
A Service Oriented Architecture

Combining Agents and Ontologies Towards

Pervasive Adaptation

Christos GOUMOPOULOS
a,1

 and Achilles Kameas
a, b

a

 Research Academic Computer Technology Institute, DAISy group, 26500 Rion,

Patras, Hellas
b

 Hellenic Open University, 23 Sahtouri Str., 26222, Patras, Hellas

Abstract. Contemporary software technologies complying with the Service-

Oriented Architectural (SOA) paradigm, such as OSGi, UPnP, and the Web

services do not meet on their own the adaptability and interoperability challenges

of the Ambient Intelligence (AmI) environments. In this paper we present a

solution based on the combination of the SOA model with Agents and Ontologies.

The agent approach complements the SOA infrastructure by providing high level

adaptation to user’s tasks, as an intelligent control layer above SOA. Ontologies

are used to tackle the semantic heterogeneity that arises in AmI spaces and provide

to agents a common repository of system knowledge, policies and state.

Keywords. ambient ecology, agents, SOA, adaptation, ontology

1. Introduction

Ambient Intelligence (AmI) is a paradigm that puts forward the criteria for the design

of the next generation of UbiComp environments [11]. In this context we have

introduced the Ambient Ecology (AE) metaphor to conceptualize a space populated by

connected devices and services that are interrelated with each other, the environment

and the people, supporting the users’ everyday activities in a meaningful way [5].

In the context of the EU funded R&D project ATRACO [6] we aim to extend the

AE concept by developing a conceptual framework and a system architecture that will

support the realization of adaptive and trusted AEs which are assembled to support user

goals in the form of Activity Spheres (ASs). Our approach is based on a number of well

established engineering principles, such as the distribution of control and the separation

of service interfaces from the service implementation, adopting a SOA model

combined with intelligent agents and ontologies. Agents support adaptive planning,

task realization and enhanced human-machine interaction while ontologies provide

knowledge representation, management of heterogeneity, semantically rich resource

discovery and adaptation. ATRACO ASs are dynamic compositions of distributed,

loosely-coupled and highly cohesive components that operate in dynamic environments.

Therefore the architecture and the system we propose operate in an AmI

environment, which is populated with people and an AE of devices and services. Our

1
 Corresponding Author.

basic assumption is that the AE components are all autonomous, in the sense that (a)

they have internal models of their properties, capabilities, goals and functions, and (b)

these models are proprietary and “closed”, that is, (i) they are not expressed in some

standard format and (ii) they can only be changed by the owner components. However,

each component can be queried and will respond using a standardized protocol.

Previous research projects have applied the SOA paradigm to support dynamic

service composition [1] or have combined SOA with ontologies to form a conceptual

framework [9]. Most research efforts that have contributed to adaptation of ubiquitous

applications during migration across different pervasive computing environments [10]

provided little or no support for adaptation based on context information. Other

research provided support for adaptation based on context information [1]. In other

research efforts, ontology techniques, such as merging and mapping have been adopted,

but they all use ontologies as static objects. ATRACO architecture builds upon

previous research by supporting a multi-dimensional pervasive adaptation functionality

into AmI spaces. Besides SOA a novel mechanism is proposed to achieve the different

kinds of adaptation centered upon the management of knowledge, which is encoded in

multi-layered ontologies, which are used by intelligent agents.

In the next section we will present the main concepts underlying our approach. In

Section 3 we discuss the research and design challenges that the proposed architecture

should tackle. In Section 4 we outline the architecture in the form of basic components

and describe their role towards meeting the adaptability and interoperability

requirements previously established. Finally our conclusions are given.

2. ATRACO World Model

The concepts discussed below constitute a critical subset of the ATRACO conceptual

framework defined for building AmI applications.

Concept Description

Ambient

Ecology (AE)

The set of heterogeneous artefacts with different capabilities and provided

services that reside within an Intelligent Environment (IE).

Activity

Sphere (AS)

It is formed to support an actors’ specific goal. An AS represents both the

model and the realization of the set of information, knowledge, services and

other resources required to achieve an individual goal within an IE. The

concept of AS is a “digitization” of the concept of “bubble” used by the

psychologist Robert Sommer [12] to describe a temporary defined space that

can limit the information coming into and leaving it.

Intelligent

Environment

(IE)

A territory that has both physical properties and offers digital services. It is

the container of AE. ASs are instantiated in an IE using the resources

provided by its AE.

Artefact A tangible object which bears digitally expressed properties; usually it is an

object or device augmented with sensors, actuators, processing, networking

unit etc. or a computational device that already has embedded some of the

required hardware components.

Actor Any member of AE capable of setting and attaining goals by realizing

activities. Within the AE actors are users or agents.

