
 1 

Developing a Security Patterns Repository for Secure 
Applications Design 
Lazaros Gymnopoulos1, Maria Karyda1, Theodoros Balopoulos1, Stelios 
Dritsas2, Spyros Kokolakis1, Costas Lambrinoudakis1 and Stefanos 
Gritzalis1* 
1Laboratory of Information and Communication Systems Security (Info-Sec-
Lab), Department of Information and Communication Systems Engineering, 
University of the Aegean, Samos, GR-83200, Greece 
{lazaros.gymnopoulos, mka, tbalopoulos, sak, clam, sgritz}@aegean.gr 
 
2Department of Informatics, Athens University of Economics and Business, 
GR-10434, Greece 
sdritsas@aueb.gr  
 
*Corresponding author: Stefanos Gritzalis, Associate Professor,  
Head, Dept. of Information and Communication Systems Engineering,  
University of the Aegean, Karlovassi, Samos, GR-83200, GREECE,  
Tel: +30-22730-82234, Fax: +30-22730-82009, e-mail: sgritz@aegean.grl 
 
Abstract: Application developers are often confronted with difficulties in choosing or embedding security 
mechanisms that are necessary for building secure applications, since this demands possessing expertise in 
security issues. This problem can be circumvented by involving security experts early in the development 
process. This practice, however, entails high costs; moreover communication between developers and 
security experts is usually problematic and security expertise is difficult to be captured and exploited by 
developers. This paper proposes that the process of building secure applications can be facilitated through the 
use of security patterns. It presents a security patterns repository that can provide developers with an effective 
mechanism to address the issue of incorporating security requirements and mechanisms in application 
development. The paper also specifies a list of patterns and describes their basic elements. For describing 
and managing the patterns, the paper proposes a structure that is especially suitable for the case of security 
patterns. The method followed for developing the security patterns repository entails the employment of a 
security ontology. Finally, the paper presents a set of exemplary cases where the repository can support the 
software development process. The paper’s contribution is an enhanced security patterns repository that 
allows application developers to benefit from the accumulated knowledge and expertise in the area of security, 
so that they are able to develop secure applications. 
 
Keywords: Security patterns repository, application development, security ontology 

1. Introduction 
Building secure applications is a complex and demanding task developers often face. Meeting the 
specified security requirements, or embedding security mechanisms, however, is a process that 
entails expertise in the area of security, which most of the time software developers do not posses. 
Therefore, security experts often have to be involved during application development. This strategy 
entails high costs for software development; moreover the communication between developers and 
security experts is seldom unobstructed. 
 
This paper suggests a different strategy for incorporating security in application development. It 
advocates the use of security patterns, by proposing a security patterns repository. The paper also 
addresses the issue of the limited usability of security patterns in software development, by 
customizing the patterns’ structure so as to include security specific properties, such as threats and 
vulnerabilities. Thus, this paper aims to 

• propose an enhanced structure for security patterns, 

• describe a repository for security patterns, and 



 

• illustrate how this repository can be deployed to support secure application development. 

The next section elaborates on security patterns and their use. Section three reports on the method 
used for designing the structure of the security patterns that comprise the repository. The patterns 
repository is described in section four. Finally, the last section presents the conclusions and 
directions for future research.  

2. Security patterns in software development  
Gamma (1993) introduced patterns and since then their application in software development has 
continuously grown (Rosengard and Ursu 2004; Gamma, 2001). This section elaborates on 
software patterns, and particularly on security patterns. The typical structure of a security pattern is 
presented, as well as the most significant problems developers encounter in applying them. 

2.1 Software Patterns 
Software patterns are a solution to recurring software development problems in a specific context. 
They use existing, well-proven experience in software development and help promote effective 
software design practices. Each pattern deals with a specific, recurring problem in software design 
and can be used to build applications with specific properties. When software designers work on a 
particular problem, they often recall a related problem they have already solved, and reuse the 
essence of its solution to counter the new problem. Thus, “a pattern for software architecture 
describes a particular recurring design problem that arises in specific design contexts, and 
presents a well-proven generic scheme for its solution” (Buschmann et al. 1996). The solution 
scheme is specified by describing its constituent components, the existing relationships, and the 
ways in which they collaborate. 
 
