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Abstract—The rapid growth of Information and Communica-
tion Technologies emerges deep concerns on how data mining
techniques and intelligent systems parse, analyze and manage
enormous amount of data. Due to sensitive information contained
within, data can be exploited by potential aggressors. Previous
research has shown the most accurate approach to acquire
knowledge from data while simultaneously preserving privacy is
the exploitation of cryptography. In this paper we introduce an
extension of a privacy preserving data mining algorithm designed
and developed for both horizontally and vertically partitioned
databases. The proposed algorithm exploits the multi-candidate
election schema and its capabilities to build a privacy preserving
Tree Augmented Naive Bayesian classifier. Security analysis and
experimental results ensure the preservation of private data
throughout mining processes.

Index Terms—Data mining, Distributed databases, Privacy
preserving, Paillier cryptosystem, Homomorphic encryption, Tree
augmented naive bayes

I. INTRODUCTION

Databases containing private data (medical, social, financial,
etc) distributed across several parties are exploited for the
discovery of useful patterns. Voluminous data disseminated
daily due to the rapid spread of Internet and Information
and Communication Technologies. The uncontrollable growth,
storage, retrieval and processing of data, has led to the decrease
of useful information contained within statistical databases.

The General Data Protection Regulation (GDPR) [1] recog-
nizes the need to facilitate the free flow of data, and promotes
the protection of personal data. Information and Communi-
cation systems should be designed so that data protection is
taken into consideration, in order to meet the requirements
of the Regulation. Partitioned databases owners demand their
privacy to be preserved as data mining techniques are applied
to further analyze their private data [2], [3]. For example, some
companies wish to collaborate in order to extract knowledge
on market trends, on the premise their sensitive data will not
be disclosed, mainly for competitiveness reasons.

Distributed databases can be either horizontally [4]–[7]
or vertically partitioned [8], [9]. In horizontally partitioned
databases, each party holds a different set of records but
a unified set of attributes. On the contrary, each vertically

partitioned database has different set of attributes for the same
recordset [10], [11].

Various privacy preserving data mining techniques, such
as randomization, perturbation and k-anonymity, have been
proposed in the literature aiming to efface possible disclosure
of sensitive information to expectant aggressors, while data
mining processes are applied. Many data encryption tech-
niques are based on the idea of Yao [12]. An extension of Yao’s
idea introduced by Goldreich [13] is also widely exploited.
The basic idea is “the computation of a function that accepts
as input some data is secure if at the end of the calculation
process neither party knows anything but their own personal
data, which constitute one of the inputs, and the final results”.

In a secure multi party computation protocol, a set of parties
wish to jointly compute a function given their private data
as input. A Trusted Third Party (Miner), collects the private
data from all involved parties and performs all necessary
calculations. The Miner forwards the final results to each party
while providing privacy required in distributed environments.
This protocol is secure only if neither party nor the Miner
learn anything more than the output [14].

In this paper, we extend a privacy preserving data mining
technique proposed by Skarkala et al. [15], which exploits
the multi-candidate election schema [16] and aims to extract
global information not only from horizontally but additionally
from vertically partitioned statistical databases. For that pur-
pose, a robust privacy preserving version of a Tree Augmented
Naive Bayesian classifier was implemented. The homomorphic
primitive, first proposed by Yang et al. [17] is exploited from
Paillier cryptosystem [18] to preserve privacy. Based on this
primitive, the Miner is unable to identify the original data
included in the sharing databases or the database owners
identity. The protocol allows the performance of all necessary
operations only when at least three parties are connected with
the Miner, making communication among them unfeasible.

The paper is structured as follows. A brief review of privacy
preserving techniques is introduced in the next section. The
theoretical background of the current proposal is presented
in Section 3, while in Section 4 we describe the proposed
protocol and its requirements. In the next sections, both types
of database partition are evaluated, and the confrontation of
possible threats to the proposed protocol follows. The basic978-1-7281-6445-8/20/$31.00 ©2020 European Union



conclusions of our work are presented at the last section.

