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Abstract Esoteric protocols, such as electronic cash, electronic voting and selective dis-
closure protocols, use special message constructors that are not widely used in
other types of protocols (for example, in authentication protocols). These mes-
sage constructors include blind signatures, commitments and zero-knowledge
proofs. Furthermore, a standard formalization of the Dolev-Yao intruder [6] does
not take into account these message constructors, nor does it consider some types
of attacks (such as privacy attacks, brute-force dictionary attacks and known-
plaintext attacks) that esoteric as well as other types of protocols are designed to
protect against. This paper aims to present an extension of typed MSR [3, 4] in
order to formally specify the needed message constructors, as well as the capa-
bilities of a Dolev-Yao intruder designed to attack esoteric protocols.

Keywords:  Specification of security protocols, Dolev-Yao intruder, esoteric protocols, pri-
vacy, typed MSR

1. Introduction

This paper builds on the typed MSR specification language [3, 4] and aims
to make it suitable for the specification of esoteric protocols, as well as for the
specification of a version of the Dolev-Yao intruder that is designed to attack
such protocols. Some aspects of these extensions are useful in other types of
protocols as well. The term “esoteric protocols” is taken from Chapter 6 of [9],
and refers to a family of protocols such as electronic cash, electronic voting and
selective disclosure protocols.

The paper is organized as follows. In Section 2, we give an overview of
the standard version of typed MSR, as well as our extensions of the language’s
message constructors. In Section 3, we demonstrate how our extensions can
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be used to make abstraction of two simple esoteric protocols. In Section 4, we
give an overview of typing in typed MSR, present our typing extensions and
apply them to our newly introduced message constructors. In Section 5, we use
our syntactical and typing infrastructure to formally specify the capabilities of
a Dolev-Yao intruder targeted for esoteric protocols. We conclude the paper
with Section 6.

2. Typed MSR

Typed MSR is a strongly typed specification language for security proto-
cols, aiming to discover errors in their design. It is particularly suitable for
esoteric protocols because it features memory predicates, which enable it to
faithfully encode systems consisting of a collection of coordinated subproto-
cols — a common characteristic of esoteric protocols (consider for example the
electronic cash protocol, which consists of a issuing and a showing/spending
subprotocol). However, the standard language does not support the message
constructors needed for esoteric protocols. In Section 2.1 we give an overview
of messages in the standard version of typed MSR, and in Section 2.2 we in-
troduce the needed message constructors.

2.1 Overview of Messages in Typed MSR

In typed MSR, messages are obtained by applying message constructors to a
variety of atomic messages. Typically, the atomic messages include principals,
keys, nonces and raw data. This is formalized by the following grammatical
production:

A (Principal)
K (Key)

n  (Nonce)

m  (Raw data)

Atomic messages: a

——i

In typed MSR A, k, n and m range over principal names, keys, nonces and raw
data respectively. Raw data denotes pieces of data whose sole function in a
protocol is that they are transmitted.

The message constructors typically present in typed MSR are those formal-
ized by the following grammatical production:

Messages: t 1= a (Atomic messages)
| x (Variables)
| tity  (Concatenation)
| {t}x  (Symmetric-key encryption)
| {t}x (Asymmetric-key encryption)
| [tk (Digital Signature)
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We will use the letter ¢ (possibly sub-scripted) to range over messages. We will
write A, k, n and m (possibly sub-scripted) for atomic constants or variables
that are principals, keys, nonces and raw data respectively. We will also use the
letter B for principals and the letter S for servers (which are also principals).
Note that in typed MSR, the seriffed letters are used whenever the object we
want to refer to cannot be but a constant.

In this paper we choose a different meaning for the digital signature con-
structor than the meaning chosen in standard MSR. Instead of [¢]; denoting
both the message t and its digital signature using key k, here it will denote
only the latter. This will become evident in Section 3, where we present a high
level view of some esoteric protocols.