Patterns can provide many advantages for the systematic and effective development of high-quality 
applications with defined functional and non-functional requirements. In general, the most important 
advantages of using patterns in software engineering, as listed in (Buschmann et al. 1996), include 
the following: 

• They complement existing problem-independent software development processes and 
methods with guidelines for solving specific recurring design and implementation problems. 

• They help with the recognition of common techniques and approaches, so that high-level 
relationships between software systems can be used and new applications can be built as 
variations on old systems. 

• They provide support for finding an appropriate architecture for designing software 
applications. 

• They provide support for making right choices among design alternatives. 
• They support the analysis and description of high-level properties of complex software 

systems. 
• They can support the process of maintaining existing software systems.  

2.2 Designing a Pattern System 
A pattern system is defined as a collection of patterns for software architecture, together with 
guidelines for their implementation, combination and practical use in software development. For 
security patterns to be effectively used, a concise categorization within each pattern system must 
exist. To build the security patterns repository we followed the Pattern-Oriented Software 
Architecture (POSA) categorization for software patterns, proposed by Schumacher (2003). Based 
on this categorization, the repository consists of three different types of patterns: 

• Architectural patterns, which refer to the high level software development process. These 
patterns are associated with the fundamental structural organization schema for software 
systems. 

• Design patterns that refine the components of an application as well as the relationships 
between them. 



 

• Idioms, which are patterns at the lowest level and are related and affected by the 
programming language that is used each time. 

2.3 Security Patterns  
In parallel with the evolution of software patterns, the concept of security patterns was introduced in 
order to incorporate security techniques and best practices (e.g. specific countermeasures) into the 
software development process. Yoder and Barkalow, as cited in (Schumacher 2003), were the first 
to write about security patterns. Their focus was on patterns that would enable security at the level 
of general software applications. Security patterns increase security know-how and awareness and 
can help software designers incorporate security mechanisms into software development, by using 
known solutions and practices in recurring security problems. 
 
A security pattern can be defined as a particular recurring security problem that arises in a specific 
security context, and presents a well-proven generic scheme for its solution (Schumacher 2003). 
Application of security patterns can help bridge the gap between security professionals and system 
developers. While the emphasis is on security, these patterns capture the strengths and 
weaknesses of different approaches in order to allow developers to make informed trade-off 
decisions between security and other requirements. Therefore, security patterns can assist 
developers implement effective security solutions (e.g. specific security countermeasures) and use 
them “in a right way”. Security patterns are described by using a set of predefined elements, which 
compose the structure of the pattern, and their values. Currently, various templates defining 
structures for patterns exist; they vary depending on whether they refer to design patterns, security 
patterns or other types of patterns (Buschmann et al. 1996, Schumacher 2003). Table 1 lists the 
fundamental structure most commonly used for describing and developing security patterns, as 
proposed in (Schumacher 2003, Kienzle et al. 2005). 
 
Table 1: A typical structure for security patterns (based on Schumacher 2003, Kienzle et al. 2005) 

Element Description 

Name It denotes the name of the specific pattern, which should be easy to 
remember and indicative.  

Security Context (a.k.a. 
Motivation) 

The security context describes the conditions under which the security 
problem occurs. It also indicates the applicability of the security pattern. Often, 
the security context is introduced with the help of a scenario. 

Security Problem 
This element defines the security problem that occurs in the specified security 
context, which will be confronted by the security pattern. In the area of 
security a problem occurs whenever a system is not well protected. 

Security Solution 
This element refers to specific countermeasures, mechanisms, techniques 
and approaches that can be used in order to address or mitigate the security 
problem.  

Forces 
This element defines the types of trade-offs that must be considered in the 
presence of conflicts they might create. It should be described how they 
interact and differ with one another, and the goals that should be achieved. 