II. RELATED WORK

Privacy in data mining aims to prevent leakage of sensitive
data without undermining the extracted knowledge produced
by the application of the data mining process [19].

Privacy preserving data mining algorithms can be catego-
rized in five segments [9], i.e. apportionment of data, modifica-
tion of data, data mining algorithm, type of data and technique
for preserving privacy. Qi and Zong [20] illustrate evaluation
criteria and review privacy protection technologies in data
mining. Malik et al. [21] also discuss the evaluation parameters
and the trade off between privacy and utility. The authors
in [22] define different parameters to quantify the trade-
off between privacy and information loss in order to create
a framework for evaluating privacy preserving data mining
algorithms. Bertino et al. [23] identify a set of criteria, such
as privacy level, hiding failure, data quality and complexity,
to evaluate the effectiveness of privacy preserving data mining
algorithms.

Most existing privacy preserving data mining methodologies
can be classified into two main categories [19]; methodolo-
gies that protect the input data in the mining process, and
methodologies that protect the final data mining results. In
the first approach, techniques are applied to the input data in
order to hide any sensitive information and safely distribute
the data to other parties. The goal is to generate accurate data
mining results in a distributed environment. In the second
approach, the applied techniques prohibit the disclosure of
sensitive knowledge derived through the application of data
mining algorithms.

One major question that should be answered in every
methodology is ”Do the results themselves violate privacy?”
as defined by Kantarcioglu, Jin and Clifton [24]. The au-
thors propose a model for privacy implication of the learned
classifier, and within this model they study possible ways in
which the classifier can be used by an attacker to compromise
privacy. However, they do not provide a solution that prevents
an attacker from accessing the data mining results and thus
violate privacy. Scardapane et al [25] consider the analysis of
medical data distributed in multiple parties. Such environments
may apply privacy protocols that forbid to disclose their local
data to a centralized location.

Randomization and cryptography are the most widely stud-
ied privacy preservation techniques. Huai et al. [26] con-
structed differentially private protocols for distributed data
used to extract knowledge through Naive Bayes learning
techniques. Liu et al. [27] proposed an approach where multi-
plicative perturbations are applied on the data for introducing
noise. These techniques however do not assure the quality of
the final results. Also, the authors in their privacy analysis did
not take into account prior knowledge.

Vaidya et al. [28] focus on generating privacy preserving
results instead of sharing secure data sets. They apply differ-
ential privacy to develop a Naive Bayes classifier provided
as a cloud service. However, those techniques only focus on

publishing useful results and not sanitized data that can be
shared.

Randomization is used in association rules [29] and decision
trees [30] for vertically and horizontally partitioned databases
respectively. Although this method is efficient, results to inac-
curate outcomes. Kargupta et al. [31] reveal that randomization
techniques may compromise the privacy and special attacks
can result to the reconstruction of the original data, as they
point out that additive noise can be easily filtered out. For
example, Zhang et al [32] proposed a randomization technique
that combines data transformation and data hiding, exploiting
a privacy preserving modified Naive Bayes classifier to predict
the class values on the distorted data.

On the other hand, cryptographic techniques are more
secure providing accurate results, but in many cases they lack
efficiency. Cryptography is applied in models [9], [33] which
most of them are based on the idea of Yao [12], and an
extension proposed by Goldreich [13], who studied the secure
multi-party computation problem.

Several privacy preserving techniques that have been pro-
posed in the literature encrypt the data within horizontally
partitioned databases for building Decision Trees [34], [35],
Naive Bayesian classifiers [5], [17], [36], [37], and Association
Discovery Rules [4]. This technique was also applied to
vertically partitioned databases to create Association Rules
[6], [33] and Naive Bayesian classifiers [36], [38]. Tassa [39]
proposed a protocol for secure mining of Association Rules
for horizontally partitioned databases. The author presented
the leverages of the proposal over existing protocols [4].

