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ABSTRACT
In this paper a new blind image-adaptive watermarking
technique is proposed. The main contributions in this work
are the following. First, a new spatial mask taking into ac-
count the Human Visual System (HVS) properties, is pro-
posed. The mask is constructed based on the local vari-
ance of the cover image prediction error sequence. Sec-
ond, an improved detection scheme has been developed,
which is blind, in the sense that no knowledge concerning
the cover image is required. The similarity measure used
in the detector is the normalized correlation between the
reproduced watermark and the prediction error of the wa-
termarked and possibly attacked image (instead of the im-
age itself). Due to the above modifications the proposed
technique exhibits superior performance as compared to
the conventional HVS-based blind adaptive watermarking.
This performance improvement has been justified theoret-
ically and verified through extensive simulations. In par-
ticular, the proposed technique is robust to additive white
noise, JPEG and Wavelet compression, filtering etc.

1. INTRODUCTION

The spreading of digital data (image, audio, video) via net-
work necessitates measures for copyright protection and
authentication. Digital watermarking is a possible solu-
tion to this problem. It consists in embedding useful in-
formation in the data, in such a way that it is difficult to
be removed. This information, the so-called watermark,
provides the identity of the data owner. A watermark is
usually a key-generated pseudorandom pattern. The key
should have a secure length so that cryptographic attacks
can be avoided. The embedded watermark should not af-
fect the image quality in a visible manner, but at the same
time it has to be robust to attacks. Obviously, a high en-
ergy watermark is more robust than a low energy one. The
watermark’s energy depends on the channel (original im-
age) capacity. The image capacity in turn is determined by
the amount of information that can be inserted in an image
without producing visible artifacts.

An effective way to improve the robustness of a wa-
termark without affecting image quality, is to increase its
energy in a spatially adaptive manner, using a visual mask
that exploits the HVS’s properties. The HVS is less sen-
sitive to distortions around edges and in textured areas. In
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[1] a texture masking function based on local image prop-
erties is suggested. In [2] the watermark is embedded in
the blue channel, exploiting the fact that human eye is less
sensitive to this particular channel. In [3] the watermark
is added to a number of low frequency DCT coefficients,
adapted by the coefficients’ strength. In [4], an alternative
transform watermarking has been proposed taking into ac-
count spatial domain constraints. More references regard-
ing masking techniques in spatial and transform domain
can be found in [5] and [6].

In the new image-adaptive watermarking technique pro-
posed in this paper, the involved masking function is con-
structed based on the prediction error variance of the cover
image. The prediction error sequence matches quite well
the HVS characteristics since the errors are expected to
be smaller in smooth areas than in edges and textured ar-
eas. Now, concerning the detection procedure, this is per-
formed blindly, requiring only the watermark key. More-
over, we propose as similarity measure the normalized cor-
relation between the watermark and the prediction error
sequence of the received image. Recall, that commonly
the detection is done by computing the correlation between
the watermark and the image available at the detector.

The above mentioned modifications result in consider-
ably improved performance as compared to conventional
masking and detection. This performance superiority, that
is mainly due to the new detection scheme, has been proved
theoretically, for the cases of no attack, noise attack and
linear filtering attack. Extensive simulations and checks
have shown that the proposed watermarking scheme is ro-
bust to many attacks, as additive white noise, JPEG and
wavelet compression, filtering, dithering, thresholding etc.
The basic steps of the proposed watermarking scheme and
the theoretical analysis for the detection are presented in
Section 2. Experimental results are provided in Section 3
and finally, in Section 4, the work is concluded and further
research directions are mentioned.

2. THE PROPOSED WATERMARKING
TECHNIQUE

2.1. Problem Formulation

Let x be a cover image and w the watermark, which is a
pseudorandom pattern with zero mean and variance σ2

w .
Also, the watermark is of the same size (and uncorrelated)



with the cover image . The watermarked image is given by

y = x + w (1)

If spatial masking is used, then, denoting the involved mask
by M , the watermarked image can be written as

y = x + M�w (2)

where � stands for pointwise multiplication. The strength
of the watermark is incorporated into w . Since mask M
depends only on x, it can be readily shown that the masked
watermark u ≡ M�w is also a zero mean white process
and uncorrelated with the cover image x .

