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ABSTRACT
In the cloud era, as more and more businesses and individ-
uals have their data hosted by an untrusted storage service
provider, data privacy has become an important concern.
In this context, searchable symmetric encryption (SSE) has
gained a lot of attention. An SSE scheme aims to protect the
privacy of the outsourced data by supporting, at the same
time, outsourced search computation. However, the design
of an efficient dynamic SSE (DSSE) has been shown to be a
challenging task.

In this paper, we present two efficient DSSEs that leak a
limited amount of information. Both our schemes make a
limited use of ORAM algorithms to achieve forward privacy
and to minimize the overhead that ORAMs introduce, at the
same time. To the best of our knowledge, there is only one
other DSSE scheme that offers efficiently forward privacy.
Our schemes are parallizable and significantly improve the
search and update complexity, as well as the memory access
locality.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; H.2.7
[Database Management]: Database Administration—Se-
curity, integrity, and protection

General Terms
Security

Keywords
Searchable Encryption, Storage Outsourcing, ORAM

1. INTRODUCTION
In the cloud era, data outsourcing is becoming the domi-

nant storage model. As businesses and individuals have their

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCSW’15, October 16, 2015, Denver, Colorado, USA.
c© 2015 ACM. ISBN 978-1-4503-3825-7/15/10 ...$15.00.

DOI: http://dx.doi.org/10.1145/2808425.2808429.

data hosted by an untrusted storage service provider, data
privacy has become an important concern. One straightfor-
ward solution is to upload all data encrypted using one of
the well studied symmetric encryption techniques. However,
in this case the client has to download all its data and de-
crypt them in order to perform even simple computations,
like data search. Clearly, such a solution is not practical.

In this context, searchable symmetric encryption (SSE)
has gained a lot of attention. SSE aims to protect the pri-
vacy of user’s outsourced data by supporting, at the same
time, outsourced search computations. With a SSE scheme
the client outsources its data encrypted, while she can per-
form keyword search queries without revealing the secret
key or downloading the entire data set and searching her-
self. The client sends a search token to the server and the
server performs the search operation without knowing the
encryption key.

A predefined set of keyword search queries can be executed
on the collection of the encrypted documents. The vast ma-
jority of the proposed schemes have a setup phase where an
encrypted index is computed for the specific collection of
documents, i.e. each keyword is related to a precomputed
set of file identifiers. If the index remains unaltered after
this phase, then the SSE scheme is called static SSE. If ad-
ditions and deletions are supported, then it is a dynamic
SSE (DSSE) scheme.

In terms of security, SSE schemes leak information. This
leakage can be minimized using primitives, like the Oblivi-
ous RAM (ORAM) algorithms. However, these solutions are
very costly. The last two years ORAM proposals and im-
plementations are getting more practical, but there is still a
performance gap to be filled. In order to make SSE schemes
practical, we tolerate some more leakage. SSE leakage con-
tains at minimum the search pattern and the access patten.
By search pattern we refer to the hashes of the keywords,
i.e. it is leaked when the same keyword is searched, while
the access pattern is the matching document identifiers of a
keyword search.

In the case of DSSEs, some more information leakage is
expected. More precisely, the access pattern includes also
the document identifiers that have been added or deleted.
Two security notions are relevant to DSSE’s security, namely
the forward and backward privacy. By forward privacy we
mean that, when a new keyword and file identifier pair is
added, the server does not learn anything about this pair.
In backward privacy, queries cannot leak the file identifiers
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of deleted documents. Designing an efficient DSSE scheme
that possesses both these security properties has been shown
to be a very difficult task. To the best of our knowledge
there is no DSSE solution that offers backward privacy, while
only one DSSE scheme exists that is practical and supports
forward privacy ([19]).

Our contribution. In this paper, we introduce two effi-
cient DSSE schemes that achieve forward privacy with very
small leakage. Our schemes use simple structures, like dic-
tionaries, to store the inverted index for keyword (i.e. the
files per keyword) and the index for file (i.e. the keywords
per file), and more sophisticated structures, like the ORAM
algorithms, to store the client’s state.

ORAM is a cryptographic primitive designed to conceal
access patterns, when a client with small (and preferably
constant) local memory executes a sequence of reads and
writes to remotely stored data. In this paper, we use ORAM
as a black box and, thus, any proposal can be applied. For
the performance evaluation, we consider two of the most
efficient ORAMs presented in [12] and [18]. While it is gen-
erally believed that ORAMs are still very costly primitives,
we show how to make a limited use of an ORAM algorithm
in order to achieve forward security and, at the same time,
to minimize the overhead that this construction introduces.
Both our schemes can be seen as an extension of a very effi-
cient and scalable static SSE proposed by Cash et al. ([2]).
Our scheme has the following characteristics:

• Leakage. We present two schemes that follow the same
philosophy, the ’simple’ and the ’extended’ DSSE sche-
mes. Both of them leak the access and the search pat-
tern after each search operation for a keyword. Also,
on file update, both schemes offer forward privacy (but
not backward privacy) and the only information leaked
is the number of keywords per added file. Each file that
it is added, even if it was previously deleted from the
DSSE, it is treated as a completely new file with new
file identifier. Finally, the two schemes differ on the
information leaked at the setup phase. Both of them
leak the number of keywords and files (can be deduced
from the size of the structures and can be hidden with
padding). However, the ’simple’ DSSE leaks also the
number of keywords per file. The ’extended’ DSSE
hides this information.