The method proposed by Goethals et al. [40] is both
simple and secure. The key idea behind the protocol is to
use a homomorphic encryption system such as the Paillier
cryptosystem.

Keshavamurthy et al. [41] propose as well a secure multi
party approach to compute the aggregate class for vertically
partitioned data using the Naive Bayes classifier. Many re-
searches [5], [17], [37], [42] utilize Naive Bayes classification
because of its simplicity and straightforward approach. Sim-
plified Bayesian Networks have also been used for data mining
processes by either applying the Tree Augmented Naive Bayes
[43] or K2 algorithm [6].

A similar proposal [43] to ours, uses an algebraic technique
to perturb the original data. On the other hand, our protocol
uses cryptographic techniques, which can assure privacy and
result to accurate outcomes.

III. BACKGROUND

A. Classification of nominal and numeric attributes

Classification aims to predict the value of an attribute by
estimating the probabilities from a training set. The calculation
of the probabilities differs for numeric and nominal attributes.

For nominal attribute X , with values x1,. . . ,xr, the proba-
bility for each value is P (X = xk|uj) = nj/n, where n is the
total number of training instances for which V = uj and nj
is the number of the ones that have X = xk. The conditional
probability that an instance belongs to a certain class c is



calculated by (1), where nac is the number of instances with
class value c and attribute value a, while na is the number of
instances with attribute value a.

P (C = c|A = a) =
P (C = c ∩A = a)

P (A = a)
=
nac
na

(1)

For a numeric attribute, the mean µ and variance σ2 param-
eters are calculated for each class and each numeric attribute.
The probability that an instance is of class uj , denoted as
P (X = x′|uj), can be estimated by substituting x = x′ in the
probability density equation. The conditional probability of a
class given the instance is calculated for all classes and the
class with the highest relative probability is chosen as the class
of this instance. In order to compute the mean µ for a class
value, these local sums are added together and divided by the
total number of instances having that same class. Since each
party knows the classification of the training instances, it can
subtract the appropriate mean µ from an instance having class
value y, square the value, and sum all such values together.
The global sum divided by the global number of instances
having the same class y gives the required variance.

The normal probability distribution is computed in (2),
where x is a random variable, µ is the mean of the distribution
and σ is the standard deviation (σ2 is the variance), π is
approximately 3.14159 and e is approximately 2.71828.

P (x) =
1

σ ∗ sqrt(2π)
∗ e

−(x−µ)2

2σ2 (2)

B. Tree-Augmented Naive Bayesian Classifier

Traditional Naive Bayes, a classifier that supports both nom-
inal and numeric attribute values, computes the conditional
probability of each attribute Ai given the class C. Bayes
theorem is applied to compute the probability of class C given
a specific instance vector < A1.....An >, where n is the total
number of attributes. However, this classifier is based on a
sometimes unrealistic assumption, leading to poor prediction
outcomes in some domains [44], since it does not take into
consideration any prior knowledge on the class variable C. The
classifier assumes that all attributes are independent given the
value of C, a restrictive and oversimplified assumption. The
performance of such classifiers can be improved by effacing
this assumption.

An interesting variation of Bayesian networks, is the Tree-
Augmented Naive Bayesian (TAN) classifier [45]. This classi-
fier, unlike the Naive Bayesian, is not based on the unrealistic
assumption that attributes are independent. The classifier al-
lows the existence of additional edges between attributes that
represent the correlation among them. In a TAN network the
class C has no parents and each attribute Ai has as parents
the class and at most one other attribute Aj . In an augmented
structure, an edge from attribute Ai to Aj implies that the
influence of Ai on the assessment of the class also depends on
the value of Aj . TAN removes any independence assumptions,
improving classical Naive Bayes classifier and behaves more
robust regarding classification since it combines the initial

structure of the Naive Bayes algorithm with prior knowledge
(if available) or obtained knowledge about the correlation of
input features via a training approach.

