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ABSTRACT 

The large scale application of ICT-based assistive environment 

technologies for the home care of elderly and disabled people is 

going to generate huge numbers of signals transmitted from 

homes to local health centers or hospitals in order to be monitored 

by medical personnel. This task is going to be of critical 

importance and at the same time - if manually performed - quite 

demanding for specialized human resources and costly. In order to 

perform it in a cost-efficient manner it is necessary to develop 

mechanisms and methods for automated screening of these signals 

in order to identify abnormal ones that require some action to be 

taken. This paper proposes a method for automatic screening of 

heart sound signals, which are the most widely acquired signals 

from the human body for diagnostic purposes in both the 

„traditional‟ medicine and the emerging ICT-based assistive 

environments. It is based on a novel Markov Chain Monte Carlo 

(MCMC) Bayesian Inference approach, which estimates 

conditional probability distributions in structures obtained from a 

Tree-Augmented Naïve Bayes (TAN) algorithm. The proposed 

approach has been applied and validated in a difficult 

heterogeneous dataset of 198 heart sound signals, which comes 

from both healthy medical cases and unhealthy ones having 

Aortic Stenosis, Mitral Regurgitation, Aortic Regurgitation or 

Mitral Stenosis. The proposed approach achieved a good 

performance in this difficult screening problem, which is higher 

than other widely used alternative classifiers, showing great 

potential for contributing to a cost-effective large scale application 

of ICT-based assistive environment technologies.  

Categories and Subject Descriptors 

G.3.3 [Probability and Statistics]: Probabilistic Algorithms 

General Terms 

Algorithms, Measurement, Performance. 

Keywords 

Bayesian Inference, Markov Chain Monte Carlo, Tree-Augmented 
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1. INTRODUCTION 
There is a growing interest worldwide in the development of 

ICT-based assistive environment technologies for home care of 

elderly and disabled people and improvement of their quality of 

life (e.g. see web site of the „Ambient Assisted Living (AAL) 

Program of the European Union www.aal-europe.eu). However, 

their large scale application poses significant challenges. One of 

them is the huge numbers of signals that will be generated at the 

houses of the elderly and disabled people supported, which will be 

transmitted to health centers or hospitals in order to be monitored 

by medical personnel. These assistive environments will include 

various types of sensors and devices, and each of them will 

generate big numbers of bio-signals or other types of signals; 

these signals will be transmitted through the Internet or other 

networks (e.g. wireless) to the nearest local health centers or 

hospitals in order to be examined and monitored by specialized 

medical personnel, so that appropriate action can be taken 

whenever necessary (i.e. to send a nurse or doctor for home 

medical care, or to proceed to more sophisticated examinations). 

This task is going to be of critical importance for the success of 

these ICT-based assistive environments and the quality of the 

services provided to the elderly and disabled; at the same time, if 

it manually performed (without appropriate technological support 

and automation), it is going to be quite demanding for specialized 

human resources and too costly, threatening the financial 

sustainability of the large scale application of these technologies. 

In order to perform this critical task in a cost-efficient way it is 

important to develop mechanisms and methods for automated 

screening of these signals in order to identify abnormal ones that 

require some action. Such a technological support can 

significantly reduce the needs for specialized human resources, 

and therefore cost, and at the same time improve the quality of the 

home care services offered to elderly and disabled people. In this 

sense it can be critical for the financial sustainability and success 

of the large scale application of these technologies. 

This paper contributes in this direction by proposing a 

method for automatic screening of heart sound signals, which are 

the most widely acquired signals from the human body for 

diagnostic purposes in both the „traditional‟ medicine and the 

emerging ICT-based assistive environments. The heart sound 

auscultation is an operationally simple, low cost and non-invasive 

examination, which can be easily performed in the context of 

home care, and has high sensitivity to many important heart 

diseases. The development of digital electronic stethoscopes 

allows the easy acquisition of heart sound at home and then its 
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digitization, storage, transmission to remote systems of health 

centers or hospitals, where it can be presented on screen and 

processed in order to identify abnormal components (e.g. 

murmurs or additional heart sounds) indicating possible diseases; 

in such cases appropriate action can be taken, e.g. visit of a nurse 

or doctor at home, or a more sophisticated examination, such as 

Echocardiography or Medical Imaging (e.g. Ultrasound Imaging 

US, Computed Tomography CT, Magnetic Resonance Imaging 

MRI, etc.). However, the wide application of this approach will 

result in health centers or hospitals receiving numerous heart 

sound signals, which their medical staff will have to examine, 

diagnose possible problems and prescribe appropriate actions; this 

will necessitate more medical personnel and considerable 

financial resources. At the same time the pool of skilled medical 

personnel for this particular task, who have been trained in the era 

before echocardiography, continues to age, and the skills for heart 

auscultation is in shortage and in danger to disappear [27-28]. 