Goal Each actor may have its own set of goals and plans to achieve them. A goal

is described as a set of abstract tasks, which is described with a task model.

Task Model It may be abstract or concrete. An abstract task model describes what should

Concept Description

be done, without details of how it should be done or by the use of what kind

of modality; these are described in the corresponding concrete model. The

abstract task model may also contain several decomposition rules modelled

as a set of subtasks.

Local

Ontology(LO)

Each member of the AE stores locally descriptions of its properties, services

and capabilities. It is a sub-class of the class Ontology

Sphere

Ontology (SO)

The SO results from the LO of those AE members that are required to

achieve the AS’s goal based on the resolution of its task model. Apart from

device and service ontologies, it may contain user profiles, agent rule bases

and policies. It is another sub-class of the class Ontology.

Agent A software module (is a kind of actor) capable of pursuing and realizing

plans in order to achieve specific goals based on tasks. It includes three

types of agents: Task Agent (e.g., Fuzzy systems based Task Agent or FTA),

who manipulates sensors and actuators in order to realize specific tasks;

Planning Agent (PA), who resolves an abstract task hierarchy into concrete

tasks using the resources of the AE; and Interaction Agent (IA), who

manages user-system interaction using a mixed-initiative dialogue model.

User The actor that uses the available services and devices in order to perform a

task. When a user performs a task, this can be subdivided into different

activities. Users use devices, which provide them with services. Devices run

these services in a physical environment (context). Users use these services

according to personal conditions (user profile) and within a physical context.

Aim It is attributed to a user; it is decomposed into a set of interrelated goals,

which are distributed to the components of the AS.

Policy Actors specify high-level rules for granting and revoking the access rights to

and from different services. Examples of policy ontologies are privacy

policy ontology, interaction ontology and conflict resolution policy ontology

Service The entity which describes the service offered by a device.

Device The entity that has physical/digital properties and offers a specific service.

Resource A resource can be the space, an entity, or a component, such as managers

(e.g. Ontology Manager, Sphere Manager) or other basic components.

The basic terms and concepts of the ATRACO world model are encoded in the

ATRACO Upper Level Ontology (ULO). In general, ontology is used as the means to

share information among heterogeneous parties in a way that is commonly understood

[7]. An ontology is a network of concepts and entities, which can be associated with

different types of relations (the most common being the hierarchical association, or is-a

relation). More concrete (or domain) ontologies contain also instances of these entities

with specific properties and values. More powerful ontologies contain constraints and

rules that cause inferences for the entities. Figure 1 illustrates in UML representation

the AS domain model which is also encoded as ontology in the ATRACO ULO.

3. Research and Design Challenges

Initial requirements, captured with applications scenarios, were used as input for a

process of abstraction which allowed the identification of a set of challenges that must

be addressed, in order to design adaptive pervasive systems. These challenges are listed

in the following, together with the approach we have adopted in ATRACO in order to

deal with them.

Figure 1. Activity Sphere domain model (part of ATRACO ULO)

3.1. Assemble/Dissolve Applications

Actors must be able to assemble and dissolve pervasive computing applications in the

form of collections of resources, in order to achieve their goals. Such an action should

be possible for both users or and software agents.

In the ATRACO system level, a service agent, called Sphere Manager, is defined

that generates service compositions based on a detailed task model that is generated for

the given goal. Other agents (Planning Agent and Interaction Agent) are involved when

a human actor participates in the composition process guiding the composition to

enable the user to perform activities in the way she wishes to do. A Sphere Ontology is

defined by aligning the local resource ontologies using the ATRACO ULO (ULO will

be explained in the next subsection). An Ontology Manager is defined as a separate

component to provide access to the Sphere Ontology.

3.2. Adaptability

In ATRACO, at the AE level, the system supports the realization of the same AS in

different IEs. At the same time, the system adapts to changes in the configuration of the

AE (i.e., a new device joining, a device going out of service, etc.). At the task level, the

system realizes the tasks that lead to the achievement of user goals using the resources

of the AS. The artefacts also adapt to the uncertainties associated with the changes in

the artefacts characteristics, context as well as changes in the user(s) preferences

regarding these artefacts and their operation. Another dimension of adaptation concerns

the interaction between the system and the user, in order to tailor the degree of system

transparency to each specific user. A further dimension of adaptation is related to the

network adaptation to allow devices and services to be used seamlessly by the

ATRACO system and to simplify the discovery, management and access of networks

in the home as well as in corporate environments.