2.2. Visual Masking Based on Prediction Error

As already mentioned in the introduction, the proposed vi-
sual mask is computed indirectly based on the prediction
properties of the cover image. Having assumed stationar-
ity, we first compute the prediction error filter by minimiz-
ing the cost function

JLP = E{|x(i, j) − x̂(i, j)|2} (3)

where x̂(i, j) is the predicted value of x(i, j) given by

x̂(i, j) = aT
x x̃(i, j) (4)

where ax is a (p2 − 1)-length vector containing the linear
prediction coefficients taken row-wise and vector x̃(i , j )
contains row-wise the corresponding pixels of the p × p
non-causal neighborhood of x(i, j) (except for the central
one at (i, j)). Minimization of the above cost function with
respect to ax leads to the following system of equations

Rxax = rx (5)

where Rx is the autocorrelation matrix of x and rx the cor-
responding cross-correlation vector. The solution of the
above system yields the linear predictor ax. The desired
prediction error sequence is derived as

ex(i, j) = x(i, j) − aT
x x̃(i, j) (6)

The prediction error sequence of the original image varies
spatially in a manner which is well suited for the HVS. It
has lower values for the smooth areas of the image (that
are more predictable) than for the edges and the textured
areas (that are less predictable). The proposed masking
function is defined as

M (i , j ) = 1 − 1
1 + σ2

ex
(i , j )

(7)

where σ2
ex

(i , j ) denotes the local variance of the predic-
tion error in the neighborhood of pixel (i, j). Note that the
above definition is similar to that of the so-called Noise
Visibility Function (NVF) suggested in [1]. The differ-
ence is that in masking function NV F (i, j) the local vari-
ance of the pixel values, i.e. σ2

x(i, j), is used instead of
σ2
ex

(i , j ).
Since, in general, σ2

ex
(i , j ) < σ2

x (i , j ), we deduce
that M (i , j ) < NVF (i , j ). This means that the water-
mark strength (i.e. the multiplicative factor) can be higher

for the proposed mask without smoothing the local differ-
ences. It should be noted that the image edges and textured
areas are better represented by the prediction error, since
the “smooth” component of the image, i.e. the predicted
part of the image, has been taken away.

2.3. New Blind Detection Scheme

Commonly, the blind watermark detection procedure em-
ploys a similarity measure based on the correlation be-
tween the watermark and the received image. In the pro-
posed detection scheme, the sequence correlated with the
watermark is the prediction error sequence of the received
image, which is the original image after watermarking and
possible attack. It turns out that, in fact, the proposed
scheme is an extension of well-established techniques in
communications for detecting stochastic signals in non-
white noise. In the case under consideration, the signal to
be detected is the watermark while the non-white noise is
the attacked image. Next, we show that the modified cor-
relation measure, yields better results as compared to the
conventional one. The analysis has been performed for the
cases of a) no attack, b) attack with additive white noise,
and, c) linear filtering attack.

2.3.1. Detection after no attack

Let us first consider the case of detecting a non-masked
watermark, i.e., the received image is y = x + w . The
prediction error of the watermarked image, i.e., ey(i, j) =
y(i, j) − aT

y ỹ(i, j) is defined similarly to (6). The aim
is to compare the correlation between y and w , with the
correlation between ey and w . These correlation measures
are defined as

Cy,w =
E[y(i, j)w(i, j)]√

E[y(i, j)y(i, j)]
√

E[w(i, j)w(i, j)]
(8)

Cey,w =
E[ey(i, j)w(i, j)]√

E[ey(i, j)ey(i, j)]
√

E[w(i, j)w(i, j)]
(9)

Starting from (8) and (9) it can be shown, after standard
manipulations, that

Cey,w ≥ Cy,w ⇔ Px ≥ σ2
ex

+ σ2
w‖ax‖2 (10)

where Px is the power of the cover image and ‖ · ‖ is the
Euclidean norm . That is, the output of the proposed detec-
tor is larger than the conventional one as long as the right
inequality is valid, which is always the case.