Related Patterns (a.k.a. 
Security Pattern 
Relations) 

Usually, there are security patterns that can be used as solutions to the same 
(or similar) problem in a different security context. Such relationships provide 
linkage to subsequent patterns of a collection of patterns. 

 
It should be noted that there are also other elements that can be used for describing different 
properties of a security pattern. These elements, such as referred examples, resulting context, 
rationale, or known uses, can also be included in the structure of a security pattern. Table 2 
presents an exemplary security pattern, the “encrypted storage pattern”, which is structured 
according to the properties presented in Table 1. 
 
 
 
 
 
 
 



 

 
 
 
Table 2: An example of a security pattern example: the Encrypted Storage pattern 
Element Description 

Name Encrypted Storage 

Security 
Context 

Web applications are often required to store sensitive user information, such as credit card 
numbers, passwords etc. Although efforts can be made to protect the Web server, one can 
never eliminate the possibility of a new vulnerability appearing, leading to the compromise of 
the server. 

Security 
Problem 

The lack of specific encryption mechanisms in order to protect personal/sensitive user data 
and/or application components.  

Security 
Solution 

The Encrypted Storage pattern encrypts sensitive user data before it is ever committed to disk. 
Before it can be used, this data is decrypted in memory. If the Web server is compromised, an 
attacker may be able to steal the data store, but will not be able to gain access to the sensitive 
data. 

Forces 

Never attempt to invent an encryption algorithm. 
Use a tested algorithm from applied cryptography. 
If possible, use a freely available library rather than coding one from scratch. 
After sensitive data is used, the memory variables containing it should be overwritten. 
Care must be taken to ensure that sensitive data is not written into virtual memory during 
processing. 
Protection of the key. 
Variation: One key per user. 
Possible attacks. 

Related 
Patterns Pattern X: A related pattern that verifies all data coming from the client. 

 

3. Designing a security patterns repository 
Although security patterns can provide an answer to the problem of incorporating security 
requirements and mechanisms into applications, up to now they have been used mostly in an ad 
hoc way, resulting in inconsistencies between business objectives, security requirements and the 
patterns themselves. Moreover, security patterns have been used in ways that failed to establish 
effective communication between security experts and the software developers. 
 
In order to address the need for incorporating security patterns into software development in a 
productive and consistent way, this paper proposes the use of a security patterns repository. This 
section describes the method followed for designing and developing the security patterns 
repository, while the next section presents some of the patterns comprising the repository. 

3.1 Method of work  
Prior to designing the repository of security patterns, we first had to decide on their structure. In 
order to develop a security patterns’ structure that would accommodate the security related 
requirements of using patterns, we developed a security ontology, based on the one presented in 
(Dritsas et al. 2005). An ontology is a logical theory accounting for the intended meaning of a 
formal vocabulary. The intended models of a logical language using such a vocabulary are 
constrained by its logical commitment. An ontology indirect reflects this commitment (and the 
underlying conceptualization) by approximating these intended models (Mekhilef 2003). Thus, an 
ontology is the attempt to express an exhaustive conceptual scheme within a given domain, 
typically a hierarchical data structure containing all the relevant entities, their relations and the rules 
within that domain.  
 
The ontology developed, depicted in Figure 1, aimed to (a) capture and express the most important 
security concepts for application development, (b) describe the relations among these concepts, (c) 
provide a common understanding and vocabulary of security issues among application developers, 
and (d) facilitate the development of secure applications. 



 

The most important concepts for secure application development that were identified, as shown in 
Fig. 1 include the concepts stakeholder, objective, threat, countermeasure, vulnerability, attacker 
etc. These concepts are further explained in (Dritsas et al. 2005). According to the ontology that 
was developed, “Stakeholders” set the application “Objectives”, which are affected by “Threats”. 
“Assets”, owned by “Stakeholders”, have “Vulnerabilities” and are threatened by “Threats”, but they 
can be protected through the use of “Countermeasures” that are implemented by “Stakeholders”. A 
“Vulnerability” is a weakness of an “Asset”, whereas some “Threats” can be regarded as 
“Deliberate Attacks” that are launched by “Attackers”, through exploiting the assets’ 
“Vulnerabilities”. 