• Efficiency. The search complexity of both of our sche-
mes is O(max(log2(|W |)/γ, |Iω|)), where |W | is the
number of keywords, |Iω| the number of files that con-
tain the keyword ω and γ depends on the ORAM
scheme that we use. The update complexity is, in
the worst case, O(max(|Wf | log2(|W |)/γ, log2(|F |)/γ),
where |Wf | is the number of keywords that the file f
contains and |F | is total number of files. We compare
our scheme with the DSSE of Stefanov et al. ([19]),
i.e. the only other practical DSSE that offers forward
privacy. Their scheme’s search and update complexity
depends on the total number N of keyword and file
identifier pairs, while our proposal has the nice feature
to be independent of N .

• Parallelization and locality. Both our schemes are fully
parallizable, i.e. the Search and Update operations can
be performed with parallelism. Also, we have decided
to divide the information into two categories: leaked

and not leaked. Thus, the leaked data can be treated
differently and are stored in contiguous area of memory
positions optimizing locality (i.e. we replace dictionary
reads with array reads).

• File index. Usually, the DSSE schemes do not support
the storage of the index for file. However, at the same
time, the keywords per file is expected as input when
a file is deleted and the schemes do not demonstrate
how such information is available, with very few ex-
ceptions ([10]). Our scheme maintains the index for
file efficiently and parallelism is possible.

Paper organization. In Section 2, background and com-
parison with prior work are presented. In Section 3, the
necessary definitions and notation are provided, while in
Section 4 we introduce the simplest of our schemes. The
extended and more secure version appears in Section 5. Il-
lustrative examples are given for the better comprehension
of the designs. In Section 6 and in Section 7, the complexity
and the security of the schemes are analyzed, respectively.
Finally, Section 8 concludes the paper.

2. RELATED WORK

2.1 Background
In this section, we present the most important DSSE so-

lutions. Several efficient static SSE schemes have been pro-
posed, but their presentation is out of the scope of our work.

The problem of searching (symmetrically) encrypted data
that can be modified can be solved with minimum informa-
tion leakage by using either the Private Information Retriev-
abilty (PIR) protocols ([4], [16], [21]) or ORAM algorithms
([7], [14], [8], [12]). However, such solutions are not attrac-
tive. PIRs have linear search complexity, while ORAMs still
require high communication overhead.

In [17], Song et al. presented an SSE that supports inser-
tions/deletions of files. Their scheme is a semantically secure
encryption scheme that leaks access patterns and it is lin-
ear in the size of all data. In [6], Goh introduced a DSSE
scheme that also has linear search complexity. In 2010, van
Liesdonk et al. ([20]) proposed a DSSE with a rather large
storage and the updates leak information more than it is
usually accaptable from a DSSE.

In 2012 Kamara et al. ([10]) introduced a sublinear search
time DSSE. They achieve such an improvement at the ex-
pense of more leakage (their scheme in every update reveals
hashes of the unique keywords contained in the updated doc-
ument). A year later, Kamara and Papamanthou ([11]) fixed
this problem by increasing the index size. This was the first
parallel DSSE. In 2014, Cash et al. ([2]) proposed a very
simple DSSE based on dictionaries that scales nicely. This
scheme however, is optimal when the number of updates is
small, i.e. it has great performance only as a semi-static
SSE. The dynamic version of this scheme is not efficient
mainly with respect to storage management. Our schemes
are partially based on this proposal. Finally, very recently,
Hahn and Kerschbaum ([9]) proposed a dynamic scheme
that leaks only the access pattern and has asymptotically
optimal search time.

However, none of the above schemes offers forward pri-
vacy. To the best of our knowledge, only two DSSE solu-
tions possess this property. Chang and Mitzenmacher’s ([3])
proposal achieves forward privacy, but at the cost of linear
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Scheme Search Time Index Size Update Cost Forw.Priv. In. Leak

[19] O(min(α+ log(N), |Iω| log3N)) O(N) O(|Wf | log2N)) Yes N
[2] O(|Iω|+ dω) O(N)∗ O(|Wf |+ |W | log |F |)) No N

’Ext’ (this paper) O(max(log2(|W |)/c, |Iω|)) O(N) O(max(|Wf | log2 |W |, log2 |F |)) Yes N , |W |, |F |
’Ext’ (given |W |) O(|Iω|) O(N) O(max(|Wf |, log2 |F |)) Yes N , |F|

Table 1: Comparison of our schemes with the DSSE from [19] and [2]. For the [2], the index size of the static
SSE is used. The index size of the dynamic version depends on the sequence of search and update operations.

search complexity. The second scheme, was recently intro-
duced by Stefanov, Papamanthou and Shi ([19]). It is an hi-
erarchical construction, inspired by the ORAM algorithms,
that offers forward privacy with minimum leakage.

2.2 Comparison with prior work
Next, we compare our schemes with two proposals, the

DSSEs presented in [19] and [2]. The first one is the only
efficient DSSE that offers forward privacy, while the second
DSSE’s design is similar to ours. In Table 1, there is a sum-
mary of the comparison. We use only the extended version
as both our schemes have the same performance.

In [19], the worst-case search complexity is asymptotically
O(min(α + logN, |Iω| log3N), where |Iω| is the number of
documents containing the keyword ω we are searching for, α
is the number of times this keyword was historically added
to the collection and N is the total number of keyword/file
identifier pairs. We see that the complexity depends on the
stored pairs. As this number increases, the search complex-
ity increases. Our scheme is independent from N and de-
pends only on the number of the keywords |W |. Thus, for a
given number of keywords, our scheme is linear on |Iω|, i.e.
it is optimal. Also, in [19], the worst-case update complex-
ity is O(|Wf | log2N), and the space of the data structure is
O(N). Again, our update complexity is independent from
N , while our storage complexity is also optimal.