C. Homomorphic primitive

A tool widely used in the literature is the homomorphic
primitive, whereby the result of encrypting two messages is
equal to the sum of the two messages separately encrypted
(3).

E(M1⊗M2) = E(M1)⊗ E(M2) (3)

This primitive was first used in the work of Yang et.al. [17]
in order to build a privacy preserving data mining model in a
distributed environment.

D. Paillier cryptosystem

The Paillier algorithm exploits the additive homomorphic
primitive [36] to achieve anonymity and unlinkability between
parties and personal data. In the proposed algorithm, a random
variable M , which is computed by the Miner and used to
confront any chosen-plaintext attacks, is delivered to each
party encrypted with their own public key and used for
encrypting the transmitted messages.

More specifically, if a party j wishes to send to the Miner
the frequency i, then he encrypts the message with the Miner’s
public key. When at least three parties have sent their data to
the Miner, the homomorphic primitive is applied to calculate
the total frequencies of each possible attribute value in relation
to each class value by decrypting the messages received all
at once. The Miner cannot associate the frequencies obtained
with the original records and link the data to their owners,
since the decryption process occurs only after the participation
of minimum three parties.

IV. PROTOCOL DESCRIPTION

The objective of the current work is to develop a se-
cure protocol by exploiting efficient encryption that satis-
fies the essential security and design requirements. Global
and accurate information is extracted using Tree Augmented
Naive Bayesian classification algorithm [46], while privacy
is preserved. Encryption processes are applied to a client-
server (party-Miner) environment ensuring that any transmitted
message is not accessible by unauthorized parties, in a fully
distributed environment.

The Miner’s objective is to generate the classification model
by collecting, from at least three parties, the frequencies of
each attribute value in relation to each class value of the
horizontally or vertically partitioned database. In vertically
partitioned databases we assume that every participant is aware
of the class value of each record. Attributes can have either
nominal (Fig. 1) or numeric (Fig. 2) values, including binary
data. The frequencies are encrypted using Paillier cryptosys-
tem, which exploits the homomorphic primitive, ensuring sen-
sitive data remain secret. The only data flow is only between
each party and the Miner.



1: for c1 . . . cm class values do
2: for a1 . . .ai attribute values do
3: for each party 1 . . .n do
4: 1. compute # instances fim with class value m

and attribute value i
5: 2. compute # instances fnm with class value m
6: end for each
7: Miner computes using homomorphic primitive:
8: 1.

E(f1mi ⊗ f2mi ⊗ · · · ⊗ fnmi) =

E(f1mi)⊗ E(f2mi)⊗ · · · ⊗ E(fnmi)

9: 2.
E(c1m ⊗ c2m ⊗ · · · ⊗ cnm) =

E(c1m)⊗ E(c2m)⊗ · · · ⊗ E(cnm)

10: end for
11: Miner computes:

Pim =
E(f1mi ⊗ f2mi ⊗ · · · ⊗ fnmi)

E(c1m ⊗ c2m ⊗ · · · ⊗ cnm)

12: end for

Fig. 1. Protocol for Nominal Attribute Values

As mentioned, the current work is an extension of a previous
research [15] and is based on the study by Mangos et al. [47].
Thus, among the features used and the requirements to be met,
they spring up from their quotations.

A. Security requirements

The GDPR [1] requires appropriate measures to implement
the data protection principles and safeguard individual rights.
The Privacy by Design approach ensures privacy and data
protection are taken into consideration at the design phase of
any system and throughout the entire lifecycle. This approach
highly impacted the implementation of the current proposal,
and all proper measures were operated in all phases, as
described in this section.

Each party in a distributed environment can be considered
either semi-honest or malicious. Semi-honest parties are cu-
rious to learn more information, but they follow the protocol
specifications. On the other hand, malicious parties can be
categorized to internal and external. An internal adversary
deviates from the protocol by sending specific inputs, with
the purpose to recognise other parties private data. An external
adversary will impersonate a legal party and then behave as
an internal. In the current protocol we consider both adversary
types.