 

Figure 1: The security ontology (based on Dritsas et al, 2005) 
 
In the depicted Ontology, the concept of a “Security Pattern” is a representation of the security 
patterns and is connected with the concept of “Countermeasures” with a “provide” relationship: 
each security pattern provides a specific set of countermeasures. In practice each security pattern 
is matched with a set of countermeasures during the ontology instantiation. A “Security Pattern 
Context” is defined as a set of “Asset”, “Vulnerability” and “Deliberate Attack” triplets. In this way, 
one can start from the generic security objectives, find the “Security Pattern Contexts” that match 
them and, thus, choose specific security patterns. She can then fulfil the high level security 
requirements and objectives by realizing the respective countermeasures. Thus, the developed 
ontology comprises a rich source of information regarding the security requirements of the specific 
application environment and, more importantly, is also a source of information regarding the way 
several key actors in the software development process view and judge those requirements.  
 

Stakeholder

define

im
plem

ent

Countermeasure

Asset

Threat

address

da
m

ag
e

Objective
Threatened by Subclass of

pr
ot

ec
t

Deliberate
Attack

Attacker

re
al

iz
e

use
Vulnerabilityhave

ex
pl

oi
t

Security Pattern 
Context

Security Pattern

P
art of

Part of Part of

Pa
rt 

ofprovide



 

This Ontology provided the basic input for designing an enhanced structure for security patterns, 
which is more suitable for accommodating the requirements arising in secure applications 
development. Table 3 presents the security patterns’ structure. 
 
Table 3: An enhanced security patterns structure 
Element Description 
Name The name of the specific pattern 
Overview A small description of the pattern 
Problem The problem that the specific patterns addresses 
Solution The mechanism used for confronting the security problem 
Requirements The set of security requirements that the specific pattern satisfies 
Assets The assets related to each application context that the security pattern protects 
Threats The set of threats that the patterns confronts 
Vulnerabilities The set of vulnerabilities that constitute the problem the specific pattern addresses 
Related Patterns Other patterns related to the specific pattern 
 

4. The enhanced security patterns repository 

4.1 Patterns comprising the repository 
In order to facilitate the use of security patterns in software development process we have 
designed a security applications repository. The security patterns comprising the repository are 
structured as described in Table 3. These patterns have different levels of abstraction and they 
cover technical as well as administrative and procedural aspects of secure applications 
development as shown in Table 4. In Tables 5 to 7 we present an indicative list of security patterns 
that belong to the repository. 
 
Table 4: List of patterns included in the security patterns repository and their categories 
Pattern Name Short Description Pattern category 

Authentication The Authentication pattern incorporates user authentication 
into the basic operation of an application. 

Design Pattern 
Technical Pattern 

Encryption 
Usage 

The Encryption Usage pattern uses specific encryption 
functions in order to allow security-critical data to be securely 
stored and/or transmitted over insecure networks. 

Design Pattern 
Technical Pattern 

Self-protected 
Application 

The Self-protected Application pattern limits an attacker’s 
ability to discern the internal workings of an application and 
splits a complex application into two or more simpler 
components. 

Design Pattern 
Technical Pattern 

Patching 

Rather than waiting for the system to be compromised before 
applying patches (“patching reactively”), administrators of 
software systems should monitor for patches often and apply 
them proactively. 

Architectural Pattern 
Procedural Pattern 

Logging-
Auditing 

The Log for Audit pattern ties logging to auditing, to ensure 
that logging is configured with audit in mind and that auditing 
is understood to be integral to effective logging. 

Architectural Pattern 
Procedural Pattern 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 
Table 5: The “Authentication” Security Pattern 
Pattern Name Authentication 

Overview 
The authentication pattern allows a user to access multiple components-parts-services of a 
software/application without having to re-authenticate continuously. The specific pattern 
incorporates user authentication into the basic operation of an application.  