Therefore it will be of critical importance for the cost-effective 

large scale application and financial sustainability of this approach 

to develop mechanisms and methods for the automated screening 

of the incoming heart sound signals, and the identification of the 

ones having abnormal elements. 

As described in more detail in the following section 2, 

various classification algorithms have been successfully used for 

the detection of various heart pathological conditions and diseases 

from heart sound signals. Bayesian Networks (BN) [1-2] are quite 

attractive for this purpose, due to the fact that they are 

interpretable, flexible models for representing relationships 

between interacting heart sound features. Such relationships could 

be exploited in terms of both diagnosing heart sounds and 

simultaneously obtaining an insight on which input features really 

contribute to the classification process. In particular, Bayesian 

networks consist of two parts: a qualitative and a quantitative one. 

At the qualitative level, the structure of the network (in a form of 

a Directed Acyclic Graph-DAG, where features are denoted as 

nodes and arcs represent probabilistic relationships among them) 

depicts direct relationships between features. At the quantitative 

level, such relationships are described as conditional probability 

distributions. Also, the non-deterministic nature of Bayesian 

networks enables them to handle better data having high levels of 

noise generated due to biological or technical reasons. 

Nevertheless, conducting Bayesian network analysis in the 

medical domain, poses a series of important problems. The most 

important of them is the usually high dimensionality of the 

datasets in this domain in comparison with the number of the 

available training instances (e.g. our dataset – described in more 

detail in section 5 - consists of 100 features and only 198 training 

instances). Another significant problem is that most Bayesian 

network learning approaches are suitable for discrete domains, 

with only a few solutions for continuous ones; discretization is not 

a good solution in such cases due to loss of information it causes.  

Also, BN learning consists of two separate processes, executed in 

a serial manner: the former is called structure learning and the 

latter is called parameter estimation. Structure learning is NP-hard 

[1], since as the number of features grows the number of 

candidate network structures increases super-exponentially to 

huge numbers, e.g. if we have only 10 features the learning 

algorithm needs to evaluate more than 15000 possible network 

structures. Further, if the sample size is small compared to the 

number of features (something quite usual in the medical domain, 

as mentioned above, like in our dataset) there is a plethora of sub-

optimal models that can fit the data with equal likelihood [2]. 

Upon evaluating the most probable network structure estimation 

of parameters (i.e. Conditional Probability Distributions-CPDs) of 

each BN is carried out. Estimating CPDs involves the calculation 

of p(Xi|parents(Xi)) for each of the features Xi where the term 

parents(Xi) refers to the set of parent nodes of Xi in the given 

network. 

In this paper it is our goal to cope with the aforementioned 

issues and present a Bayesian Networks (BN) analysis framework 

for identifying causal (and independence) relationships between 

features of heart sound signals and perform highly detailed 

diagnosis of them: i) initially as healthy and unhealthy, ii) then the 

latter as having systolic or diastolic murmurs, and finally iii) in 

both cases discriminating between aortic or mitral dysfunction. 

Similar to other machine learning approaches, but unlike most BN 

methods, we are handling features as continuous rather than 

discrete. Additionally, due to the high dimensionality nature of 

our dataset, exact computation of the CPDs is infeasible and 

computationally costly. Hence, the joint distribution can only be 

approximated by stochastic simulation commonly named as 

“sampling”. Using Markov Chain Monte Carlo (MCMC) we can 

fit a distribution to the data that converges to the posterior and 

retain the samples. MCMC can cope with domains where the state 

space is huge with large number of samples needed to 

approximate the probabilities reasonably well, by selecting each 

sample using the previous sample resulting in the well-known 

Monte Carlo Markov Chain (MCMC) methods and its variants 

[3]. In particular, we propose a new approach to approximate the 

conditional probability distributions of complex BN using a 

MCMC algorithm; we demonstrate that this allows us to create a 

robust system for a highly detailed diagnosis of heart sound 

signals. Our work is principally based upon a novel idea, in which 

the CPD computation is based on the ordered ranking of a 

structure similar to traditional BNs, but is oriented towards 

classification.  