2.2 Adding Message Constructors for Esoteric Protocols

To cope with esoteric protocols we add message constructors for blinding,
commitment and zero-knowledge proofs:

(see above)

Messages: t = ...
| (t)k (Blinding)
I
I

n
It (Commitment)
Z(t,ns,k,ny) (Zero-knowledge proof)

The abstraction of blinding is based on Chaum’s blinding [8, 2, 5], accord-
ing to which the construction of a blinded message depends on a blinding factor
(which we can abstract as a nonce) and on a public key. The fundamental prop-
erty is that if message (¢ )¥ is signed using &’ (the private key corresponding
to public key k), the resulting message can be unblinded by those who know
nonce n to produce the digital signature of message ¢ signed using &’

The abstraction of commitment is based on the non-interactive bit commit-
ment using one-way hash functions [9, 2]. According to this method, the com-
mitment of a message is the hash of the concatenation of the message with a
salt value (which we can abstract as a nonce). The fundamental property is that
someone who sees [t ,, ¢ and n will be convinced that ¢ and n were the values
used in the computation of |¢|,,, and that no other values could have been used.

The abstraction of a zero-knowledge proof is based on the non-interactive
cut-and-choose protocol introduced in the selective disclosure protocol of Holt
and Seamons. The interested reader can refer to Section 3.2.2 of [7]. The fun-
damental property is that someone who observes Z(t,n,, k,n¢) will deduce
the values of # and ( |t],, )& , and he will gain no knowledge about the val-
ues of n,, k and ny. To make the protocol descriptions more readable, we
will sometimes annotate a zero-knowledge proof message constructor with the
information one gets by observing it as follows:

Z(t, n5>ka7bf) ~ t, <”t”'fbs >£€Lf
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Notice that we have chosen to make all our new message constructors non-
interactive, so that they share this property with the standard message construc-
tors of Section 2.1.

3. Esoteric Protocols Overview

At this point, we will demonstrate how the message constructors described
above may be used to make abstractions of two simple esoteric protocols: an
electronic cash protocol and an electronic voting protocol. The aim is not
to make abstractions of real-world esoteric protocols, but only to justify the
introduction of our new message constructors.

3.1 Electronic Cash Protocol

Issuing.  Alice wants to have some e-cash issued by her bank. To do this,
Alice authenticates herself to the bank server (so that the server can know
which account to debit) and sends a zero-knowledge proof. The server verifies
the proof, checks that message m has the format of an e-coin (e.g. it is equal to
the message value = $10), debits Alice’s account, signs the blinded e-coin’s
commitment and sends the signature to Alice.

Av—> S Z(WL,S,kS,f)Mma<“m“8>[;'s
S = A [(mla)E

Showing.  Alice unblinds the signature of the blinded commitment, which
gives her the signature of the commitment. To spend the money at Bob’s shop,
she uses an anonymous channel to send to Bob the signature of the commitment
and the data used in the computation of the commitment. Bob verifies the bank
server’s signature and checks that the commitment is indeed computed using
the data sent. He then authenticates himself to the bank server and forwards
to it all the e-coin data. The server verifies its signature, checks again the
commitment’s computation, checks further that the e-coin has not been spent
before (double spending) and credits Bob’s account.

A — B : ms,[|m]sly,
B — S : Bamas’[”m"S]ka

Notice that the server does not know s, so even if Bob and the server cooperate
in an effort to disclose Alice’s identity, they will fail.
3.2 Electronic Voting Protocol

Issuing.  Alice wants to participate in an electronic election held by a trusted
voting server. To do this, Alice authenticates herself to the server (so that
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the server knows she is eligible for voting) and sends a zero-knowledge proof
for each of the possible votes of this election. The server verifies the proofs,
checks that messages mq, mo, ... represent the possible votes, signs the blind
commitment of each vote and sends the signatures back to Alice.

A — S Z(mi,si,ks, f1), Z(my, s2,ks, fa), -
S — A [<||m1||s1)fvf]kf97[<||m2”52>];f]k'57---

Showing.  Alice unblinds the signatures of the blinded commitments, which
gives her the signatures of the commitments. She can now choose the commit-
ment of the vote she wishes to cast, and send the corresponding signature to the
server via an anonymous channel, together with the data used in the computa-
tion of the commitment (one of which is the vote’s representation). The server
verifies its own signature and after checking that the commitment is indeed
computed using the data send, it accepts Alice’s vote.

A — 5 maasay[”ma”Sa]kg

Notice that the server has no way of linking s, to Alice.