In [2], the SSE was mainly designed to serve as a static
scheme. The authors describe how to modify the static SSE
in order to support updates, but they use revocation lists.
Thus, when several additions and deletions are performed
the list increases linearly and the storage is not efficiently
used. Also, the search overhead increases as the revocation
list must be searched. However, the scheme with limited
file updates scales nicely and supports very large databases.
They use dictionaries and each label is computed in a way
that facilitates parallelization. We follow the same approach.
Also, their scheme leaks less information than ours, at the
setup phase. More precisely, it leaks only N , while our (the
extended version) scheme leaks also the number of keywords.
Finally, they do not offer forward (and backward) privacy.

3. DEFINITIONS

3.1 Notation
First, we introduce some notation. The set of binary

strings of length n is denoted as {0, 1}n, the cardinality of a
set X is denoted as |X|. A function G : N→ R is negligible
in x if for every positive polynomial p(·) there exists a x0
such that for all x > x0, g(x) < 1

p(·) . We denote the output

z of a (possibly probabilistic) algorithm A as z ← A. Sam-
pling uniformly random from a set X is denoted as x← X.

We use λ to denote the security parameter. Let F be the
set of all files and W the set of all the keywords. Each file
f ∈ F has a unique file identifier labelf ∈ {0, 1}λ. Also, each
keyword has a unique identifier, but to simplify the notation,
we use the symbol ωj to refer to both the keyword and its
identifier. Each file fi contains a set of keywords Wfi ⊆ W
and each keyword ωj ∈W is contained in a subset of the files
Fωj ⊆ F . The set of all file identifiers that contain a keyword
ωj is denoted by Iωj and it is defined as Iωj = {labelf : f ∈
Fωj}. Let DB defined as DB = (labeli,Wfi)

d
i=1, i.e. it is

a list of file identifier/keyword pairs Wfi ⊂ {0, 1}
∗, and let

N be the total number of file/keyword pairs.

3.2 DSSE and security definitions
Our definition is similar to previous works.

Definition 1. (DSSE). A dynamic index-based SSE sche-
me is a tuple of three polynomial-time algorithms DSSE =
(SetUp, Search, Update) such that:

• (K,σ) ← SetUp(1λ, DB): is a probabilistic algorithm
that takes as input a security parameter λ and outputs
the clients secret state K and, it initiates the DSSE
data structure and returns its initial state σ.

• (Iω, σ
′) ← Search(K,σ, ω): is a deterministic algo-

rithm that takes as input the secret state K, the state
of the SSE structure σ and a keyword ω. It outputs a
set of file identifiers Iw and the updated SSE structure
state σ′.

• σ′ ← Update(K,σ, labelf , op): is a deterministic algo-
rithm that takes as input the secret key state K, the
DSSE structure state σ, a file identifier lalelf and the
type of the operation (op = ’add’ or ’delete’). It adds
(deletes) the file in (from) the DSSE structure and out-
puts the updated DSSE structure state σ′.

We use the standard simulation model to define the sche-
me’s security, in line with all the schemes that followed Curt-
mola et al. ([5]) work. Our scheme is secure in the semi-
honest model, where the server follows the protocol, but is
curious. We allow the server to learn some information and
we use leakage functions to define this knowledge. We define
three leakage functions, namely Lstp, Lsrch and Lupd, one
for each of the three DSSE operations.
IdealF,S,Z: Let F be the ideal functionality and S the

simulator, i.e. the ideal world adversary. Initially, an envi-
ronment Z sends the client a message “setup” and the client
forwards this message to F. The simulator S learns Lstp
(the setup leakage function is defined in Section 4.1). In
each time step, the environment Z selects either a search
or an update operation. That is that, it either chooses a
keyword ω and the client sends the search operation to the
ideal functionality F or it chooses a file identifier labelf and
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an operation op = ‘add′ (and the set of keywords as input)
or op = “delete′′ and the client sends the update operation
to the ideal functionality F. In the first case, the simulator
is notified of Lsrch (the search leakage function is defined
in Section 4.1), while in the second case it learns Lupd (the
update leakage function is defined in Section 4.1). Next, S
sends F either abort or continue message and, as a result,
F sends the client “protocol abort”, “update success”, or the
identifiers of the matching documents for the search query.
The environment Z observes these outputs. Finally, the en-
vironment Z outputs a bit b.
Realπ,A,Z: Let π be the real world DSSE protocol and

A the real world adversary, i.e. the server. Initially, an
environment Z sends the client a message “setup” and the
client executes the real world SetUp protocol with the server.
In each time step, the environment Z selects either a search
or an update operation. That is that, it either chooses a
keyword ω and the client executes the real world Search
protocol with the server or it chooses a file identifier labelf
and a keyword set Iω (only for file addition), an operation
op = ‘add′ or op = “delete′′ and the client executes the real
world Update protocol with the server using the selected
inputs. The environment Z observes the client’s outputs, i.e.
either “protocol abort”, “update success” or the identifiers of
the matching documents for a search query. Finally, the
environment Z outputs a bit b.

Definition 2. The protocol π is (Lstp,Lsrch,Lupd)-secu-
re against adaptive dynamic chosen keyword attacks, if for
all polynomial-time semi-honest real world adversaries A,
there exists a probabilistic polynomial-time simulator S, such
that for all non-uniform polynomial time environment Z

|Pr[Realπ,A,Z(λ) = 1]− |Pr[IdealF,S,Z(λ) = 1]| ≤ negl(λ).

4. OUR SIMPLE SCHEME
In this Section, we present the simplest of our schemes.

In order to support queries, the inverted index for keyword
must be stored, while addition/deletion of files requires the
maintenance of the file index.