We argue that in order to achieve complete pervasive adaptation in IEs, any

infrastructure should provide adaptation in several forms: functional adaptation (the

realization of the same AS in different AmI environments); structural adaptation (the

persistent achievement of the goal when changes on the type of the available resources

occur); semantic adaptation (changes in semantic models in order to deal with any

disturbance that would affect meaning); behavioral adaptation, where the application

logic is changed as a result of learning - specialized as artefact and user behavior model

adaptation); user interaction adaptation and network adaptation.

3.3. Semantic Heterogeneity

As mentioned above, the deployment of any pervasive application over an IE requires

the orchestration of available services in the IE. In the general case, we expect that

these will be heterogeneous and that they would not adhere to a specific protocol.

However, the system must ensure the interoperability and the user centric operation of

the pervasive application. In order to achieve these we use ontologies to encode local

resource information and user preferences. Then, to ensure the user centric operation of

the sphere, we compose a SO by matching the LOs of the sphere resources, so as to

ensure interoperability between the various services and devices. Moreover, the

pertinent policy ontologies are matched to ensure correct sphere operation. Finally, the

user profile ontology is matched to ensure that the sphere will serve a specific user goal

(and its associated tasks) and take into account the user preferences and experience.

The SO encodes the information and knowledge necessary for sphere operation; it also

provides context representation for the components of the sphere.

Ontology matching is the process of finding relationships or correspondences

between entities of two different ontologies. Its output is a set of correspondences

between two ontologies, that is, relations holding, or supposed to hold, between entities

of different ontologies, according to a particular algorithm, or individual. Current

techniques for ontology matching require access to the internal structure of constituent

ontologies, which must be verified for consistency, and result in static solutions (a set

of mappings or a new ontology), which in addition have to be stored somewhere. But

an AS is a transitory, dynamically evolving entity, composed of heterogeneous,

independent, usually third-party components. That is why we choose to apply the

ontology alignment technique [4].

3.4. Trustworthiness

Privacy and trust are two important properties of the design space of any pervasive

application. Several approaches use centralized components or third party control;

these approaches do not scale and imply loss of privacy and autonomy.

In ATRACO, we chose to control our resources through policies rather than

fabricate new mechanisms. We follow a distributed scheme where each resource has its

own polices encoded as ontologies using a declarative approach. This approach

decouples the declarative policy expression from the mechanism that ensures the

desired behavior. Identity Management and privacy policies encoded in a privacy

policy ontology constitute the main mechanisms to address privacy and trust. Polices

expressed as a set of factual and behavioral specifications that are binding on every

computing element and resource within an AmI space can be specified independently,

leaving dependencies and conflict management to a reasoning framework.

3.5. Sharing of Resources

Sharing of resources may lead to conflicts between pervasive applications. For

handling such conflicts, it is necessary to apply specific policies. In ATRACO, an

extension of the scheme discussed in the previous section is applied. A policy-based

resource management scheme is defined and conflict resolution policies are encoded as

ontologies. Such policies are used to describe and restrict the way each one resource is

used, and to perform resource allocation when multiple applications have similar

requests. Another use is to describe how the usage of one resource is dependent on (or

constrained by) another.

4. Architecture

The ATRACO approach uses a Service-Oriented Architecture (SOA) that enforces a

clear distinction between service interfaces and implementation. SOA has been

envisioned as an evolution of the component-based architectures centred on the concept

of service [1]. The SOA approach appears to be a convenient architectural style for

realizing adaptable and reconfigurable systems.

In ATRACO we propose a combination of the SOA model with Agents and

Ontologies. The agent approach complements the SOA infrastructure by providing high

level adaptation to user’s tasks, as an intelligent control layer above SOA. Agents have

a local knowledge base that contains rules about the control of their behaviour and they

may communicate and exchange messages which contain a high degree of semantics

because of internal processing. In ATRACO, agents support adaptive planning, task

realization and enhanced human-system interaction. Ontologies are used to tackle the

semantic heterogeneity that arises in AmI spaces and provide to agents a common

repository of system knowledge, policies and state.

On a system level ATRACO services will be provided by a set of system

components. The role of each component has been specified so that their interaction

can provide the adaptability and trust we envision as part of the realization of ASs. The

architecture that supports the realization of ASs is shown in Figure 2. General

functional blocks were defined, and the illustrated component diagram shows the

overall functional blocks that were identified.

The Sphere Manager (SM) forms or dissolves an AS for a specific user goal. The

SM is responsible for initializing the other system components and operates as an event

service to them. SM implements a semantic-based discovery mechanism based on

Sphere Ontology (SO) to resolve the services in the concrete plan provided by the

Planning Agent (PA) to actual executable services provided in the AmI space. The SM

composes an executable service workflow and implements an Execution Management

and Control mechanism which is responsible for the execution of services on top of the

SOA layer. An important role of the SM is to support the structural adaptation of ASs

providing for the persistent achievement of the goal when changes on the type of the

available resources occur. To achieve this, it monitors the state of execution of the task

workflow and might change the composition of services in case of any problem.