4. Types

Typed MSR employs types to enforce basic well-formedness conditions
(e.g. that only keys can be used to encrypt a message), as well as to provide a
statically checkable way to ascertain desired properties (e.g. that no principal
can grab a key he is not entitled to access).

4.1 Overview of Types in Typed MSR

The typing of typed MSR is based on the notion of dependent product types
with subsorting [1] and the basic types used are summarized in the following
grammar:

Types: T == principal (Principals)
|  nonce (Nonces)

|  shK A B (Shared keys)
|  pubK A  (Public keys)

| privK k& (Private keys)
|

msg (Messages)

We will use the letter 7 (variously decorated) to range over types. The
types principal and nonce are used to classify principals and nonces respec-
tively. The type shK A B is used to classify the keys shared between A and B.
The type pubK A is used to classify the public keys of A. The type privK £ is
used to classify the private key that corresponds to the public key k. Finally,



214 Theodoros Balopoulos, Stephanos Gritzalis, and Sokratis K. Katsikas

the type msg is used to classify generic messages, which include raw data, but
also all the other stated types.

The notion of dependent product types with subsorting we mentioned above
accommodates our need of having multiple classifications within a hierarchy.
For example, everything that is of type nonce, is also of type msg — but the
inverse is not true. Therefore, we say that nonce is a subsort of msg. We will
use the notation 7 :: 7/ to state that 7 is a subsort of 7/, The following rules
can now be presented:

principal :: msg nonce :: msg shK A B :: msg

pubK A :: msg privK k :: msg

4.2 Adding Types for Esoteric Protocols

To better cope with esoteric protocols, we add types for tractable, semi-
tractable and intractable messages:

Types: T = (see above)
| tract (Tractable messages)
| semitract (Semitractable messages)
| intract (Intractable messages)

These three types are used to classify messages according to their common-
ness. In other words, they qualitatively classify the number of possible values
a message can have.

The type tract is used to classify messages that are very common. Because
of the tractable number of their possible values, we consider that an intruder
(regardless of whether these messages are publicly known or not) is able to
to find them out by successfully employing a brute-force dictionary attack on
them. On the other hand, if a principal reveals the same (tractable) message
in more than one protocol or subprotocol execution, the intruder will not be
able to link these executions together (at least not because of this particular
message). Therefore, this classification isolates pieces of information on the
secrecy of which it is erroneous to base the correctness of a protocol, but on
the anonymity of which it is safe to do so.

The type intract is used to classify messages that are extremely uncommon.
These are pieces of information on the secrecy of which it is safe to base the
correctness of a protocol, but on the anonymity of which it is certainly erro-
neous to do so.

The type semitract is used to classify messages that are common enough
to be considered realistic candidates for brute-force dictionary attacks, but not
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common enough to be considered anonymous. It is not safe to base the cor-
rectness of a protocol either on the secrecy of such pieces of information, nor
on their anonymity.

We will now classify each of the standard types according to their tractabil-
ity. Private keys, shared keys and nonces should be regarded as intractable.
Principals should be regarded as semitractable: we should not base the cor-
rectness of protocols on the number of available principals. Public keys should
also be regarded as semitractable for the same reason. Notice that this clas-
sification conveniently enforces that everyone has access to public keys. The
following rules can now be presented:

principal :: semitract nonce :: intract shK A B :: intract

pubK A :: semitract privK k :: intract

The classification of messages that are not keys, nor nonces, nor principals
will be dealt with by signatures, which are described in Section 4.3. To com-
plete our subsorting rules, we add rules that classify tractable, semitractable
and intractable messages as messages:

tract :: msg semitract :: msg intract :: msg

4.3 Signatures

Typed MSR has typing rules that check whether an expression built accord-
ing to the syntax of messages can be considered a ground message. These
rules systematically reduce the the validity of a composite message to the va-
lidity of its sub-messages. In this way, it all comes down to what the types of
atomic messages are. Typed MSR uses signatures to achieve independence of
rules from atomic messages. A signature is a finite sequence of declarations
that map atomic messages to their type. The grammar of a signature is given
below:

Signatures: ¥ 1= . (Empty signature)
| X, a:7 (Atomic message declaration)

For our extended type system, we will need two signatures. Signature 3
will map atomic messages to one of the standard types, and signature I" will
map them to one of the extended types, i.e. classify them into tractable, semi-
tractable or intractable. We will write ¢ :; 7 to say that message ¢ has type 7
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in signature 33, and we will write ¢ :; 7’ to say that message ¢ has type 7’ in
signature I'. Hence the following two rules:

a1, XY FaxT Tya:r7, I Faryr

4.4 Type Rules for Message Constructors

We will now introduce type rules for all the message constructors presented
in Sections 2.1 and 2.2 that use the new types introduced in Section 4.2 in order
to further check the groundness of messages.