The scheme is based on the following observation: at any
time t the set Iω of the file identifiers related to a keyword

ω can be divided into two subsets I
(0)
ω and I

(1)
ω . The first

subset I
(0)
ω contains the file identifiers that have been used

in a previous search for ω, i.e. they have been leaked, and
that they have not been deleted. Clearly, we do not have to
protect the privacy of this set and, we only care to store the
identifiers efficiently. Thus, we use a data structure S0 to
efficiently store and manage this set of identifiers, without

any security requirements. The second subset I
(1)
ω contains

the file identifiers that have not been used in a search reply,
since their last addition into the DSSE. This second subset
is stored in another data structure S1 that protects the set’s
privacy. Note that this set includes also the file identifiers
that were leaked, deleted and, then, added again. Both,
S0 and S1 are used to store the inverted index for keyword.
After each search operation the corresponding S1 entries are
moved to S0. Finally, in order to support file update, we use
a third data structure S3 to store the file index. That is that,
we store the sequence of keywords Wi per file fi ∈ F .

For our simple DSSE scheme, we are using dictionaries
and ORAMs. More precisely, for the three main data struc-
tures, i.e. S0, S1 and S2, we are using dictionaries, while we

employ two ORAM structures to store the client’s state. The
first ORAM, ORAMω, is used to store keyword related in-
formation, and the second ORAM, ORAMf , is used for the
client’s file state. This gives us forward privacy. We also use
an IND−CPA secure secret-key encryption scheme SKE,
and a random oracle H : {0, 1}λ×{0, 1}∗ ← {0, 1}λ, where λ
is the security parameter. The secret-key encryption scheme
is a tuple of three algorithms SKE = (Gen,Enc,Dec) and
it is used to encrypt the files F . The ciphertexts are out-
sourced and managed using the corresponding file identifier.
For the rest of the paper, when we refer to label or data, we
mean a bitstring.

The S0 data structure supports the following three oper-
ations:

• insert(l, d): inserts the data item d in the structure
with label l. If d is the j-th item with label l, the
value j is returned.

• get(l): reads all data items from the structure with
label l. Returns the set of the deleted items.

• remove(l, j): removes the j-th entry item with the la-
bel l. Returns “OK” when data is deleted.

The S1 data structure supports the following operations:

• insert(l, d): stores the data item d with label l. Re-
turns “OK” when data is stored.

• removeAll(l): deletes the all data with label l. Re-
turns all data with that label.

The S2 data structure supports three operations:

• insert(l, d): inserts the data item d in the structure
with label l. Returns “OK” when data is stored.

• removeAll(l): deletes the all data with label l. Re-
turns all data with that label.

• update(l, j, d): uses data d to update the j-th entry
item with label l. Returns“OK”when data is updated.

Finally, it is possible to read and write data from and into
the two ORAM structures using the secret keys KW and
KF .

Each file has a unique file identifier labelf . This identifier
changes each time the file is deleted from the DSSE and a
new one is randomly selected when the file is added again.
On the other hand, each keyword has a unique and invariant
identifier ω and a temporary secret key Kω. A new key value
Kω is selected each time we search for the keyword ω. All
labels lp used in S1 are computed by applying the random
oracle to the secret key Kω and a counter.

For each keyword/file identifier pair (ω, lablef ) there are
two dictionary entries, one in S2 and one either in S0 or in

S1. More precisely, if the pair belongs in I
(1)
ω , then there is

an entry in S1 with label lp

S1(lp) = (labelf |j)

and one entry in S2

S2(labelf ) = (lp|′1′)

where lp = H(Kω|j) and ′1′ indicates that the pair has not
been read yet. Also, j is the value of the counter used to
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compute lp and at the same time indicates that it is the j-th
entry in S2 with label labelf .

On the other hand, if the pair belongs in I
(0)
ω , then in S0

there is an entry with label ω, such that

S0(ω) = (labelf |j).

i.e. the entry copied as it is from S1 and, in S2,

S2(labelf ) = (ω|i|′0′)

where ′0′ indicates that the identifier/keyword pair has been
read and it is stored in S0 with label ω and it is the i-th item
with this label.

For the rest of the paper, we use the following notation to
refer to the different parts of an entry. Thus, each entry p
in S2 is of the form p = (p.l|p.s) or p = (p.l|p.j|p.s), i.e. p.s
equals the single status bit at the end of the entry, p.l is the
label at the beginning and s.j the value j, when p.s =′ 0′.
Similarly, an entry p in S1 is of the form p = (p.l|p.j).

Finally, the ORAMω structure’s data is a pair (Kω, c) per
keyword ω, where Kω is the current secret key used to label
the entries in S1 related to ω and c indicates how many such
entries have been added since the last search for ω. On the
other hand, ORAMf entries store only the current identifier
labelf of a file f .

Secret keys.
Three λ-bit secret keys are stored at the client, namely

KF , KW and K. The first two are the secret keys for the
two ORAM structures, while the third is used for the file
encryption.

The Simple DSSE operations.
The operations of the DSSE appear in Fig. 1, Fig. 2, Fig. 3

and Fig. 4. More precisely:
Setup operation. The client chooses three random λ-bit

strings KF , KW and K, for the two ORAM structures, and
for the files encryption (using the SKE Gen(1λ)). The client
initiates the two ORAM structures ORAMω and ORAMf

of size |W | and |F | and fills in S1 and S2 with the inverted
index for keyword and the file index respectively. Initially,
the structure S0 is empty.

Search operation. The search for a keyword ω returns the
set of file identifiers Iω. It is performed in two steps. The
first step is straightforward and very efficient as it has to
do with the retrieval of the file identifiers that have been
used in a previous search. These identifiers are stored with
the same label ω in S0. This step is parallizable with high
locality. The second step is related to the retrieval of the
identifiers set stored in S1. Using the secret key Kω of the
keyword, and the counter c the server computes all the labels
that correspond to the keyword ω. This step is parallizable
as well. The retrieved identifiers from S1 are then stored in
S0 using the label ω and the corresponding entries in S2 are
updated. Finally, the keyword’s secret key Kω is updated
with a new randomly selected laue and the counter is set to
zero.

