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Abstract 
 

Environmental monitoring is a critical process that 
demands accuracy, reliability and stability at the 
operation level. Monitoring variables such as 
temperature, humidity, barometric pressure, soil 
moisture and ambient light facilitates research in fields 
such as precision agriculture, habitat monitoring, 
weather monitoring etc. The use of wireless sensor 
networks (WSNs) provides a technology solution for 
dynamic and unattended environmental monitoring, 
under the condition that requirements such as efficient 
power management and system robustness are 
satisfied. This paper presents the design and 
implementation of a WSN for monitoring 
environmental variables and evaluates its 
effectiveness. Based on the acquired experience we 
describe how we have confronted certain problems 
such as network synchronization and data consistency 
and we provide certain design guidelines for building 
such a system.  
 
Keywords: Wireless Sensor Networks, Environmental 
Monitoring, Software Engineering. 
 
1. Introduction 

 
Recent advances in the technology of electronic 

circuits gave the opportunity for minimizing the size 
and reducing the cost of circuits’ productions.  This 
rapid development led to the implementation of 
autonomous compact nodes (motes) that are capable to 
run complicate operations consuming very little energy 
using plain batteries. These nodes have approximately 
the size of a box of matches. Such nodes communicate 
wirelessly and use sensors that are capable to measure 
physical variables such as temperature, moisture, light 
level etc. The most important thing is that they do not 
need the human presence in order to operate. This 

gives the advantage of using them in remote places that 
may be also hazardous for the human life as for 
example in volcanoes. 

These nodes consist of a wireless communication 
unit, a microprocessor, a data acquisition unit and a 
memory unit. The existence of both microprocessor 
and memory unit give the ability the nodes to be 
programmed in order to perform specific 
measurements taken either at fixed time intervals [1] or 
based on an event driven model [2]. Also they can be 
programmed in such ways in order to follow specific 
routing protocols [3]. 

WSNs allow the coverage of wide geographical 
areas. The range of the area depends on several factors 
such as the number of nodes, the way that have been 
placed and the range of the wireless units. Researchers 
have proposed placements in a structure aiming for 
power efficiency and data reliability [4]. 

This paper presents the design and implementation 
of a WSN for monitoring environmental variables and 
evaluates its effectiveness using laboratory tests. In 
order to develop the monitoring applications we used   
on the hardware side the Mica2 motes by Crossbow 
[5], embedded and external sensors; on the software 
side we have used TinyOS [6], an open source 
operating system developed by the University of 
Berkeley and NesC [7], a component-based and event-
driven programming language. 

The main contribution of this paper is to provide a 
number of design guidelines for implementing a WSN 
for environmental monitoring. We also discuss how 
certain parameters have been selected for maximizing 
network reliability and lifetime and how certain issues 
have been confronted such as network synchronization 
and data consistency. 

In Section 2 we present related work. Section 3 
gives an overall description of the system developed 
and the tools that were used. In Section 4 we outline 
the constraints and the design goals that were 
established as well as the solutions that were provided. 
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In the next section we discuss the lessons learnt from 
this effort and finally we give the conclusions. 

 
2. Related Work 

 
A large number of projects regarding environmental 

monitoring is running or have successfully completed 
in all over the world [8]. The encouraging results give 
the necessary credits for further improvements and 
development of the specific technology. One such 
effort applied WSN technology to monitor the 
extremely dangerous and hostile environment of the 
Tungarahua volcano [9]. Scientists placed a WSN into 
the volcano to monitor volcanic eruptions with low-
frequency acoustic sensors and data were received for 
54 hours.  

The LOFAR [10] and PLANTS [11] projects 
applied WSNs in the precision agriculture domain. The 
aim of both projects is the monitoring of microclimate 
in agriculture. Both projects are based on custom 
micro-controller nodes that are similar to Mica2 motes 
equipped with special-purpose sensors.  The idea is 
that a number of nodes are placed in a field. The 
network can use the MintRoute routing protocol that is 
available with TinyOS. These motes transmit data to 
each other which ultimately are gathered at a 
collection-point. In the case of PLANTS the data 
collected are analyzed in order to take proactive 
actions such as irrigation or fertilization by activating 
the corresponding actuators. 