Problem Each user should have access to each component of an application according to its role. 

Solution 

Provision of specific access control mechanisms in order a user to have access to each 
component of an application according to its role. Additionally, the authenticated session 
should keep track of a user’s authenticated identity through the duration of a session so a 
user accesses multiple protected components of a software application without having to 
re-authenticate. 

Requirements Confidentiality, Privacy, Accountability, Access Control. 

Asset Source Code of application, User Identities, User Credentials, OS components, Application 
Components. 

Threats 
Flawed access control, Identity spoofing, Unauthorized access to various components of 
an application, Access to files, Access to source code of the software, Denial of Service – 
Availability problems, OS access. 

Vulnerabilities 
Source Code Exposure, Configuration Files and Template Files, Debug Functions, 
Elevation of Privilege, Flawed in ID Access Privilege Check, Missing Authorization 
Functions, Files Exposure, Weak Authorization. 

Related 
Patterns 

Single Sign-On, Authentication Related Patterns. 

 
 
Table 6: The “Encryption Usage” Security Pattern 
Pattern Name Encryption Usage 

Overview 
The Encryption Usage pattern uses specific encryption functions in order to allow sensitive 
or otherwise security-critical data to be securely stored on the machine hosting the specific 
application and/or transmitted over insecure networks.  

Problem 

The main reason for securing sensitive data on the machine hosting the specific 
application is because this machine may not be trusted. Many problems might be raised: 
for example, if attackers manually inspect the contents of an application, they may be able 
to glean information about the operation of the application that could later be used to 
compromise the machine etc. 

Solution 

The Encryption Usage pattern uses encryption techniques to protect data that is stored on 
the machine and/or transmitted over insecure networks. Using encryption (symmetric or 
asymmetric) ensures that sensitive data will not be inadvertently revealed. Using message 
authentication codes or hash functions ensures that the data cannot be tampered with on 
the client. 

Requirements Integrity, Privacy, Confidentiality, Non Repudiation, Accountability. 

Asset Source code of the application, data manipulated by the application, user identities. 

Threats Intrusion, attacks in the application level, misuse of the application, user errors. 

Vulnerabilities Sensitive data stored in plain text, not enough protection of user accounts, bugs in the 
application, Insecure networks. 

Related 
Patterns 

Encrypted Communication, Secure Remote Authentication. 

 
 
 
 
 
 
 



 

Table 7: The “Logging – Auditing ” Security Pattern 
Pattern Name Logging-Auditing 

Overview 

Applications and components offer a variety of capabilities to log events that are of interest 
to administrators and other users. If used properly, these logs can help ensure user 
accountability and provide warning of possible security violations. The Log for Audit pattern 
ties logging to auditing, to ensure that logging is configured with audit in mind and that 
auditing is understood to be integral to effective logging. 

Problem 

As events occur during the life cycle of an application, some events are of particular 
interest to administrators and other users. Recording specific information about events that 
have occurred creates records that allow the system to be debugged, monitored for 
security events, and measured for performance. The term logging means the actual act of 
writing information about events to some type of permanent storage. The term auditing 
means actually examining this information and ensuring that all is as expected. 
There are a number of important problems that logging and auditing solve. They provide 
evidence of accountability, reliability, performance, and security. Logs provide 
accountability by enabling verification of an event’s occurrence and any users associated 
with that event. Reliability comes from the logging of errors. Performance analysis can 
occur when performance data is logged. There are many relevant types of event that must 
be logged to address security. 

Solution 

Every major component is responsible for logging events that it considers noteworthy. 
Some of these will be tagged as security-relevant events, others will not. Each system will 
typically deliver these events in some non-standard format to permanent storage, using 
one or more predefined log files. 
Whenever possible, these log files should be collected centrally and handled consistently. 
When applications allow the log format to be modified, these features should be used to 
make logs more consistent.  