Add file operation. When a file fi ∈ F is added, the cor-
responding sequence of keywords Wi must be stored in S2

using a completely new label labelf , i.e. we treat the file as
a new one, even if it was deleted in the past from the DSSE.
Also, the structure S1 must be updated. For each keyword
ωj ∈ Wfi a new label is computed by the client using the
keyword’s secret key Kωj and the keyword’s counter. The

Algorithm SetUp(DB)

1. K
$← SKE.Gen(1λ); KF

$← {0, 1}λ; KW
$←

{0, 1}λ

2. Initiate two ORAMs of size |W | and |F |

3. For each ω ∈W :

Kω
$← {0, 1}λ; c = Iω

ORAMω.write(ω, (Kω, c))

4. For each f ∈ F :

Encrypt f : f ′ = SKE.Enc(K, f)

labelf
$← {0, 1}λ

Add (labelf , f
′) to list C

ORAMf .write(f, labelf ); i = 0;

For each ω ∈Wf :

i+ +

p = H(Kω|i)
S1.insert(p, (labelf |i))
S2.insert(labelf , (p|′1′))

5. Output C, S1, S2

Figure 1: The Setup protocol of the simple DSSE
scheme.

secret key and the counter are retrieved obliviously from the
ORAM ORAMW . The counter is increased by one.

Delete file operation. When a file fi is deleted, labelf
is retrieved from ORAMF . We use the information stored
at S2 with the same label labelf to find and delete all the
entries in S0 and S1 that correspond to a keyword ωj ∈Wi.
Finally, all entries with label labelf are deleted from S2.

4.1 Leakage functions
The SetUp operation leaks the number of files |F | and key-

words |W |, the size of each file and the number of keywords
per file |Wi|,i.e.

Lstp := (|F |, |W |, |Wi|1≤i≤n, len(fi)1≤i≤n).

A search operation for a keyword ω leaks the set of file
identifiers Iω matching the keyword, that have been added
or deleted in the past (i.e. the access pattern at time t
ACCPt(ω)), and the time the same keyword was accessed
in the past (i.e. the search pattern SEAPt(ω)). The search
leakage is defined as Lsrch := (ω, Iω, ACCPt(ω), SEAPt(ω)).

The Add operation leaks the file identifier labelf , the num-
ber of keywords |Wi| and the file size len(f). The Delete
operation leaks only the file identifier labelf . Thus, in total
we define

Lupd := (op, labelf , len(f), |Wf |),

where op is the type of operation.
Note that, similarly to [19], our definition of leakage cap-

tures forward privacy. That means that, the leaked set Iω
contains only documents that were added in the past, but
no future file additions. However, Iω can contain deleted
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(a) Initial state of the simple DSEE.

(b) After Search for ω1.

(c) After deleting f1.
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(d) After the addition of the modified f1.

Figure 5: Toy example for the simple DSSE scheme.

Algorithm Search(ω)
The client side

1. (Kω, c)← ORAMω.read(ω)

2. K′ω
$← {0, 1}λ; c′ = 0

3. ORAMω.write(ω, (K
′
ω, c
′))

4. Output ω, (Kω, c)

The server side

1. Iω ← S0.get(ω)

2. For i = 1 : c do

p← H(Kω|i)
block ← S1.remove(p)

Iω ← Iω ∪ block.l
j ← S0.insert(ω, block)

S2.update(block.l, block.j, (ω|j|′0′))

3. Output Iω

Figure 2: The Search protocol of the simple DSSE
scheme.

files, i.e. our definition of leakage does not satisfy backward
privacy.

Algorithm Delete(f)
The client side

1. labelf ← ORAMf .read(f)

2. Output labelf

The server side

1. Delete the ciphertext with label labelf

2. Ip ← S2.removeAll(label)

3. For p ∈ Ip do

If p.s==”l” then

S1.remove(p.l)

else

S0.remove(p.l, p.j)

4. Output “OK”

Figure 3: The Delete protocol of the simple DSSE
scheme.

4.2 A Toy Example
In this section, we present a toy example to explain the

design philosophy of our scheme. Let {f1, f2, f3} ∈ F and
that {ω1, ω2, ω3, ω4} ∈ W . The initial keyword sequences
are: Wf1 = {ω1, ω2}, Wf2 = {ω1, ω3}, and Wf3 = {ω4} (see
Fig. 5).

Search ω1. The client first queries ORAMω and retrieves
obliviously the secret key Kω1 and the counter value c, sends
them to the server, and stores back into the ORAMω a new
random key K′ω1

and sets the counter value to zero. The
server uses the key and the counter to compute two labels l1
and l5 and adds the stored labels to Iω1 = {lf1 , lf2}. Since
S0 is initially empty, Iω1 is ready. Then, it deletes the two
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Algorithm Add(f,Wf )
The client side

1. Encrypt f : f ′ = SKE.Enc(K, f)

2. labelf
$← {0, 1}λ

3. For ω ∈Wf do

(Kω, c) = ORAMω.read(ω)

c+ +;ORAMω.write(ω, (Kω, c))

p = H(Kω|c)
Add p to list L

4. ORAMf .write(f, labelf )

5. Output L, labelf , f ′

The server side

1. Store f ′ using label labelf

2. For i = 1 : |L|:
p = L[i]

S1.insert(p, (labelf |i))
S2.insert(labelf , (p|′1′))

Figure 4: The Add protocol of the simple DSSE
scheme.

entries from S1, adds two new items with the same label
ω1 into S0 and updates the corresponding items in S2 with
labels in Iω1 .

Delete file f1. The client first queries ORAMf and re-
trieves the files current label lf1 and sends it to the server.
The server removes all the items with label lf1 from S2. Fol-
lowing the first item (ω1|1|′0′), the server deletes from S0

the first item with label ω1 and following the second item
(l3|′1′), the server deletes from S1 the item with label l3.