This structure is called Tree-Augmented Naïve Bayes (TAN) 

and unlike general, unrestricted BNs, TAN considers the class 

node to be the parent of all other nodes which can form a BN 

among them. This type of structure is proven to be more efficient 

than BN for classification purposes [4], since in traditional BN the 

class node is not considered as a special type of node, and it is 

treated as ordinary one, so it may not appear in the network 

resulting in poor classification performance. The proposed 

methodology has been applied and validated in a difficult 

heterogeneous high-dimensional dataset of 198 heart sound 

instances with 100 input features, which comes from both healthy 

medical cases and unhealthy ones having Aortic Stenosis, Mitral 

Regurgitation (both these diseases result in systolic murmurs), 

Aortic Regurgitation or Mitral Stenosis (both these diseases result 

in diastolic murmurs). Also, some widely used alternative 

classifiers have been applied to the same data for comparison 

purposes. 

In the following section 2 previous relevant research is 

briefly reviewed, while in section 3 the theoretical aspects of 

MCMC and Gibbs sampling are presented. The proposed 

methodology based on MCMC Bayesian analytics is described in 

section 4. The data we used for the abovementioned first 

application and validation of the proposed methodology and the 

preprocessing of them are described in section 5. Finally in 

section 6, the results of this application are presented. 



2. PREVIOUS RESEARCH 
Considerable previous research has been conducted on the 

automated detection of various heart pathological conditions and 

diseases from heart sound signals. The wide availability of these 

signals and their high sensitivity to most heart problems has been 

a strong motivation for this research. It can be broadly divided 

into two research streams. The first of them deals with the 

development of methods for the preprocessing of heart sound 

signals (e.g. removal of noise, segmentation of heart cycles, 

partitioning of each heart cycle into S1, systolic phase, S2 and 

diastolic phase, etc.); a good review of them is provided in [5]. 

The second research stream aims at the development of methods 

for the detection of heart pathological conditions and diseases 

from appropriately preprocessed heart sound signals.  

Since this paper contributes to the second research stream, we are 

going to focus our review on it. Most of the studies of this stream 

are dealing with the discrimination between normal and abnormal 

heart sound signals [6-10], or with the discrimination between 

innocent and pathological murmurs in children [11-16]. Some 

other studies are dealing with the detection of particular heart 

diseases from heart sound signals, such as coronary artery 

diseases [17-21] and heart valve diseases or murmurs [22-31]. 

In most of the studies of this research stream the diagnostic 

classification of the heart sound signals is based on neural 

networks of various types [6,7, 9, 13, 15-20, 24, 27, 28]. There are 

only a few studies using other classification algorithms, such as 

discriminant functions [12,26], decision trees [29,30], Bayesian 

networks [8], Support Vector Machines [30] and Hidden Markov 

Models [31]. Therefore the diagnostic potential of other classifiers 

than the neural networks for the automated detection of heart 

pathological conditions and diseases from heart sound signals has 

not been sufficiently explored, so further research is required in 

this direction. 

It should also be noted that the risk that heart valve diseases pose 

for human life has motivated considerable research on its 

computerized diagnosis from other more costly signals, such as 

Doppler Heart Sound (DHS), Computed Tomography (CT) and 

Magnetic Resonance Imaging (MRI); a good review of them is 

provided in [30]. However, these signals require highly 

sophisticated and costly equipment which cannot be available in 

home care context.  

 

3. MCMC BAYESIAN INFERENCE 
In this section the theoretical principles of MCMC sampling are 

outlined, with a focus on Gibbs sampling, a variation of MCMC 

more suitable for DAG structures [32]. 

3.1 MCMC Methods 
A probability distribution is specified through a DAG G (the BN 

structure – a set of interconnected nodes, each of which 

corresponds to one of the features) and a collection of conditional 

probability distribution (parameters) for each feature Xi in G. 

Every node is conditionally independent of all other nodes given 

the set of its parents. The CPD of a BN is encompassing the 

probabilities of observing all values of feature (node) Xi given the 

values of its parent nodes. Large network models will introduce 

more parameters, so exact computation will be infeasible and thus 

approximation of the CPD is achieved through sampling 

techniques. The structure of G is essential for sampling and can be 

obtained by applying a greedy search over the entire space of all 

possible structures. However, the number of possible DAG 

structures increases super-exponentially as the number of features 

grows, so greedy search on the space of all possible structures is 

not realistic as it requires too much computation. There have been 

several methodologies for alleviating this problem, such as the K2 

algorithm [2] or the Bayesian Scoring Method [3]. In the next 

section 4 we shall present our approach for obtaining graph 

structures more straightforwardly and producing BN that favor the 

classification process.  

Regardless of the structure learning algorithm, given a structure G 

with nodes X={X1,X2,...,Xn}, the process of obtaining the CPD 

with sampling is described below: For each node Xi in the 

network: 

 Randomly select a state for all other nodes except for Xi. 

 Compute the probability distribution over the states of 

Xi, i.e. p(Xi|X1,…,Xi-1,Xi+1,…,Xn).  