Finally, a WSN was placed in Pinjar north of Perth 
in Western Australia to monitor spatial variations in 
surface soil moisture over time [2]. The network 
consists of Mica2 motes on MDA platforms. The 
collected data are sent via a GSM gateway to a 
database viewable from an internet web page using the 
SOAP protocol and web services.  

While most related work focus on certain 
characteristics of WSN development such as 
communication protocols, power management etc., the 
contribution of this paper is to present a 
methodological approach on developing such systems. 
We report our experience on tackling critical issues 
that may arise during the development process and 
provide certain guidelines to handle them. 

 
3. System Description 
 

In this section we shall briefly describe the WSN 
that we developed for environmental monitoring. Our 
WSN will be able to perform measurements for 
temperature, humidity, light level and soil moisture. 
The data will be gathered by the sensors and will be 
transmitted to the base station (one-hop network). The 

base station through appropriate interface will log the 
data in a database. Through a web based application 
the user will be able to monitor the collected data and 
request graphs on demand. Finally, the user will be 
able to change certain variables of the network mainly 
for debugging purposes. The architecture of the system 
is illustrated in a high-level view in Figure1.  

In addition, the monitoring application logic can 
incorporate rules that change the sampling rate 
proactively. For instance, a rule can be defined that 
says when the difference of the temperature within an 
hour is above a certain limit then increase the sampling 
rate from hours to minutes (e.g., because a rainfall has 
been detected). 

 
 

Figure 1 – High-level system architecture 
 
3.1. Hardware Tools 
 

Το implement our WSN we used the following 
hardware [5]:  
• Three MPR2400 MICAz modules.  
• The MIB520CA base station module.  
• One MDA100CA data acquisition board. It 

provides a precision thermistor, a light 
sensor/photocell and general prototyping area. 

• One MDA300 data acquisition board which 
includes an onboard temperature and humidity 
sensor. 

Finally, we used the moisture probe Echo-10 by 
Decagon [12], which was plugged on MDA300 
acquisition board as we shall explain later.  

 
3.2. Software Tools 
 

For the needs of our project we used a variety of 
programming environments. For the implementation of 
the applications which run on the motes we used the 
nesC programming language and the MoteWorks 
environment [13]. We used Java to implement the 
application for the communication between the 
MIB520CA and the database. For the web based 
application we used the Microsoft Visual Studio .Net 
2003 and the .aspx technology. For the graphs we used 
the Dundas Chart for asp .net 2003. Finally, we used 
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the Microsoft SQL Server 2000 to develop the 
database in which the data will be logged.   
 
4. Design and Implementation 
 

The nature of the hardware of WSNs imposes many 
constraints that must be considered when establishing 
the design goals and trade-offs of the applications. 
These constraints are mainly attributed to the limited 
resources of the motes: processing power, memory, 
communication bandwidth/range and power supply.  
Therefore, developers need to take into account energy 
requirements during the design phase.     

Regarding the engineering approach we followed, 
given that no prior experience existed, we had to be 
ready to confront several new challenges and to 
overcome many difficulties. For that reason a risk 
management analysis had to be done before starting the 
implementation. During that phase, we identified the 
potential risks that would jeopardize the project. The 
risks were classified into the following categories: 
sensitive equipment usage, integration of 
heterogeneous systems and technologies, open source, 
insufficient tool documentation, limited number of 
nodes, measurement accuracy and network reliability. 
After creating the list of the risks, a risk analysis was 
performed evaluating the issues depending on the 
severity and the impact of each of them on the project. 
A major issue that we had to confront related to the 
combination of TinyOS with Crossbow software. 
Although the use of open source software has many 
advantages like no cost and customizability, it may 
also come with a few holes. The most important in our 
case were related with the inadequate documentation 
and the existence of not well tested code.            