Concatenation.  The concatenation of two messages of the same type will
yield a message of that type.

T'Fti:r I'Eity:r
'Ftity: 7
The concatenation of two messages of different types will yield a message of
the least tractable type among the types of the original messages.
I' -ty :tract T F t5: semitract
I' b t1tg : semitract I' F t911 : semitract

' - ty:tract T' b ¥y :intract
' titg:intract T F t9tq @ intract

' - ¢1 :semitract I + t9:intract
I'F tytg:intract T F {9¢; :intract
Note that in typed MSR concatenated messages can be taken apart.

Symmetric-key and asymmetric-key encryption.  The tractability of the
resulting ciphertext is defined to be the same as the tractability of the plaintext.

PFt:7 ZFEk:shKkAB PHt:7 X+ k:pubKA

DEA{the:7 L'k {thr:7
The implication is that the ciphertext of a tractable or semitractable message
can now be cryptanalyzed by an intruder and the original plaintext will in-
stantly be made available. The aim is to enforce that only intractable messages
are enciphered, so that known-plaintext attacks are not possible. One way to
make a tractable or semitractable message into an intractable one is to concate-
nate it with a nonce (see rules for concatenation).

We believe that these type rules are fully in line with the black-box view
on cryptography that the Dolev-Yao abstraction adopts. The type rules only
enforce a safer use of cryptography; they do not poison the abstraction with
low-level details.
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Digital signature.  Similar considerations apply to digital signatures.
L'ktir X FKE privKk
Dk [tly:7

Commitment. Commitments may be considered to be intractable because
of the nonce (salt value) used in the calculation.
I'kt:7 X F ng:nonce
' |t]n, : intract

Blind signatures.  Blind signatures may be considered to be intractable be-
cause of the nonce (blinding factor) used in the calculation.
't Yk Ek:pubKA X F ny:nonce
' (t)k :intract

nf

Zero-knowledge proofs.  The zero-knowledge proof itself can be consid-
ered to be intractable, as two nonces are used in its calculation (a salt value
and a blinding factor). However, we require that the underlying message of a
zero-knowledge proof is tractable in order to enforce anonymity, and thus pro-
tect privacy. Consider for example that, if e-coins were issued at any possible
denomination, the bank would be able to identify the spender in most cases.

I'+t:tract X F ng:nonce X F k:pubKA X F ng:nonce
' Z(t,ns, k,ny) : intract

5. The Dolev-Yao Intruder

The Dolev-Yao abstraction [6] assumes that elementary data, such as keys or
nonces, are atomic rather than strings of bits, and that the operations needed to
assemble messages, such as concatenation or encryption, are pure constructors
in an initial algebra. Typed MSR fits very well in this abstraction: elemen-
tary data are indeed atomic and messages are constructed solely by message
constructors.

In this Section, we present a version of the Dolev-Yao intruder which is use-
ful in discovering more types of attacks in esoteric (as well as other types of)
protocols. The rules that formally describe the new capabilities of the intruder
are represented in the same way as in [3], i.e. using the format shown in the
following diagram:

quantifiers side quantifiers side

- Owner
( Universal Left-hand Existential Right-hand )

It has been proved [10] that there is no point in considering more than one
Dolev-Yao intruder in any given system. Therefore, we can select a princi-
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pal, | say, to represent the Dolev-Yao intruder. Furthermore, we associate |
with an MSR memory predicate M;(_), whose single argument can hold a
message, to enable | to store data out of sight from other principals.