The Miner and each party are mutually authenticated, by
sending their digital signatures, assuming they were signed
by a Certification Authority (CA), in order to confront such
behaviors. Thus, only authorized parties can participate to the
protocol and connect with the literal Miner.

1: for c1 . . . cm class values do
2: for party 1 . . .n do
3: 1. compute # instances fm with class value cm
4: 2. compute sum of instances snm with cm
5: end for
6: Miner computes using homomorphic primitive:
7: 1. Total sum sm

E(s1m ⊗ s2m ⊗ · · · ⊗ snm) =

E(s1m)⊗ E(s2m)⊗ · · · ⊗ E(snm)

8: 2. Total # instances Nm

E(f1m ⊗ f2m ⊗ · · · ⊗ fnm) =

E(f1m)⊗ E(f2m)⊗ · · · ⊗ E(fnm)

9: 3. Mean
µm =

sm
Nm

10: end for
11: for c1 . . . cm class values do
12: for party 1 . . .n do
13: for each instance y do
14: 1.

uimn = ximn − µm

15: 2.
uimn =

∑
y

(u2mn)

16: end for each
17: end for
18: Miner compute variance:
19: 1.

um = E(u1m ⊗ u2m ⊗ · · · ⊗ unm) =

E(u1m)⊗ E(u2m)⊗ · · · ⊗ E(unm)

20: 2.
σ2
m = um ∗

1

Nm − 1

21: end for

Fig. 2. Protocol for Numeric Attribute Values

If confidentiality, anonymity and unlinkability are fulfilled,
then privacy is preserved. Asymmetric encryption ensures
that all transmitted data between one party and the Miner
are encrypted, and only the party to whom the message is
intended for can decrypt it. Anonymity and un-linkability can
be achieved as the Miner, through the homomorphic primitive,
cannot identify the inputs that each party submits. Sensitive
data remain secret and the identity of each party is not
revealed. Integrity mechanisms are implemented in case any
active attacker tries to modify the transmitted messages, and
cause variations to the final results or disclosure sensitive data.
In every transmitted message, an SHA-1 digest is concatenated
assuring any altered message can be detected.



B. Protocol analysis
The current work presents a protocol which utilizes the

Paillier cryptosystem that follows the homomorphic model
through which privacy preservation and mining processes are
combined in a fully distributed environment. Our approach
is based on the classical homomorphic election model and
particularly on an extension for supporting the multi-candidate
election scheme, where each party has k-out-of-1 selections
[16].

The digital signature scheme is exploited in order both the
Miner and each party to be mutually authenticated, given that
each one possesses a key pair. The public keys are created
during the generation phase of Paillier cryptosystem, and later
exchanged in order all transmitted messages are encrypted.

The Miner is considered a trusted third party who regroups
all data send by the participants of the protocol. The Miner,
after obtaining the encrypted data from at least three partici-
pants, exploits the homomorphic primitive provided by Paillier
cryptosystem and applies the Tree Augmented Naive Bayesian
classifier to find the correlation among the attributes and the
network structure that represents them. The final results will be
sent later to each participant who contributed to the creation of
the mining model. The final results represent the frequencies of
each possible value of all attributes of horizontally or vertically
partitioned databases in relation to each class value. In case
the databases are vertically partitioned we assume that every
participant is aware of the class value of each database record.

The proposed protocol is divided into six phases and carried
out for horizontally and vertically partitioned databases.

1) Key generation: The Miner’s encryption key pair (Spu

and Spr) is generated through Paillier cryptosystem (key
generation phase), and an RSA key pair (SDpu and SDpr)
of 1024 bit using MD5 hash function to create the digital
signature. Every party follows the same procedure (Cpu / Cpr,
and CDpu / CDpr). We assume that the RSA keys are signed
by a Certificate Authority and each side is able to obtain the
public key of the other side. After exchanging the public keys,
all transmitted messages are encrypted. A random value M is
generated, which will be sent in later phase encrypted to every
party and will be used during the encryption of personal data.