Note that since G is a Bayesian network the above 

probability is simplified to include only the Markov 

Blanket of Xi [3], i.e.: p(Xi|X1,…,Xi-

1,Xi+1,…,Xn)=p(Xi|parents(Xi)                
 
   , 

where Yj denotes the set of child nodes of Xi. 

 From the probability distribution, randomly select a 

state of Xi.to complete the sample vector. 

Monte Carlo based sampling requires drawing of n samples from 

the BN with each vector of feature states forming its value as 

explained above. For our research, we only consider continuous 

values, therefore, we adopt the method of [33] and project the 

samples as a histogram and afterwards we smooth the histogram 

to obtain the probability density function of the features of the 

dataset. In most approaches, the selection of a state of the features 

is performed using the distribution that best resembles the 

available data set. This approach is however not suitable for large 

feature sets, such as the task at hand, because they tend to be slow 

and cannot converge to the actual posterior distribution. 

Therefore, a Markov Chain Monte Carlo (MCMC) approach is 

more suitable in such cases for approximating the challenging 

high dimensional distributions. The Gibbs sampler was chosen as 

an MCMC alternative because it is more appropriate for DAG 

structures [32]. Furthermore, a Gibbs sampler can allow for 

convergence in reasonable computation time and its 

implementation code is widely available (e.g. WinBUGS [34]). 

3.2 MCMC and Gibbs Sampling 
Before familiarizing with the Gibbs sampler, a few introductory 

comments on Markov Chains are in order. Let   
  denote the value 

of a random variable Xi at time t, and let the state space refer to 

the range of possible X values. This random variable is a Markov 

process if the transition probabilities between different values in 

the state space depend only on the random variable‟s current state, 

i.e.: 

      
       

         
            

       
      

In other words, for a Markov random variable the only 

information about the past needed to predict the future is the 

current state of it. Knowledge of the values of earlier states does 

not change the transition probability. A Markov chain refers to a 

sequence of random variables generated by a Markov process. A 

particular chain is defined most critically by its transition kernel 



P(jk), which is the probability that a process at state space sj 

moves to state sk in a single step, i.e.: 

             
       

      

For reasons of readability, we shall simplify the notion of   
  into 

  to denote that a random variable X takes a specific value at time 

t. Let                denote the probability that the chain is 

in state j at time t, and let π(t) denote the row vector of the state 

space probabilities at step t. We start the chain by specifying a 

starting vector π(0). Often, all the elements of π(0) are zero except 

for a single element of 1, corresponding to the process starting in 

that particular state. As the chain progresses, the probability 

values get spread out over the possible state space. Using matrix 

notation, we can define the probability transition matrix P as the 

one whose element (i,j) denotes the P(ij) transition kernel. The 

probability that the chain has state value si at time (or step) t +1 is 

given by: 

                                   

In simple words, as the above equation implies, a Markov chain 

may reach a stationary distribution π*, regardless of the selection 

for the initial distribution parameters.  A straightforward method 

of approaching this distribution includes sampling. While there 

are numerous sampling strategies, the Gibbs sampler [32] is well-

suited for DAGs, as we shall describe in the next paragraphs. 

The key to the Gibbs sampler is that one only considers univariate 

conditional distributions, i.e. distributions where all of the random 

variables except for one are assigned fixed values. Such 

conditional distributions are far easier to simulate than complex 

joint distributions and usually have simple forms. To introduce the 

Gibbs sampler, consider a bivariate random variable (x, y) and 

suppose we request the computation of one or both probabilities, 

p(x) and p(y). The idea behind the sampler is that it is far easier to 

consider a sequence of conditional distributions, 

       and       , than it is to obtain the probability by 

integration of the joint density p(x,y), e.g.                . 

The sampler starts with some initial value y0 for y and obtains x0 

by generating a random variable from the conditional distribution 

           Then, the sampler uses x0 to generate a new value of 

y1, drawing from the conditional distribution based on the value of 

x0,         ) and so forth. It proceeds as follows: 

               

             

Repeating this process k times, generates a Gibbs sequence of 

length k, where a subset of points (xj,yj ) for         are 

taken as the simulated draws from the full joint distribution.  

To obtain the desired total of m sample points (here each “point” 

on the sampler is a vector of the two parameters), one samples the 

chain (i) after a sufficient burn-in process (i.e. a number of initial 

samples to be removed due to removal of the bad effects of the 

initial sampling values) and (ii) at set time points (say every n 

samples) following the burn-in. The Gibbs sequence converges to 

a stationary distribution that is independent of the starting values, 

and by the principle of MCMC, this stationary distribution is the 

target distribution we are trying to simulate [33]. 