Let us now consider the case y = x + u , where u =
M�w. Then, starting again from (8) and (9) we get

Cey,w ≥ Cy,w ⇔ Px ≥ σ2
ex

+ PMσ2
w‖ax‖2 (11)

where PM is the power of the mask. The condition, as
expressed by the right inequality holds true in any practical
case.

If in the detection procedure we use u instead of w the
correlations change to

Cy,u =
E[y(i, j)u(i, j)]√

E[y(i, j)y(i, j)]
√

E[u(i, j)u(i, j)]
(12)



Cey,u =
E[ey(i, j)u(i, j)]√

E[ey(i, j)ey(i, j)]
√

E[u(i, j)u(i, j)]
(13)

The resulting inequality is the same as in (11), i.e.,

Cey,u ≥ Cy,u ⇔ Px ≥ σ2
ex

+ PMσ2
w‖ax‖2 (14)

However, comparing (12) with (8) and (13) with (9) we
obtain

Cy,u ≥ Cy,w and Cey,u ≥ Cey,w ⇔ PM ≥ µ2
M (15)

where µM is the mean value of the mask. That is, we
deduce that, it is always preferable to use u in the detec-
tion procedure. To compute u we need the mask which is
unknown but can be adequately approximated based on y
(and not on x which is not available).

2.3.2. Detection after noise attack

Let y = x + w + n , where n is additive white gaussian
noise with zero mean and variance σ2

n . The resulting in-
equalities , corresponding to (10), (11) and (14), are as
follows,

Cey,w ≥ Cy,w ⇔ Px ≥ σ2
ex

+ (σ2
w + σ2

n)‖ax‖2 (16)

Cey,w ≥ Cy,w ⇔ Px ≥ σ2
ex

+ (PMσ2
w + σ2

n)‖ax‖2 (17)

Cey,u ≥ Cy,u ⇔ Px ≥ σ2
ex

+ (PMσ2
w + σ2

n)‖ax‖2 (18)

The comments made above (see (15)), concerning use of
u instead of w in the detection, are valid here, too.

2.3.3. Detection after linear filtering attack

In this case the image is given as z = hTy(i , j ), where
h contains the coefficients of a linear filter of size l × l
taken row-wise. It is assumed that, in general, l ≥ p.
The prediction error for the received image is given by
ez (i , j ) = z (i , j ) − aT

z z̃(i , j ). The correlation measures
under comparison here are given by,

Cz,w =
E[z(i, j)w(i, j)]√

E[z(i, j)z(i, j)]
√

E[w(i, j)w(i, j)]
(19)

Cez,w =
E[ez(i, j)w(i, j)]√

E[ez(i, j)ez(i, j)]
√

E[w(i, j)w(i, j)]
(20)

which can also be written as

Cz,w =
h0σ

2
w√

Pz

√
σ2

w

(21)

Cez,w =
(h0 − aT

z h̃)σ2
w√

σ2
ez

√
σ2

w

(22)

where Pz is the power of z , and h̃ is the truncated (p2−1)-
length central part of the linear filter vector h (exclud-
ing h0 ). The proposed detection scheme would be better
than the conventional one if Cez ,w were greater or equal to
Cz,w, under reasonable conditions. This can be shown for
a wide range of filters but the proof is skipped due to the
limited space.

Given Data Case
The analysis in the above subsections is based on ideal
conditions. That is, it has been assumed that each water-
mark is a white process, perfectly orthogonal to the other
watermarks as well as completely uncorrelated with the
cover image. Of course, in the given data case the above
situation can only be approximately true. In such a case,
all non-zero auto- and cross-correlations should be taken
into account and sample averages should replace the ex-
pectation operators. The correlation coefficient between
the received image (or its prediction error) and another wa-
termark (different than the embedded one) will no longer
be zero. Thus, in the given data case it is important to study
the ratio between the peak value of the correlation coeffi-
cient and the maximum secondary value corresponding to
another watermark. Also, thresholds should be derived so
as to systematize the detection procedure. Preliminary re-
sults, in the case of noise attack, have already been derived
confirming the results presented in the ideal case above.
This analysis is skipped here due to limited space.