2) Mutual authentication: During the authentication phase,
when a participant requests connection to the Miner, sends the
public key Cpu and the digital signature encrypting the Cpu

key with the private key CDpr. The Miner decrypts the digital
signature with the participants public key CDpu and creates
a digest of the message. In return, if the Miner verifies the
party’s identity, sends his public key Spu and digital signature
encrypted with the private key SDpr. Now the participant
is able to verify that a connection with the legal Miner is
accomplished. The purpose of this phase is to prevent any
unauthorized access and participation to the protocol.

3) Data collection: Next, the forwarding of the random
value M encrypted with the public key Cpu of each party,
takes place. The phase of collecting the data from each
party starts from the Miner’s side. The Miner requests the
frequencies for attribute Ai. Each party encrypts, with the

Miner’s public key Spu, the frequency of each value for this
specific attribute in relation to every class value. In case the
databases are horizontally partitioned the party sends all the
possible attribute values. In case the databases are vertically
partitioned and the party does not possess Ai then returns
zero. The frequencies of each attribute value in relation to
each possible class value are the only sensitive data send by
each participant.

4) Classifier Initialization: After the collection of the en-
crypted frequencies that correspond to attribute Ai, the Miner
proceeds to their decryption applying the homomorphic prim-
itive. The frequencies are decrypted all at once and the Miner
receives the overall distributions of each possible value of Ai

related to each value of C. The Miner requires the frequencies
for the next attribute Ai+1 and this process continues for
all attributes An, where n is the total number of attributes
of the horizontally partitioned databases or the sum of each
participants number of attributes for the vertically partitioned
databases. These procedures are necessary for the Miner to
initialize the TAN classifier.

5) TAN classifier creation: When at least three participants
are connected with the Miner and participate in the execution
of the protocol, the classifier is created.

6) Final results: The Miner after the completion of the
above phases, delivers the final results of the mining process
encrypted to all participants using the public key Cpu of each
party.

V. EVALUATION

By examining the main procedures of the proposed protocol,
our aim is to evaluate it in terms of computational cost
and security. The main procedures of the protocol are the
classifier’s initialization, the data collection from the Miner,
the TAN classifier creation given these data and the delivery
of the final results from the Miner to each party. For that
purpose, three different scenarios were established.

In each scenario, all three parties participate with their own
data contained within horizontally or vertically partitioned
databases. The purpose of these scenarios is to be evaluated
and compare the performance of the protocol given different
number of records and attributes. The data was accrued from
UC Irvine Machine Learning Repository real dataset [48], and
tailored for each scenario. The training set size was selected
between 1000 records, 2000 records and 5000 records. All
results in Table I, tabulate the mean time to complete each of
the proposed protocol procedure, calculated in milliseconds
(ms), on a modest PC equipped with Intel i5 2.4Ghz, 4GB of
RAM.

The overall execution time of all the main procedures of
the protocol is determined mainly by the collection of the
data, which is proportional to the number of attributes. By
comparing both experiment cases, we can conclude that the
partition of the databases affects mainly the data collection
process when the number of instances is growing.



A. Key establishment

The mean key generation time and the mean authentication
time were measured by collecting measurements from 50 runs
performed for one party and the Miner. The key generation
phase includes the encryption key pair generation and the
creation of the RSA digital signature. We assume that each par-
ticipant knows the Miner’s SDpu key and the Miner is aware
of all public keys CDpu of the parties involved in the mining
process. A participant requires 479 ms and 122 ms to create the
encryption key pair and the digital signature, respectively. The
Miner requires 433 ms for the encryption key pair, 108 ms to
create the digital signature, and 43 ms to generate the random
variable M used by Paillier cryptosystem during encryption
and decryption processes. From the results we can conclude
that the asymmetric encryption algorithm is efficient in terms
of creation and establishment of keys. The authentication time
represents the time needed by the Miner and each party to be
mutually authenticated, by sending their public keys and their
digital signatures. From the measurements we calculate that
24 ms are needed for the mutual authentication.

