567
6795/3 = W

Z = 12848452505832315352916670843656965422217359044690339484229090497549
6481818761944034068393583462554511459466370056104259838807746835636/3

Example 4.3. By Table 1 for K = Q(ζ3,
√
−6), with l = 24 and k = 12:

x0 = 345544178999371 ≡ 16 mod 147, n = 1, ρ = 3.4870, log r = 386, log p = 673
r = 20324910894606887240399630619505285158431171161301024701356843996833

9319902190248415883002212853851518240674936575281
p = 49425616831699737841023704220375574415231925088456164360663047426428

14180391704748985101035354501301286136788199848895195356498480763671
0392167837727193801811243040731972574701711205346152400140614733741

The Frobenius element is given by Equation (3.11), where:

X = 58820006615257915885458328313901928449890943678150596597746340772376
= 2779944351429654041129602047528721/7 = Y

Z = 58820006615257859144034037707206747591416930807413746131814411489394
= 1258301910395154905139480417211818/7 = W

5 Conclusion

We presented a method for producing polynomial families of pairing-friendly Jacobians of di-
mension 2. We used different representations of the Frobenius element in a quartic CM-field
from where we derived a system of three equations in four variables. Using the solutions of this
system we constructed families of 2-dimensional, simple and ordinary Jacobians. Particularly, in
this paper we focused on absolutely simple Jacobians, for which only few examples are known.
The families we presented have the the best ρ-values so far in the literature. We argue though
that the strategy we followed in this work can be used to produce families of non-absolutely
simple Jacobians as well. Finally, we provided numerical examples of suitable parameters for a
security level of at least 128 bits in r-order subgroups of a Jacobian J(Fpk) and in the extension
field Fpk . More examples can be derived from our proposed families by using Algorithm 2.
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