Add file f1. The client wants to store a modified ver-
sion of the file f1 and let now Wf1 = {ω1}. The client
selects a new label l′f1 for the file. Then, from ORAMω

the client retrieves obliviously the secret key K′ω1
and the

counter value of ω1. The counter is incremented by one and
label l′5 = H(K′ω|1) is computed and the counter is stored
back into ORAMω and the new label l′f1 with the number
of keywords is obliviously stored into ORAMf . The client
encrypts the file f1 using the key K and sends to the server
the cipher text f ′, the label l′5 and the label l′f1 . The server
updates S1 and S2 accordingly.

5. OUR EXTENDED SCHEME
In this section, we present a more secure version of the

DSSE scheme. More precisely, this extended version hides
the number of keywords |Wf | per file for the initial set of
files, i.e. the SetUp leakage function is now

Lstp := (|F |, |W |, N, len(fi)1≤i≤n).

The Search and UpDate leakage functions are exactly the
same as in the simple case.

The extended scheme treats the searched keywords and
the newly added files the same way as in the simple version,

i.e. the structures S0, S1 and S2 and the ORAMs ORAMω

and ORAMf are as before. However, two new structures
are used to manage the files and the related keywords that
were available at the setup phase. Namely, the structures
Ŝ1 and Ŝ2. The first one, Ŝ1, is used to store the inverted
index for keywords and the second one, Ŝ2 is used for the
file index storage. Both of them are dictionaries with the
entries encrypted and a different label per entry.

The Ŝ1 data structure supports the following operations:

• insert(l, d): stores the data item d with label l. Re-
turns “OK” when data is stored.

• removeAll(l): deletes the all data with label l. Re-
turns all data with that label.

The Ŝ2 data structure’s operations are:

• insert(l, d): inserts the data item d in the structure
with label l. Returns “OK” when data is stored.

• removeAll(l): deletes the all data with label l. Re-
turns all data with that label.

• update(l, j, d): updates the j-th entry item with label
l. Returns “OK” when data is updated.

Secret keys.
Besides the three λ-bit secret keys KF , KW and K that

are used in the simple scheme another λ-bit secret key K̂ is
needed. This key is used to compute two keys per keyword
and two per file for the initial set of files. More precisely,

for a keyword ω the keys K̂
(1)
ω = H(K̂|1|ω) and K̂

(2)
ω =

H(K̂|2|ω) are defined and for each file f the keys K̂
(1)
f =

H(K̂|1|f) and K̂
(2)
f = H(K̂|2|f).

Again, each file f has a random (that changes with each
file update) identifier labelf . For each pair (ω, labelf ) that
appears in the initial set of files, two entries are stored, one
into Ŝ1 and one into Ŝ2. More precisely, the labels lp =

H(K̂
(1)
ω |c) and l′p = H(K̂

(1)
f |c

′) are computed, where c, c′

are counters on the number of pairs with the same keyword
and the same file identifier labelf , respectively.

A data item is stored encrypted into Ŝ1 with a label lp as,

Ŝ1(lp) = ((labelf |l′p)⊕H(K̂(2)
ω |r), r)

where r is a random string of length λ. Similarly, an entry
of Ŝ2 is encrypted and stored with label l′p as,

Ŝ2(l′p) = ((lp|′1′)⊕H(K̂
(2)
f |r

′), r′)

where r′ is a random string of length λ and ′1′ indicates
that the keyword/file identifier pair has not been read yet

and it is stored in Ŝ1 with label lp. However, when the
keyword ω is searched, as in the simple scheme, the entry of
Ŝ2 is modified and it is stored again unencrypted with label
labelf as,

Ŝ2(labelf ) = (ω|i|′0′)

where ′0′ indicates that the pair has been read and it is i-th
item stored in S0 with label ω.

The operations of the DSSE appear in Fig. 6, Fig. 7, and
Fig. 8. More precisely:

SetUp operation. The client chooses four random λ-bit
strings KF , KW , K, K̂ for the two ORAM structures, the
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files encryption (using the SKE Gen(1λ)) and the manage-

ment of Ŝ1 and Ŝ2. The client initiates the two ORAM
structures ORAMω and ORAMf of size |W | and |F | and

fills in Ŝ1 and Ŝ2 with the inverted index for keyword and
the file index respectively. Initially, the structures S0, S1

and S2 are empty.
Search operation. The search for keyword’s ω file identi-

fiers Iω is performed in three steps. The first and second
step are the same as in the simple scheme, i.e. the struc-

tures S0 and S1 are searched. In the third step, K
(1)
ω is used

to compute the labels in Ŝ1 and K
(2)
ω to decrypt the cor-

responding entries. This third step is also parallizable. As
always, S0 is updated with the file identifiers from Ŝ1.

Add operation. Exactly the same as in the simple version
of the DSSE. Only the structures S1 and S2 are used.

Delete operation. We distinguish two cases. If the file f
was inserted during the setup phase and it was never deleted,
then Ŝ2 is used to track the pairs stored in S0 and Ŝ1. The
client retrieves from ORAMf the file identifier labelf and

computes the two keys K̂
(1)
f and K̂

(2)
f and sends them to

the server. The server computes the related labels used in
Ŝ2 and decrypts the entries. Then, the entries are removed
as well as the corresponding entries in S0 and Ŝ1.

If the file was added in a later time, i.e. after the setup
phase, the delete operation is the same as in the simple case
using S2 to retrieve the file index.