B. Experiments: horizontally partitioned databases

The experiments carried out for horizontally partitioned
databases, were evaluated using the following three scenarios:

Scenario 1. Each database has 50 records and 5 attributes
Scenario 2. Each database has 100 records and 5 attributes
Scenario 3. Each database has 100 records and 10 attributes
From the results, we can conclude that the mean time to

initialize the classifier is low, but when the number of attributes
is increased, the mean time is affected. However, when the
number of instances is growing, the mean initialization time
is slightly raised. The same conclusions also apply when the
data are collected by the Miner. This process however has high
execution time, as each party has to send all their data to the
Miner. On the other hand, the mean time for the creation of
the TAN model is increased when the number of instances is
growing unlike the mean time increment when the attributes
number is doubled. The mean time to send the final results to
each party, is affected by both the number of attributes and
instances in a database.

C. Experiments: vertically partitioned databases

For vertically partitioned databases, the experiments that
took place were evaluated using the following three scenarios:

Scenario 1. Each database has 50 records and 3 attributes
Scenario 2. Each database has 100 records and 3 attributes
Scenario 3. Each database has 100 records 6 attributes
In each scenario we assume that all parties are aware of

the class C. For the first scenario all the mean times needed
for the main procedures are slightly higher in comparison
to the first scenario using horizontally partitioned databases.
Data collection phase is almost doubled, due to the partition
of the data. When the number of instances is getting larger,
the creation of TAN classifier and the collection of data are
mainly increased, similar to horizontally partitioned databases.
On the other hand, when the number of attributes is increased

for vertically partitioned databases, the data collection phase
requires more time in relation to the second scenario, but less
time compared to horizontally partitioned databases. The mean
initialization time of the classifier is fairly increased and al-
most doubled in relation to horizontally partitioned databases.
The TAN classifier creation requires less time for the second
scenario, but the mean time is higher than the corresponding
scenario for horizontally partitioned databases. However, for
vertically partitioned databases, the mean delivery time of the
final results is mainly affected when the number of attributes
is doubled.

D. Cryptosystem performance

Because of the different number of characters involved in
the messages being exchanged during the execution of the
protocol we collected from all the above executed scenarios all
the encryption and decryption mean times. Our measurements
showed that the average time to encrypt a message is equal
to 51.5 ms. Similar results obtained about the measurement of
the mean decryption time. The average decryption time that
resulted is 67 ms. As the mean times are low, we can conclude
that the Paillier cryptosystem is efficient.

E. Classifier evaluation

Variables Recall and Precision were calculated in order to
examine the mining model created by the Miner. Variable
Recall is the percentage of records categorized with the correct
class in relation to the number of all records with this class.
Variable Precision is the percentage of records that have truly a
certain class over all the records that were categorized with this
class. Three set of data, with different number of instances,
were used as training sets (1000 records, 2000 records and
5000 records). The databases contained 14 attributes and come
from a real dataset [48]. As test set, 100 records (10% of
the training records) were used, which were kept off the
training phase. Table II presents the results of the TAN
classifier evaluation. Naive Bayes classifier evaluation is also
demonstrated for comparison of both classifiers and the results
are presented in Table III.

VI. THREAT MODEL

In distributed environments, some attacks depend on
whether one [7], [17] or more Miners [37] are involved, and
whether personal data are exchanged among two [6], [29],
[34] or many parties [4], [5], [30], [33]. In a protocol with
only one Miner the final results can be revealed to him, but
in case more than one Miners exist, the protocol is vulnerable
to collusion attacks [43]. When parties exchange data directly
to each other, in the two party model, each party can easily
discover the other party’s private data, but in the many parties
model, a malicious one can modify the data, given as input.
In a distributed environment, this can be disastrous if n − 1
users collaborate. To prevent these behaviors in the proposed
protocol, participants cannot communicate to each other, and
the number of parties involved must be at least three in order to
prevent any probing attacks. Data is transmitted only between