5.1 Standard Version of the Dolev-Yao Intruder

The standard version of the Dolev-Yao intruder can do any combination of
the following operations:

Intercept and learn messages

Transmit known messages

Decompose known (concatenated) messages
Concatenate known messages

Decipher encrypted messages if he knows the keys
Encrypt known messages with known keys

Sign messages with known keys

Access public information

Generate fresh data

The interested reader can refer to [3] for the formal specification of these op-
erations in typed MSR.

5.2 Extended Version of the Dolev-Yao Intruder

The version of the intruder that is presented here is an extended version in
two ways.

Firstly, one of the intruder’s standard operations will be generalized in line
with the new types introduced in Section 4.2. More specifically, we will replace
the last operation, i.e. the intruder’s ability to generate fresh data, with two new
operations: the ability to generate fresh intractable data, and the ability to guess
tractable and semitractable data. The intruder will be able either to guess the
exact message required for his/her attack if this is possible, or to generate a
fresh message of the required type otherwise.

Secondly, the intruder will now be able to handle messages constructed us-
ing the message constructors introduced in Section 2.2.

We will now formally specify the new operations in typed MSR.

Generate fresh intractable data.  The intruder may generate fresh nonces,
fresh private keys, fresh shared keys, as well as other intractable messages.

(+ — 3Jt:intract. M (8))
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Guess tractable and semitractable data.  The intruder may guess or get
access to public keys, principals, as well as other tractable or semitractable
messages.

(Vt:tract. - — M () (Vt : semitract. - — M, (£))’

Notice that this rule can be used together with the previous one to allow the
intruder to generate a key-pair by first generating a fresh private key, and then
by ‘guessing’ the corresponding public key. However, the intruder is not able
to guess the private keys of other principals.

Blind messages. The intruder may blind a message given a public key and
a blinding factor (nonce).

YVt msg.
T My (t)
Y A :; principal. L
, M (k) — M ((t),
Yk pubK A. M, (n) ( 1)

V¥ n :; nonce.

Unblind messages.  The intruder may unblind a (blinded) message given
the blinding factor (nonce).

YVt :; msg. ( )
V A iy principal. M, ((¢)F
Yk pubK A. M (n) - M)

V7 :; nonce.

Unblind signatures.  The intruder may unblind a (blinded) signature given
the blinding factor (nonce), if the public key used in the blinding corresponds
to the private key used in the signing.

V't :; msg.

YV A :; principal. 1

Yk 5 pubK A, M (H”n]’f/) — M ([t]w)
VE :; privK k. Mi (n)

V¥ n iz nonce.

Commit to a message.  The intruder may commit to a message given a salt
value (nonce).

Vtimsg.  M(¢)
Vn :; nonce. Mj(n)

|
- M.<||tnn>)
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Generate a zero-knowledge proof. The intruder may generate a zero-
knowledge proof given a message, a salt value (nonce), a public key and a
blinding factor (nonce).

Vit :; msg.
V¥ ng i honce. M EZ))
VA principal. ' 0S — M (Z(¢, ns, k,ng))
Wk o pubk A, M (E)
Mi ()

Vny iz nonce.

Observe a zero-knowledge proof. The intruder will get the same informa-
tion as anyone else who observes the zero-knowledge proof (see Section 2.2).

|

vt :E mSg'

VY ng iz nonce. Mi (¢)

VA principal. My (Z(t, ng, kyng)) — (< [, )% )
Vk ‘L pUbK A | o

Vny :; nonce.

6. Summary and Conclusions

In this paper, we have presented an extension of typed MSR that makes it
more suitable for the specification of esoteric protocols. The introduced non-
interactive message constructors for blind signatures, commitments and zero-
knowledge proofs make the standard language rich enough to specify protocols
such as electronic cash, electronic voting and selective disclosure protocols.
The introduced type rules make the standard language more capable of stati-
cally checking for desired properties in esoteric, as well as other types of pro-
tocols. More specifically, the introduced types can be used in the specification
of protocols in order to statically check against attacks on privacy, brute-force
dictionary attacks and known-plaintext attacks. Finally, the introduced version
of the Dolev-Yao intruder creates a formal framework on which attacks on
esoteric protocols may be attempted.

Further work will include the development of a stricter and richer type sys-
tem and the formal specification of real-world esoteric protocols in the ex-
tended language.
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