 

4. METHODOLOGY 
     Direct application of the aforementioned Gibbs sampling for 

BN estimation within the heart sounds domain is somewhat 

limited, due to the high dimensional data where the number of 

features is comparable to the number of available samples. This 

implies that the variance in the values taken by each variable is 

high and this phenomenon may prohibit producing independent 

uniform samples. The suggested novel MCMC sampling 

framework, shown in Fig. 1, can overcome this limitation. 

Initially inspired by the work of [33], which states that an initial 

set of 10-20 dissimilar but high scoring networks (as regards to 

the probability of the network structure given the input data, 

p(S|D)) could be used for calculating the Bayesian posterior 

probability distribution of all features. Clearly, we could not 

simply take the top-k networks which achieve high probability 

from a distinct learning procedure, because all of these networks 

would be very similar in structure. Therefore, the proposed idea of 

[33] is valid in theory but lacks practicality. Our suggestion 

focuses on creating simple and straightforward BN structures 

which are suitable for the classification process (since classifying 

a heart sound is our final goal). Such structures could be obtained 

from the TAN algorithm [4]. The TAN algorithm creates 

networks where the class node is a parent of all features nodes. 

Features form a simplified Bayesian network amongst them in 

which each node has one parent at most, in order to retain the 

structure and the CPD simple. The learning phase of the TAN 

algorithm will be explained below and, as we shall see, TANs are 

very fast learners. Compared to the traditional BN learning 

algorithms, the TAN structure is obtained 50-100 times faster than 

the BN approach, depending on the number of input features and 

the number of states each feature has. Moreover, TANs are 

considered better classifiers than BNs, a fact that is attributed to 

the structural characteristics of the former, which consider the 

class node as a parent of all other nodes.  

From the samples drawn from the TAN structures, we can obtain 

the posteriors after convergence, and then determine the state 

sequence and probability estimates of the model in a 

straightforward manner. Although the inferred high scoring TAN 

structures are disjoint (i.e. cannot be combined into one network 

structure), they can all be combined independently to the 

underlying probability distribution. Hence, all these network 

structures are sampled to estimate the probability distribution 

accurately. The important element of our methodology is the use 

of fast-learned TAN structures and a rank ordering amongst them.  

 

Fig 1.The flowchart of the proposed methodology. 

As we can see in the methodology flowchart of Fig. 1, the main 

components of the proposed methodology are the TAN learning 



phase, the Gibbs sampling phase and finally, the convergence 

phase. With regard to the former, a set of 10 TAN network 

structures were extracted using the following steps: 

 Built a naïve Bayesian structure where the class node C 

is a parent to all feature nodes Fi.  

 For each pair of features Fi, Fj, compute the conditional 

mutual information given the class, i.e.: 

                         
          

              
       

 

 Build a complete undirected graph to connect features 

and use            to weight all arcs. 

 Build a maximum weighted spanning tree. 

 Transform the resulting undirected tree to a directed one 

by choosing a root feature and setting the direction of all 

edges to be outward from it. 

For maximizing the performance of TAN, we applied a feature 

selection algorithm based on SVM [35] and eliminated the 

features that scored below 0.1, thus achieving a 20% reduction in 

the number of input features for TAN. By changing the root 

feature we managed to produce 10 different TAN structures. As 

mentioned before, an ordinary Gibbs sampler chooses features at 

random and then samples a new value from the estimated 

posterior of the neighboring variables. Friedman [1] argued that 

sampling from the space of total orders on variables rather than 

directly sampling DAGs was more efficient than application of 

ordinary MCMC directly in random manner. Since the Gibbs 

sampler also samples the new value of a feature based on the 

parent variables, an ordering of the rank of the TANs, based on 

their scores was applied. As regards to the Gibbs sampling phase, 

uniform prior distributions for all the features in the domain 

needed to be defined. Instead of applying a random initial state of 

the network, a multivariate Dirichlet distribution was chosen, 

inspired by [32]. This distribution is assigned to both the initial 

state distribution and also to the state transition distribution of the 

Markov chain (note that each state in our experiments represents 

the previous sample drawn). The initial distribution of the 

variables in the network was assigned using the density function. 

It was estimated after smoothening of the histogram of normalized 

feature data. Since all nodes have parent(s) we sampled from the 

conditional distribution of their TAN. Similarly, n independent 

samples were drawn from the target distribution P(x). The 

samples collected were plotted using a histogram with n bins as 

depicted in Fig. 1 above. The probability density function P(x) of 

a continuous feature was approximated by smoothening of the 

histogram. 

