
DRAFT

User-privacy and modern smartphones: A Siri(ous) dilemma

1D. DAMOPOULOS, 1G. KAMBOURAKIS, 1M. ANAGNOSTOPOULOS, 1S. GRITZALIS, 2J. H. PARK
1Department of Information and Communication Systems Engineering

University of the Aegean
GREECE

{ddamop, gkamb, managn, sgritz}@aegean.gr
2Department of Computer Science and Engineering

Seoul National University of Science and Technology
REPUBLIC OF KOREA
jhpark1@seoultech.ac.kr

Abstract

The focus of this paper is on iPhone platform security and
especially on user’s data privacy. We are designing and
implementing a new malware that takes over the iOS
mDNS protocol and exposes user's privacy information by
capitalizing on the new Siri facility. The attack architecture
also includes a proxy server which acts as man-in-the-
middle between the device and the Apple's original Siri
server.

Keywords: Malware; iPhone; iOS; Siri; mDNS.

1 Introduction
 Over the last few years, mobile devices have
experienced a rapid shift from pure telecommunication
devices to small and ubiquitous computing platforms.
Nowadays, such devices are equipped with enough
facilities to even replace the usage of laptops. As expected,
this situation draws the attention of aggressors to steal or
misuse private information, or to disrupt the information
flow. Typical methods to achieve such goal are gaining root
permissions (known as Jailbreak [1] on iOS platform),
exposing new vulnerabilities [2], and developing smart and
perilous malware [3]. In fact, every new facility or service
offered for modern smartphones may be susceptible to
attacks. This is actually the case with the newly introduced
Siri technology for the iOS platform [4]. In the following
we demonstrate how an attacker can take advantage of this
technology to trample on user privacy. As far as we are
aware of, this is the first attack on Siri.
 Siri comprises a new feature of iOS 5 the operation
system of the lately introduced iPhone device 4S. It is a
personal intelligent software assistant that uses a natural
language interface to interact with the user in real-time and
execute their voice commands. Siri communicates with a
remote server via the https protocol in order to firstly
translate user’s voice commands to text and secondly the
text commands to the corresponding actions. The
exchanged data between Siri and the server can be raw
audio data, property list (plist) files or other sensitive
private information, such as the confidence score of each
word, timestamps, the unique identifier of the device etc.
So, it becomes apparent that once Siri is compromised may
result in serious privacy violations. However, attacking Siri
is not trivial. Specifically, as already mentioned, Siri is a

proprietary software designed to communicate securely
(https) with the original Siri server(s) controlled by Apple.
Therefore, to fool the protocol, one has to somehow hijack
the device-to-Siri_server communication in an undetectable
manner. Toward this goal, we develop a malware, namely
Siri Privacy Exposer (SPE), that attacks the multicast
Domain Name System (mDNS) protocol [5] installed on
every iOS device and then carry out a man-in-the-middle
attack to take over the control of the connection. Note that
Siri packet structure has been recently reversed engineered
[6].
 We also emphasize that in this paper we do not analyze
new jailbreak methods, but use already existing ones [7] to
gain root permissions on the device and infect it with our
malware. It is straightforward that SPE can be integrated
with other similar malware like iSAM [3], or can propagate
individually by incorporating some of the existing infection
methods already presented in the literature [2].
 The next section briefly presents SPE architecture and
provides basic information about the malware structure and
the privacy information we are able to extract from the
device or its user through Siri normal operation.

2 Design and Implementation
 Figure 1 depicts the overall architecture of the attack
scenario. Bear in mind that in a first step we must attack via
SPE and compromise the iOS mDNS protocol with a view
to redirect all (or selected) Internet traffic to our DNS
server. The latter acts as man-in-the-middle between the
iOS device and the legitimate Siri server controlled by
Apple. After that, we are able to intercept user's privacy
information transferred over Siri. At present, this is realized
through the implementation of three custom plugins for
SiriProxy [8]. SPE is written in Objective-C and compiled
with Theos for iPhone ARM CPU. It is tested to run on iOS
version 5 and above. Also, SPE has been built using the
unofficial ways for backgrounding (daemons and dylibs),
the public and private frameworks for developing iOS
applications, and the MobileSubstrate framework with the
substrate.h header that overrides iOS functions. This means
that certain modules of SPE can be classified as rookit. The
SPE core consists of a main daemon combined with a
proper launch plist (activated at device boot time) and five
subroutines written as Objective-C functions and dylibs.
This daemon is responsible for managing all subroutines,
namely NetDetector, NIUpdate, HUpdate, mDNSreloader
and SirInvervine, which in turn carry out the malware tasks.