5.1 A Toy Example
In this section, we present a toy example to explain mainly

the differences between the extended and the simple DSSE
schemes. Let again {f1, f2, f3} ∈ F and {ω1, ω2, ω3, ω4} ∈
W . The initial keyword sequences are: Wf1 = {ω1, ω2},
Wf2 = {ω1, ω3}, and Wf3 = {ω4}. In Fig. 9 you can see the
initial state of the DSSE. The structures S0, S1 and S2 are
empty and do not appear in the figure. In Fig. 10, we can see
the state of the DSSE after searching for ω1 and after adding
f4 with Wf4 = {ω1, ω2}. The addiction is the same as in the
simple version of the DSSE. Regarding the search for ω1,

the client computes the keys K
(1)
ω1 and K

(2)
ω1 and sends them

with ω to the server. The server computes the labels l1 =

H(K
(1)
ω1 |1) and l4 = H(K

(1)
ω1 |2) (computes until an empty

position is reached), xors the entries with H(K
(2)
ω1 |1) and

H(K
(2)
ω1 |1) and retrieves the set Iω1 = {lf1 , lf2}. Since S0 is

initially empty, Iω1 is ready. Then, it deletes the two entries

from Ŝ1, adds two new items with the same label ω1 into S0

and updates the corresponding items in Ŝ2.

6. COMPLEXITY ANALYSIS
In our scheme, we make a black-box use of the ORAM

algorithm. Thus, we can use any of the proposed solu-
tions. For the complexity evaluation, we consider two of
the most asymptotically efficient ORAMs. The first one
was introduced by Kushilevitz et al. ([12]) and has hier-
archical structure. This scheme has communication over-
head O(log2M/ log logM) blocks and constant client stor-
age, where M is the number of data blocks. Its storage re-
quirements are O(M). The second ORAM is the tree-based
construction, known as the Path-ORAM scheme ([18]). This
scheme has communication overhead O(log2M/ logχ) blo-
cks, where χ equals the block size divided by logM and
small client storage O(logM), where M is the number of

Algorithm SetUp(DB)

1. K
$← SKE.Gen(1λ); K̂

$← {0, 1}λ

2. KF
$← {0, 1}λ; KW

$← {0, 1}λ

3. Initiate two ORAMs of size |W | and |F |

4. For each ω ∈W :

Kω
$← {0, 1}λ; c = Iω

ORAMω.write(ω, (Kω, c))

5. For each f ∈ F :

Encrypt f : f ′ = SKE.Enc(K, f)

labelf
$← {0, 1}λ

Add (labelf , f
′) to list C

ORAMf .write(f, labelf )

K̂
(1)
f = H(K̂|1|f);K̂

(2)
f = H(K̂|2|f);

i = 0

For each ω ∈Wf :

i+ +

K̂
(1)
ω = H(K̂|1|ω); K̂

(2)
ω = H(K̂|2|ω)

pf = H(K̂
(1)
f |i); pω = H(K̂

(1)
ω |i)

r1
$← {0, 1}λ;r2

$← {0, 1}λ

Ŝ1.insert(pω, ((labelf |pf )⊕H(K̂
(2)
ω |r1), r1))

Ŝ2.insert(pf , ((pω|′1′)⊕H(K̂
(2)
f |r2), r2))

6. Reshuffle C //the list is reshuffled to randomize the
output

7. Output C, Ŝ1, Ŝ2, S1, S2

Figure 6: The SetUp protocol of the extended DSSE
scheme

data blocks. Its storage requirements are again O(M). Im-
proved implementations of the Path ORAM algorithm were
recently proposed (for instance [15], [22]).

Search Complexity. Both the simple and the extended
version require two ORAM operations and O(|Iω|) commu-
nication cost for the sending the file identifiers. Thus, the
search complexity is O(max(log2(|W |)/γ, |Iω|)) where γ de-
pends on the ORAM scheme that we use.

Add and delete file complexity. Adding a file requires
one ORAMf write to store the new file label. Then, for
each keyword ωj ∈ Wfi two ORAMω operations (read and
write) are needed and one label per keyword is send. Thus,
the file addition complexity is O(|Wf |(log2(|W |)/γ + 1) +
log2(|F |)/γ). On the other hand, a file deletion requires
only one ORAM read. Thus, the pair deletion complexity is
O(log2(|F |)/γ).

Storage Complexity. The size of the two ORAMs are
O(|W |) and O(|F |) respectively. The three (or five) dictio-
naries can have entries of fixed size and in total O(N) are
used. Thus, the storage required is O(N), as N is bigger
than |W | and |F |.
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Algorithm Search(ω)
The client side

1. (Kω, c)← ORAMω.read(ω)

2. K′ω
$← {0, 1}λ; c′ = 0

3. ORAMω.write(ω, (K
′
ω, c
′))

4. K̂
(1)
ω = H(K̂|1|ω);K̂

(2)
ω = H(K̂|2|ω)

5. Output ω, (K̂
(1)
ω , K̂

(2)
ω ), (Kω, c)

The server side

1. Iω ← S0.get(ω)

2. If Iω = ∅, then

For c = 1 until remove returns ⊥
pω ← H(K

(1)
ω , i)

block ← Ŝ1.remove(pω)

(data.l|data.l′) ← (block.l|block.l′) ⊕
H(K̂

(2)
ω |block.r)
Iω ← Iω ∪ data.l
j ← S0.insert(ω, data)

Ŝ2.update(data.l
′, (ω|j|′0′))

3. For i = 1 : c do

p← H(Kω|i)
block ← S1.remove(p)

Iω ← Iω ∪ block.l
j ← S0.insert(ω, block)

S2.update(block.l, block.j, (ω|j|′0′))

4. Output Iω

Figure 7: The Search protocol of the extended DSSE
scheme.

Parallelization and Locality. All the data structures
can be accessed in parallel. Search can be performed with
parallelism, as well as the add/delete file operations. Also,
we have divided the stored data into two types: leaked and
not leaked. The leaked data include the pairs that have been
revealed after a search operation, as well as the connection
between the label of a newly added file and the labels used to
store related information. Thus, both S0 and S2 data struc-
tures can have high locality by storing data in contiguous
area of memory positions, i.e. entries with the same label
ω and labelf , respectively. Thus, we can replace dictionary
reads with array reads.