Finally, as regards to the convergence phase, multiple TAN 

structures were fed to a parallelized series of Markov Chains, in 

order to obtain a large number of samples from the entire input 

space of the domain. Recall that each Markov Chain connects 

states of the network instantiation and sampling process. In other 

words, if S0 represents the first instantiation of features (X1=x1, 

X2=x2,…,Xn=xn) then we can sample a new value x1’ for feature 

X1 using p(X1=x1‟|X2 = x2,…,Xn = xn). In similar manner, we can 

sample the remaining new values for features X2, X3 …Xn until 

we have a new state S1, instantiated as: X1 = x1‟, X2 = x2‟, . . . ,Xn 

= xn‟. Throughout the process of multiple chain runs, samples are 

exchanged between the chains and the overall samples of a 

number of variables in the top of the specified order are 

monitored. When the sample values do not exceed a variation 

threshold (manually defined to 0.01) after a large number of 

iterations, convergence is assumed.  

Upon convergence on the stationary distribution, the process of 

classification of a previously unseen example is straightforward. 

We only compute the probability of the class c given evidence e 

(expressed as an input vector of 100 feature values), noted as 

p(c|e)and classify it to the most probable class. 

 

5. DATA & PREPROCESSING 
Our dataset consisted of 198 heart sound signals, which have been 

acquired from both healthy and pathological medical cases having 

one of the following four frequent and severe heart valve diseases: 

Aortic Stenosis, Mitral Regurgitation (both these diseases 

resulting in systolic murmurs), Aortic Regurgitation or Mitral 

Stenosis (both these diseases resulting in diastolic murmurs). In 

particular, 38 of these heart sound signals were healthy, while the 

remaining were unhealthy: 41 ones with AS systolic murmur, 43 

with MR systolic murmur, 38 with a AR diastolic murmur and 38 

with a MS diastolic murmur. All these signals had been diagnosed 

by experienced cardiologists and classified to one of the above 

five heart health conditions. It should be pointed out that the heart 

sounds acquired using a stethoscope are influenced considerably 

by numerous factors related to the acquisition process, such as the 

type of stethoscope used, the type of sensor that the stethoscope 

has (e.g. microphone, piezoelectric film, etc.), the stethoscope use 

mode (e.g. bell, diaphragm, extended), the filtering applied to the 

heart sound signals (e.g. anti-tremor filter, respiratory sound 

reduction filter, etc.), the way the stethoscope is pressed on the 

patients skin (firmly or loosely), the patient's position (e.g. supine 

position, standing, squatting), the auscultation areas (i.e. apex, 

lower left sternal border, pulmonic area, aortic area), the 

medicines that the patient is taking, etc. A big problem is that 

these factors cannot be controlled in the everyday medical 

practice, adding high levels of noise to the acquired heart noise 

signals (i.e. generating additional components), making the 

detection of various heart diseases and pathological conditions 

from these heart sound signals even more difficult. Therefore, an 

effective system for the diagnosis of heart diseases from heart 

sounds should cope with the high level of noise that this problem 

generates. So in order to make our research more realistic, we 

decided to make the above dataset, „global‟ and representative, 

including „heterogeneous‟ heart sounds recorded with different 

acquisition methods and different values of the above factors. 

Such a dataset is much more „difficult‟ to cope with than a 

„homogeneous‟ one (in which all heart sound have been recorded 

using the same acquisition method and values of the above 

factors), however it enables a more realistic investigation of the 

performance of the proposed methodology.  