TABLE I
MAIN PROCEDURES COMPARISON FOR EACH SCENARIO

Procedure 1st horizontal 1st vertical 2nd horizontal 2nd vertical 3rd horizontal 3rd vertical

Data collection 31777 58939 35502 59764 94793 89073

Classifier initialization 13 57 16 56 30 64

TAN classifier creation 39 52 117 118 68 110

Final results 2407 3411 3744 3592 4455 6076

TABLE II
TAN CLASSIFIER EVALUATION RESULTS

Records 1000 2000 5000
Correct 54 55 56

Incorrect 46 45 44

Class value ≤ 50 > 50 ≤ 50 > 50 ≤ 50 > 50
Recall 0.42 0.63 0.52 0.6 0.54 0.6

Precision 0.48 0.57 0.73 0.38 0.73 0.39

TABLE III
NAIVE BAYES CLASSIFIER EVALUATION RESULTS

Records 1000 2000 5000
Correct 49 49 50

Incorrect 51 51 50

Class value ≤ 50 > 50 ≤ 50 > 50 ≤ 50 > 50
Recall 0.42 0.54 0.48 0.52 0.50 0.8

Precision 0.43 0.53 0.77 0.23 0.47 0.2

the Miner and each party, so collusion attacks are confronted.
The case in which parties collaborate outside the protocol is
not considered in the present work.

The proposed protocol provides mutual authentication, thus
participants with no permission to connect to the Miner are
not able to participate to the protocol and authorized ones
are connected with the literal server. Possible man-in-the-
middle attacks are faced by exploiting the digital signatures of
each side, signed by a Certification Authority. Eavesdropping
attacks are confronted as the asymmetric encryption fulfills
the requirement of confidentiality.

The parties involved usually are considered to be mutually
mistrustful. If a party does not deviate from a protocol it
is considered semi-honest, but in case it tries to discover
other party’s data, it is considered malicious. In real world
applications, the former case behaviors are more often and
more realistic; all participants have mutual interest to follow a
protocol. Semi-honest adversaries are faced in our protocol as
the only information revealed and send by the Miner are the
final outcomes. The Miner could be also considered an internal
adversary. The homomorphic primitive, both for nominal and

numeric attribute values, ensures that the original data will not
be revealed to any attacker or the Miner.

Active attackers trying to modify the transmitted messages
and alter the final results or disclose sensitive data, are
confronted using integrity mechanisms (SHA-1). Our protocol
is designed so participants are able to send only once their
data (blank or missing inputs are excluded) and can run the
protocol only once per computer system, confronting denial
of service attacks.

Paillier cryptosystem at its initial mode is vulnerable to
chosen plaintext attacks. The usage of a random variable
(variable M in the current protocol) is important to confront
such attacks.

VII. CONCLUSION

Various data mining techniques have been introduced with
regards to the detection and prediction of important infor-
mation that is hidden within statistical databases. Due to
the fact that such databases often contain sensitive data,
their disclosure throughout mining processes can compromise
privacy. The current work aims to solve this problem by
presenting a properly designed privacy preserving data mining
technique, developed for an environment in which distributed
databases can either be horizontally or vertically partitioned.
A trusted third party (Miner) conducts all operations, by
collecting data from at least three parties. Through Paillier
cryptosystem, data exchanged during the execution of the
protocol is encrypted. The Miner decrypts all received data
using the homomorphic primitive, assuring at the same time
the privacy of the individuals. The cryptographic approach is
considered the most appropriate in terms of accuracy. The
evaluation of conducted experiments results to an effective
but also efficient protocol for both database partition types.
In the future, ensemble methods such as Random Forests or
Gradient Boosting Machines could be exploited and compared
with the current proposal, in order to find the most efficient
and accurate algorithm. A research on other cryptosystems,
like El-Gamal’s elliptic curve cryptography, could also be a
future research in order to strike a balance between security
and efficiency.
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