7. SECURITY ANALYSIS

Theorem 1. If the used secret key encryption scheme is
SKE is IND−CPA secure, the ORAM algorithm is secure,
and H is a random oracle, then our simple DSSE scheme is
(Lstp,Lsrch,Lupd)-secure against adaptive dynamic chosen
keyword attacks.

Algorithm Delete(f)
The client side

1. labelf ← ORAMf .read(f)

2. K̂
(1)
f = H(K̂|1|f);K̂

(2)
f = H(K̂|2|f);

3. Output (labelf ,K
(1)
f ,K

(1)
f )

The server side

1. Delete the ciphertext with label labelf

2. flag ←′ new′

3. Ip ← S2.removeAll(labelf )

4. If Ip == ∅
flag ←′ init′

For i = 1 : c until remove returns ⊥
pf = H(K

(1)
f |i)

block ← Ŝ1.remove(pf )

Ip ← Ip ∪ block.l ⊕H(K
(2)
f |block.r)

5. For p ∈ Ip do

If p.s==”0” then

S0.remove(p.l, p.j)

else if flag ==′ new′

S1.remove(p.l)

else Ŝ1.remove(p.l)

6. Output “OK”

Figure 8: The Delete file protocol of the extended
DSSE scheme

Proof. (sketch) The polynomial time simulator goes as
follows.

1. Setting up the environment. The simulator S creates
an empty dictionary ρ to store the answers of the ran-
dom oracle. Also, it creates a table TW of |W | entries
filled with randomly chosen λ-bit strings. Finally, it
creates an empty hash table Tf to store the current
labels of the files, and two empty chained hash tables
T0 and T2, i.e. tables of lists. In the simple DSSE
scheme, it is easy to verify that the setup protocol can
be composed of several application of the add file op-
eration. The storage of the ciphertexts can be trivially
simulated by encrypting all zero strings with the IND-
CPA encryption scheme. It is left out of the proof (for
instance see the proof in [9]).

2. Simulating the Search protocol. The value k ← TW [ω]
is retrieved and a new random is stored at TW [ω]. Also,
the set Iw is leaked. Part of it is the list I0 ← T0[ω].
The other part is retrieved from T2. For each l ∈ Iω\I0,
remove from the list T2[l] the item with ω, and add l
in the list T0[ω].

3. Simulating the Add file protocol. From the leakage
function besides the type of the operation, the file
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Figure 9: Toy example of the extended DSSE: initial
state. The colored cells are encrypted.

f and the number of keywords |Wf | are leaked. A
label labelf is chosen at random and it is stored at
Tf [f ] ← labelf . A list is created of |Wf | items as fol-
lows. Among the |W | keywords |Wf | are chosen at
random. Then, a counter is set c ← 0 and for each of
the selected keywords the counter is increased by one
and it is checked if ρ[k][ω][c] has a value, where k is
the value at TW [ω]. If it has a value, then this value
is added in the list with ω. Otherwise, a random la-
bel l is chosen, it is stored at ρ[k][ω][c] and the pair
(l, ω) is added in the list. Finally, the list is stored at
T2[lablef ].

4. Simulating the Delete file protocol. From the leakage
function besides the type of the operation, the file f is
leaked. The label labelf is retrieved from Tf [f ]. Then,
all items in T0 that contain labelf are deleted. Also,
the list T2[lablef ] is deleted.

Theorem 2. If the used secret key encryption scheme is
SKE is IND−CPA secure, the ORAM algorithm is secure,
and H is a random oracle, then our extended DSSE scheme
is (Lstp,Lsrch,Lupd)-secure against adaptive dynamic cho-
sen keyword attacks.

Proof. (sketch) For the simulation of S0, S1 and S2 we
work as above. The simulator has to simulate two more
structures, i.e. Ŝ1 and Ŝ2. The two structures are similar to
the ones used in [2]. Then, we can use an hybrid argument
to show the output of the simulator is indistinguishable from
the output of the DSSE. The proof is similar to the one used
in [2].

The security of the scheme can be proved in the standard
model with some extra communication overhead. We use

Figure 10: Toy example of the extended DSSE: final
state. The colored cells are encrypted.

a pseudorandom function for the computation of the labels
at S1 and the client, instead of sending the current random
key K of the keyword, he computes all the labels and then
sends them to the server. The encryption scheme for the
dictionary entries (for Ŝ1 and Ŝ2) is a one-time pad like, for
instance the CTR mode with a random IV, and the client
computes the encryption pads and send them to the server
for the decryption.

8. DISCUSSION AND CONCLUSION
In this paper, we introduced two efficient DSSE schemes

that achieve forward privacy with very small leakage. To
the best of our knowledge only one scheme exists that offers
the same level of security in terms of information leakage.
Our schemes are ORAM based, and we demonstrated that
with a limited use of an ORAM algorithm, we can achieve
forward security and, at the same time, to minimize the
overhead that this primitive introduces. In terms of search
and update complexity, both our schemes depend only on
the number of different keywords used and not on the total
number of the keyword/file identifier pairs. That constitutes
both our proposals optimal, when the number of keywords
is fixed.

Our schemes can be easily further extended. One possible
extension is to enrich the update operations. Add/delete
operations for the keywords can be supported or even more
fine-grained modifications at the level of a single pair. Also,
since our schemes follow similar design philosophy with the
SSE in [2], the implementation optimizations that are pro-
posed in that paper can be applied. Finally, the data struc-
tures can be extended to perform complex Boolean queries
on encrypted data via the OXT protocol ([1]).
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