DRAFT

 For using Siri, the device must authenticate the Siri
server. This is done during the SSL handshake and the
server certificate, namely guzzoni.apple.com, is pre-
installed on every iPhone 4S device. Note, that the
authentication is unilateral i.e., the client (device) does not
authenticate itself to the service. So, to act as man-in-the-
middle and hijack the https session we need to replace the
original certificate with a fake one. This is accomplished by
SPE. As soon as SPE infects a device, the SirIntervine
subroutine executes and installs a custom SSL certification
authority into iOS. This is necessary to create and sign a
fake certificate for guzzoni.apple.com. After the bogus
certificate is created, the HUpdate executes to populate
(manipulate) the device /etc/hosts file with the IP address of
our DNS server. This will redirect all Siri traffic through
our DNS server. Next, NIUpdate replaces the legitimate IP
address of all the known to device networks’ DNS resolvers
(stored in the Network Interface plist), with the one of our
DNS server. At a final step, the mDNSreloader subroutine
shall restart the mDNSresolver service running on the
device to parse and activate the new network settings. From
now on, every time the device connects to any wireless
network interface, e.g., WiFi, GPRS, 3G, NetDetector is
triggered so as to update the settings through the
aforementioned subroutines.
 Our DNS server incorporates two basic modules: (a) a
typical DNS translator that redirects to any domain is
configured to (in our case this is the Siri official server) and
(b) the open source SiriProxy Rubi script [8] which allows
us to manipulate Siri packets and create our own custom
plugins to violate user privacy though the Siri technology.
The server runs on a typical laptop machine which
incorporates a 2.53 GHz Intel Core 2 Duo T7200 CPU and
4 GB of RAM. The OS of this machine is OS X Leopard
Snow. The lightweight open source DNS Server named
Dnsmasq [9] has been used as a DNS service. We also
tinkered with the pre-alpha version of the SiriProxy that
runs on our server to handle (i.e., decipher, encipher,
modify) Siri packets.
 To demonstrate the exposure of any sensitive personal
information the user might exchange with the Siri facility,
we conduct three real use-case scenarios. For each one, we
create a custom SiriProxy plugin. According to the first
scenario we successfully retrieve user's GPS location, once
the user asks Siri about the weather. With only minor
modifications, the plugin is able to retrieve user's location
for any posed question such as "How can I get to Ocean
Park?", "Where is the nearest metro station and bus stop?"
etc. It is stressed that Siri obtains the geographic
coordinates without directly asking the user about their
location. According to the second scenario, the user sends
an SMS just by speaking to Siri. During this scenario our
plugin intercepts the receiver's telephone number, the SMS
payload and the final outcome, i.e., whether the user finally
gave their consent to send the SMS or not. For the last
attack scenario we developed an even smarter plugin able
not only to eavesdrop on private information but also to
interact with the user and ask them custom questions. By
doing so, it becomes very likely for our man-in-the-middle
entity to intercept confidential information such as the user

e-mail address or even the password of their e-mail
account(s). Due to the fact that Siri is using artificial
intelligent to interact with the user in order to accomplish a
task, e.g. send out an email, the question about the
password would not bear any evidence of malicious
behaviour.

Fig. 1. General architecture and components of the attack

3 Conclusions and on-going work
 SPE can be classified as DNS poisoning malware. It
aims to redirect all or a subset of DNS requests to a DNS
resolver which is under the control of the attacker. It is then
obvious that it can severely influence the way the user
experiences the Internet and expose them to serious threats.
Moreover, by leveraging the Siri facility the aggressor is
able to intercept sensitive user information including their
geographical location, account credentials, address book,
etc. Generally, such attacks stem from the fact that security
and user-privacy is commonly not within the first priorities
for new Operating Systems and features/services for mobile
devices. In a future version of the paper we shall elaborate
on SPE and explain the internal mechanics of the attack.
Also, we would like to consider variations of the attack by
implementing additional SiriProxy plugins.

References
[1] iOS Jailbreaking,
 http://en.wikipedia.org/wiki/IOS_jailbreaking
[2] Securitygeneration, Miller discovers ios vulnerability,
http://www.securitygeneration.com/security/charlie-miller-
discovers-ios-code-signing-bypass-vulnerability/
[3] D. Damopoulos, G. Kambourakis, and S. Gritzalis.
iSAM: An iPhone Stealth Airborne Malware, in proc. of
IFIPSec 2011, vol. 354, pp. 17–28, Springer, 2011.
[4] Apple Inc., Siri,
http://www.apple.com/iphone/features/siri.html
[5] Stuart Cheshire, Multicast DNS,
http://www.multicastdns.org/
[6] DumasLab, Inside Siri,
http://dumaslab.com/2011/11/inside-siri/
[7] MuscleNerd, iphone 4S jailbreak.
https://twitter.com/#!/MuscleNerd/status/129811190066061
312
[8] Plamoni, SiriProxy,
https://github.com/plamoni/SiriProxy
[9] Simon Kelley, Dnsmasq,
http://www.thekelleys.org.uk/dnsmasq/doc.html