The Ontology Manager (OM) matches local (i.e. device, agent, policy and user

profile) ontologies according to the task model that fulfils the sphere goal. The OM is

responsible for creating, dissolving and generally managing the SO and responding to

queries regarding the SO. To that end, the OM maintains rules and provides inference

services. The OM interacts with all system components.

One or more (depending on the goal complexity) Fuzzy Task Agents (FTAs)

oversee the realization of given tasks within a given AmI space. These agents are able

to learn the user behavior and model it by monitoring the user actions. The agents then

create fuzzy based linguistic models which could be evolved and adapted online in a

life learning mode [8]. The FTA maintains its own local knowledge base, which is

initially formed by the SM, based on the task model and the SO.

Figure 2. ATRACO component architecture

The Interaction Agent (IA) provides a multimodal front end to the user. Depending

on the SO it optimizes task-related dialogue for the specific situation and user. The IA

may be triggered both by the FTA and the PA to retrieve further context information

needed to realize and plan tasks by interacting with the user. The IA uses two

managers: Speech Dialogue Manager and Multimodal Dialogue Manager.

User Management (UM) contains the necessary functionality to provide, validate,

and manage the information that forms the individual user’s identity (user data) within

the supported computing environment. More specifically, as a system component UM

will include functionality for the provisioning, management and storage of multiple

user identities, user specific preferences, and profiles.

The proposed approach has been validated in a real environment (iSpace facility).

A prototype system has been developed based on the main components specified in the

architecture and several basic components for controlling the environment (e.g., control

of lights, HVAC, music player) and a sample AS was realized as outlined in Figure 3.

5. Conclusion

In this paper we have outlined an approach towards pervasive adaptation based on

the combination of the SOA model with agents and ontologies. The mechanism we

propose to achieve the different kinds of adaptation implied by this approach is centred

round the management of knowledge, which is encoded in multi-layered ontologies,

which are used by intelligent agents. The ongoing and future work will report on the

full evaluations of the ATRACO system with multiple users and in various testbeds.

Figure 3. ATRACO AS for the user goal “Feel comfortable after work”

Acknowledgement

Τhe research described is partly supported by the ATRACO (ICT-216837) project.

References

[1] Ambient Intelligence for the Networked Home Environment project, website: http://www.hitech-

projects.com/euprojects/amigo/

[2] H. Chen, T. Finin, and A. Joshi, A context broker for building smart meeting rooms. In Proc. AAAI 2004,

pp. 53–60.

[3] T. Erl, Service-Oriented Architecture : Concepts, Technology, and Design, Prentice Hall PTR, 2005.

[4] J. Euzenat, A. Mocan, F. Scharffe, Ontology alignments: an ontology management perspective, in:

Ontology Management: Semantic Web, Semantic Web Services, and Business Applications, Springer,

New-York (NY US), pp. 177-206, 2008.

[5] C. Goumopoulos and A. Kameas, Ambient ecologies in smart homes, The Computer Journal, doi:

10.1093/comjnl/bxn042, 2008.

[6] C. Goumopoulos, A. Kameas, H. Hagras, V. Callagan, M. Gardner, W. Minker, M. Weber, Y. Bellik,

and A. Meliones, ATRACO: Adaptive and Trusted Ambient Ecologies, Self-Adaptive and Self-

Organizing Systems, Workshop on Pervasive Adaptation (PERADA), IEEE CS, pp. 96-101, 2008.

[7] T.R. Gruber, Towards Principles for the Design of Ontologies Used for Knowledge Sharing,

International Journal of Human-Computer Studies, 43(5/6), pp. 907–928, 1995.

[8] H. Hagras, F. Doctor, V. Callaghan, and A. Lopez, An incremental adaptive life long learning approach

for type-2 fuzzy embedded agents in ambient intelligent environments, IEEE Transactions on Fuzzy

Systems, 15(1), pp. 41–55, 2007.

[9] PalCom project, website: www.ist-palcom.org

[10] A. Ranganathan, C. Shankar, and R. Campbell, Application polymorphism for autonomic ubiquitous

computing, Multiagent Grid Systems, 1(2), pp. 109-129, 2005.

[11] P. Remagnino and G. L. Foresti, Ambient Intelligence: A New Multidisciplinary Paradigm, IEEE

Transactions on Systems, Man, and Cybernetics, 35(1), pp. 1- 6, 2005.

[12] R. Sommer, Personal Space: The Behavioral Basis of Design, Prentice Hall Trade, Englewood Cliffs, N.

J., 1969.