Initially a pre-processing of these heart sounds was performed, in 

order to remove noise and extract features from them. It consisted 

of three phases. In the first phase the segmentation of the heart 

sound signal was performed; in each signal the cardiac cycles 

were detected by locating the S1 and S2 peaks. In the second 

phase, for each of the segmented heart sounds produced in the 

first phase were calculated the standard deviation of the duration 

of all the heart cycles it includes, the standard deviation of the S1 

peak values of all heart cycles, the standard deviation of the S2 

peak values of all heart cycles and the average heart rate; these 

values were the first four features (F1-F4) of the feature vector of 

each heart sound signal. In the third phase, the rest of the features 



used for classification were extracted. For this purpose we 

calculated for each heart sound signal two mean signals for each 

of the four structural components of the heart cycle, namely two 

signals for the S1, two for the systolic phase, two for the S2 and 

two for the diastolic phase. In particular the first of these signals 

focused on the frequency characteristics and was calculated as the 

mean value of each component, after segmenting and extracting 

the heart cycle components, time warping them and aligning 

them. The second signal focused on the morphological time 

characteristics and was calculated as the mean value of the 

normalized average Shannon Energy Envelope of each 

component, after segmenting and extracting the heart cycles 

components, time warping them and aligning them. The second 

S1 mean signal was then divided into 8 equal parts, for each part 

the mean square value was calculated and the resulting 8 values 

were used as features (F5-F12). Similarly 24 features for the 

systolic period (F13-F36), 8 features for S2 (F37-F44) and 48 

features for the diastolic period (F45-F92) were calculated (the 

number of features per component was decided taking into 

account the time duration of each: for longer components more 

features were calculated). Finally the systolic and diastolic phase 

components of the first mean signal were passed from four band-

pass filters: a) a 50–250 Hz filter providing its low frequency 

content, b) a 100–300 Hz filter providing its medium frequency 

content, c) a 150–350 Hz filter providing its medium-high 

frequency content and d) a 200–400 Hz filter providing its high 

frequency content. For each of these 8 outputs, the total energy 

was calculated and was used as a feature in the heart sound vector 

(F93-F100). The above pre-processing produced for each heart 

sound signal a feature vector consisting of 100 components. These 

198 feature vectors were used for the validation of the proposed 

methodology presented in the following section. 

 

6. RESULTS 
 

We have organized the experimental part of our work as follows: 

A. Initially, discrimination between normal (NRM) from sick 

(SCK) heart sound was performed.  

B. Those instances that belong to the sick class were further 

classified as having systolic (STL) or diastolic (DTL) murmur.  

C. Finally, for each of the aforementioned classes, there was 

further classification into two sub-classes corresponding to aortic 

or mitral origin of murmurs: the heart sound signals classified as 

having systolic murmur (STL) were further classified as Aortic 

Stenosis (AS) or Mitral Regurgitation (MR) cases; similarly, the 

ones classified as having diastolic murmur were further classified 

as Aortic Regurgitation (AR) or Mitral Stenosis (MS) cases. 

Results were compared against other well-known classification 

algorithms that have previously been referred to as having 

provided “state-of-the-art” results in the heart disease domain. In 

particular, we evaluated the proposed methodology against Naïve 

Bayes, Decision Trees, Neural Networks (with Radial Basis 

Functions) and k-Nearest Neighbor (k=3), using a 10-fold cross 

validation approach. The RapidMiner data mining suite was used 

for the evaluations [35]. 

A. Discriminating between healthy and unhealthy signals 

From a medical expert‟s perspective, the accuracy of a diagnosis 

is of major importance, since a misclassification of a sick case as 

healthy could have severe consequences for a patient. Due to the 

significance of the decision, the following cases have to be 

distinguished: 

(a) The classification result is sick and the patient was 

actually sick. In such a case, classification is correct and these 

cases are labeled as True Positives (TP). 

(b) The classification result is normal and the patient is 

actually healthy. Similarly, such a classification is correct and 

these cases are labeled as True Negatives (TN). 

(c) The classification result is sick and the patient is 

actually healthy. In such an erroneous case the classification is 

incorrect, and these cases are labeled as False Positives (FP). 

(d) The classification result is normal and the patient is 

actually sick. Similarly in such a case the classification is 

incorrect, and these cases are labeled as False Negatives (FN). 

The following table (known as confusion matrix) summarizes the 

above descriptions: 

Confusion Matrix 
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 Actual Class 

Sick Normal 

Sick TP FP 

Normal FN TN 

Since identification only of the percentage of the correctly 

identified instances (TP+TN) is not indicative, two additional 

metrics of the robustness of the classification process are required:  

(a) True Positive Rate (TPR): the percentage of sick 

instances correctly classified as sick: 

    
  

     
 

(b) False Negative Rate (FNR): the percentage of sick 

instances incorrectly classified as healthy: 

    
  

     
 

The anticipated classification outcome is the one that does not 

erroneously considers as healthy a patient with a heart disease. 

Therefore, we are particularly focusing on the performance of the 

proposed methodology in situations where sick patients were 

identified as healthy (FPR) and plot this against TPR in order to 

produce the ROC (Receiver Operating Characteristic) curve. This 

curve is a graphical depicter of the classification performance. 

Robust classifiers are expressed by ROC curves which retain high 

values of TPR for most of the horizontal axis area (FPR). 

 
         FPR 

Fig 2.ROC curve for the Healthy/Unhealthy dataset.  