Requirements Accountability (Non repudiation) 
Asset Application, OS (in extension) 
Threats Threats related to application (indirect relationship) 
Vulnerabilities - 
Related 
Patterns - 

 

4.2 Deploying the Security Patterns Repository  
In the process of application development, developers have to make decisions regarding possible 
threats to the applications and the appropriate countermeasures. The use of the proposed 
repository makes it possible for developers not only to have access to solutions for commonly 
addressed problems, but also to associate these solutions with specific security requirements, 
assets, threats and vulnerabilities. 
 
For example, the following questions show how the security patterns repository can facilitate 
application development regarding security issues:  
1. How can the users’ passwords be protected against a brute-force dictionary attack? 

2. Which vulnerabilities are associated with passwords? 

3. Which stakeholders are involved in the implementation of these security patterns (see Q1)? 

4. How can a system administrator of an application server enforce accountability? 

In each of these situations, developers can use security patterns, which will provide them with 
information not only for the specific problem and the corresponding solution, but also with 
information on issues such as the relative threats and vulnerabilities associated with the situation.  

5. Conclusions and further research 
This paper introduces a new approach for achieving the persisting requirement of incorporating 
security as early as possible into the software development process. It proposes the use of a 
security patterns repository. The patterns included in the repository are structured so as to facilitate 
the fulfillment of security requirements. Furthermore, the proposed enhanced structure of security 



 

patterns provides a solution for overcoming the difficulties and constraints that have been 
associated with limited use of software patterns. 
 
The security patterns repository developed offers a way to introduce environment specific security 
requirements to the security patterns selection procedure. It also provides software engineers, who 
are not security experts, a mechanism to make the appropriate choices regarding security 
mechanisms and solutions, thus facilitating the development of secure applications. As a next step, 
this repository will be employed in the development of a security critical application, such as 
applications that support electronic government services. 

6. Acknowledgements 
This work was co-funded by 75% from the European Union and 25% from the Greek Government, 
under the framework of the “EPEAEK: Education and Initial Vocational Training Program—
Pythagoras” 

References 
Buschmann F., Meunier R., Rohnert H., Sommerland P., Stal M. (1996), Pattern-Oriented Software 

Architecture Volume 1: A System of Patterns, Wiley 1996. 
Dritsas S., Gymnopoulos L., Karyda M., Balopoulos T., Kokolakis S., Lambrinoudakis C., Gritzalis 

S. (2005), "Employing Ontologies for the Development of Security Critical Applications: The 
Secure e-Poll Paradigm", in Proceedings of the IFIP I3E International Conference on 
eBusiness, eCommerce, and eGovernemnt, Funabashi M., Grzech A. (Eds.), pp.187-201, 
October 2005, Poznan, Poland, Springer 

Gamma E. (2001), Design patterns ten years later. In Broy, M., Denert, E., eds.: Software 
Pioneers: Contributions to Software Engineering, Springer-Verlag 689–699. 

Gamma E., Helm R., Vlissides J., Johnson R., (1993) Design patterns: Abstraction and reuse of 
object-oriented design. In Nierstrasz, O., ed.: Proceedings ECOOP ’93. Volume 707 of 
LNCS., Springer-Verlag 406–431. 

Kienzle D., Elder M., Tyree D., Edwards-Hewitt J., Security Patterns Repository Version 1.0, 
http://www.scrypt.net/~celer/securitypatterns/template%20and%20tutorial.pdf (accessed on 
31/10/2005) 

Mekhilef (2003) http://www.knowledgeboard.com/cgi-bin/item.cgi?id=105938&d=pnd, definitions of 
ontology  

Rosengard J., Ursu M. (2004), Ontological Representations of Software Patterns, in the 
proceedings of KES’04, Lecture Notes in Computer Science, vol. 3215, pp. 31-38, 
Springer-Verlag, 2004. 

Schumacher M. (2003), Security Engineering with Patterns: Origins, Theoretical Models, and New 
Applications, Paperback, 2003. 

 
 