3. EXPERIMENTAL RESULTS

Although extensive simulations have been conducted for
several images of different types, here we provide only
representative results for two images, the “Clock” (375 ×
500) and “Lenna” (256×256). The proposed visual mask
was first derived for each image and after being multiplied
with the corresponding watermark (of strength 5) it was
added to the original image. The steps of the watermark
embedding are shown in Figure 1, for the “Clock” image.
Subsequently, the watermarked image was attacked. Most

(a) Original image (b) Prediction error

(c) Prediction error based mask (d) Watermarked image

Figure 1. The steps of watermark embedding.

of the attacks were derived using Checkmark [7]. The
results shown in Table 2 have been obtained after apply-
ing on the received image the conventional direct detec-
tion (DD) and the prediction error based detection scheme
(PED). A bank of 1000 different watermarks was used
with the correct watermark having index equal to 500. As



it can be easily deduced, the detection is much better for
the PED and is feasible even in cases where the DD can-
not find the watermark. Two characteristic examples of the
detectors’ responses are shown in Figure 2.
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(a) Wavelet comp. Q10, DD
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(b) Wavelet comp. Q10, PED
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(c) Wiener, DD
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(d) Wiener, PED

Figure 2. Direct and proposed detection.

4. CONCLUSION AND FUTURE WORK

A new visual masking function as well as a new detec-
tion scheme have been proposed. Their performance mer-
its have been justified theoretically for the cases of no at-
tack, noise attacks and linear filtering attacks. Extensive
experiments have shown that the proposed technique per-
forms equally well to several other type of attacks. The
theoretical justification for these other attacks is an issue
under investigation. Moreover, masking function based on
adaptive prediction error filter will be tested and compared
with other existing masks. Finally, the robustness to geo-
metrical attacks is under consideration.
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Table 1. Detectors’ responses (using u) for different at-
tacks. Dash means that detection is impossible.

AWGN 30dB 20dB 10dB 0dB
Clock (DD) 0.0389 0.0389 0.0376 0.0255
Clock (PED) 0.3879 0.2486 0.1037 0.0312
Lenna (DD) 0.0344 0.0349 0.0348 0.0290
Lenna (PED) 0.4126 0.2438 0.1001 0.0387
JPEG Compr. Q80 Q50 Q15 Q10

Clock (DD) 0.0209 0.0140 0.0089 -
Clock (PED) 0.1188 0.0495 0.0190 0.0131
Lenna (DD) 0.0214 0.0137 - -
Lenna (PED) 0.1893 0.0819 0.0210 -

Wavelet Compr. Q80 Q50 Q20 Q10
Clock (DD) 0.0366 0.0282 0.0132 -
Clock (PED) 0.3832 0.2933 0.0756 0.0232
Lenna (DD) 0.0326 0.0243 0.0131 -
Lenna (PED) 0.4370 0.3070 0.0646 0.0150

Colour Reduce Dithering Thresholding
Clock (DD) 0.0452 0.0464
Clock (PED) 0.0543 0.1224
Lenna (DD) 0.0467 0.0441
Lenna (PED) 0.0615 0.1514

Sampledownup Case 1 Case 2
Clock (DD) 0.0234 0.0109
Clock (PED) 0.1734 0.0280
Lenna (DD) 0.0204 0.0129
Lenna (PED) 0.2297 0.0427

Wiener Filtering 3x3 5x5
Clock (DD) 0.0138 0.0125
Clock (PED) 0.1390 0.1666
Lenna (DD) - -
Lenna (PED) 0.1283 0.1449

Trimmedmean 3x3 5x5
Clock (DD) - -
Clock (PED) 0.0294 0.0516
Lenna (DD) 0.0130 0.0128
Lenna (PED) 0.0546 0.0640

Median 2x2 3x3 4x4
Clock (DD) 0.0127 0.0095 -
Clock (PED) 0.0710 0.0524 -
Lenna (DD) - - -
Lenna (PED) 0.0684 0.0694 -
Other Filters Laplacian Gaussian Unsharp
Clock (DD) 0.0273 0.0255 0.1323
Clock (PED) 0.3602 0.3940 0.4521
Lenna (DD) 0.0259 0.0226 0.1254
Lenna (PED) 0.4293 0.5010 0.5127