Furthermore, apart from the above ROC curve, which illustrates 

that our method is capable of classifying more that 87% of the 

instances correctly, we also present the results of each benchmark 

algorithm against the proposed methodology, utilizing the F-

measure, i.e. the harmonic mean of precision P and recall R: 

  
  

     
   

  

     
 

Table 1. Performance of MCMC methodology and alternatives for 

discrimination between Healthy and Unhealthy  

Algorithm %F-measure 

MCMC Bayesian Inference 85.56% 

C4.5 Decision Trees (C45) 74,14% 

Naïve Bayesian Classifier (NB) 70,15 % 

Radial Basis Functions (RBF) 76,24% 

K-Nearest Neighbor (KNN) 82,15% 

The results of Table1 show that MCMC performs better in this 

first level of discrimination than all other alternative 

methodologies, providing a gain between 3%-15% in certain cases 

for this highly heterogeneous and „difficult‟ dataset.  

B. Discriminating between systolic and diastolic murmurs 

Proceeding to a more detailed classification the healthy heart 

sounds were next classified as having systolic or diastolic 

murmurs, and the results (F-measure) are shown in Table 2.  

 

Table 2. Performance of MCMC methodology and alternatives for 

discrimination between Systolic and Diastolic Murmurs 

Algorithm %F-measure 

MCMC Bayesian Inference 89.20% 

C4.5 Decision Trees (C45) 86,45% 

Naïve Bayesian Classifier (NB) 75,34 % 

Radial Basis Functions (RBF) 78,80% 

K-Nearest Neighbor (KNN) 82,15% 

 

We remark that MCMC in this more detailed classification as well 

exhibits a better performance than all the other alternative 

methodologies. This could be attributed to the elimination of non-

informative features from the TAN step of the proposed 

methodology and due to the convergence attribute of the MCMC 

process. Additional to the aforementioned table, in the Appendix 

we have included a figure which shows the best scoring TAN 

structure as obtained from the MCMC approach. From the 

plethora of initial features, the weighting of features using a SVM 

classifier has resulted in producing only a small set of them (18) 

that are found to influence the class attribute. This reduction 

caused significant improvement of the MCMC step in terms of 

computational complexity. 

 

C. Distinguishing between AR-MS and AS-MR diseases 

The final round of experimental evaluations proceeds to even 

higher diagnostic detail and focuses on identifying the exact heart 

disease (problem of aortic or mitral valve). Note that when the 

heart murmur is diastolic, the patient could suffer from either 

Aortic Regurgitation (AR) or Mitral Stenosis (MS); when the 

heart pulse is systolic, the disease can be either Aortic Stenosis 

(AS) or Mitral Regurgitation (MR). For the former case results are 

tabulated in Table 3. MCMC is again the most efficient approach 

and outperforms all other alternative approaches. 

 

Table 3. Performance of MCMC methodology and alternatives for 

discrimination between AR-MS for Systolic Murmurs  

Algorithm 
%F-measure  

(Healthy-Unhealthy) 

MCMC Bayesian Inference 88,55% 

C4.5 Decision Trees (C45) 75,00% 

Naïve Bayesian Classifier (NB) 83,88 % 

Radial Basis Functions (RBF) 69,14% 

K-Nearest Neighbor (KNN) 85,40% 

As regards to the latter case the results are shown in Table 4. We 

remark that MCMC still exhibits the highest classification 

performance, which outperforms the other alternative approaches 

by a varying percentage of 0.5%-15%. 

Table 4. Performance of MCMC methodology and alternatives for 

discrimination between AS-MR for Diastolic Murmurs 

Algorithm %F-measure 

MCMC Bayesian Inference 86,30% 

C4.5 Decision Trees (C45) 74,20% 

Naïve Bayesian Classifier (NB) 81,45 % 

Radial Basis Functions (RBF) 70,25% 

K-Nearest Neighbor (KNN) 85,90% 

 

7. CONCLUSIONS 
For the cost-efficient large scale application of ICT-based 

assistive environments for the home care of elderly and disabled 

people it is of critical importance to develop capabilities for 

automated first screening of signals generated in subjects‟ homes 

and transmitted to local health centers or hospitals, and identifying 

abnormal ones that require action to be taken. The present paper 

contributes to addressing this need. It proposes a methodology for 

the automatic screening at various levels of detail of heart sound 

signals acquired in home care context (classification as healthy or 

unhealthy, with systolic or diastolic murmurs, and then of aortic 

or mitral origin). It is based on a novel MCMC Bayesian 

approach, which can handle datasets characterized by numerous 

input features and limited training data. It has been concluded that 

the proposed methodology shows a good performance in a highly 

heterogeneous and difficult dataset, which is higher than the most 

widely used alternative methodologies. We believe that if we can 

control some of the heart sound acquisition factors (e.g. type of 

stethoscope/sensor, stethoscope use mode and filtering), and have 

more training data, even higher performance can be achieved. 
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APPENDIX 
The best scoring TAN structure of the Systolic-Diastolic dataset. 

 

 

 