As a consequence of the constraints discussed 
above we have followed an incremental development 
model with risk analysis and assessment which can be 
seen as a light spiral model. The basic functional 
requirements of the project were specified in the 
previous section. Furthermore, two critical non 
functional requirements specified are data reliability 
and power efficiency.    
 
4.1. Network Synchronization 
 

Network synchronization is achieved by exchanging 
a sequence of messages when the network starts to 
operate. Upon starting a node sets a boolean variable 
isSynch to FALSE and sends a synchronization request 
message to the base station (BS). A FALSE value 
means that the node has not been synchronized.  

After sending the request the node turns to stand-by 
mode. Upon receiving the synchronization request 

from all nodes the BS sends a synchronization signal 
which contains also the sampling rate. After receiving 
the synchronization signal, each node sets isSynch to 
TRUE and starts the timer that controls the sampling 
rate. When the user or the application logic changes the 
sampling rate in the network, the BS broadcasts a 
STOP message to all nodes. When the node receives 
the STOP message, immediately stops its timer and 
sends back to the BS an ACKN message that has 
stopped. Upon receiving the acknowledgment from all 
nodes the BS broadcasts a new synchronization 
message to the network. Each node that will receives 
the SYNCH message starts the timer with the new time 
interval and sends back to the base station an ACKN 
message. If the BS will not receive the ACKN from all 
the nodes, reports the error and repeats the procedure.  

  
4.2. Data Consistency 

 
Data reliability is a critical issue for WSNs. We 

have to ensure that the system will not lose packets. 
One way to achieve that is by numbering the packets 
with the data that each node sends. Each packet takes a 
number before being transmitted back to BS. After the 
packet’s transmission, it is stored in the memory of the 
node. The basic message structure of a TinyOS packet 
is 36 bytes by default. This includes 7 bytes of generic 
Active Message fields and a maximum of 29 bytes for 
the payload. The payload is determined by the 
application. Part of the payload structure of the 
message is shown in Figure 2 (we omit the standard 
fields of TinyOS message_t structure). 

 
 

Figure 2 – Part of the message structure 
  

The important point is that the BS keeps the last 
packet id of each node. If the BS receives a packet 
from a node having packet id greater than the one from 
the last received packet, infers that it has lost a packet. 
Then the BS sends a request to the specific node, 
asking for the lost packet(s) by sending the specific 
id(s). To avoid network congestion the BS checks 
periodically (e.g., a few times a day depending on the 
sampling rate) that all packets have been received and 
broadcasts an acknowledgement signal so that the 
nodes can reuse their local memory.  

An additional measure we have used to handle 
memory shortage is the node to explicitly ask for 
reconciliation with the BS. If the BS returns a message 
that doesn’t need reconciliation the node will clear the 
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buffer. The reconciliation can be achieved by sending 
to the BS the last package id so that the BS can 
perform data consistency verification. 

 
4.3. Data Aggregation 

 
Data aggregation is a solution that helps the 

network to consume less energy considering that the 
packet transmission is a highly energy consuming 
operation. Aggregation requires to separate the 
transmission rate from the sampling rate (the former is 
larger than the latter). Each time a measurement is 
completed the result is stored in node’s memory. When 
a transmission timer elapses, the node reads from 
memory the collected data, performs the aggregation 
and sends an aggregated packet to the BS.  

We have tested the Delta compression algorithm as 
part of the aggregation process. The specific algorithm 
is used for files’ compression and is based on the 
practice of sending characters and their frequency. 
According to the Delta algorithm and supposing we 
have five values to send to the BS (e.g., 10, 20, 10, 15, 
20), the packet that will be sent will be the following 
10x2 20x2 15x1 instead of 5 simple messages. Another 
approach of using Delta is not to send the frequency of 
values measured but the change in the value from some 
expected value. In many cases, with well chosen 
expected values, these changes tend to be small relative 
to the range of possible values and lead to a high 
frequency of values within a small range.  

A consequence of using Delta is that we need to 
send extra information for each type of measurement. 
The problem that arises in this situation is that we lose 
the time that each value was taken. A solution to that 
problem is to use the time the packet arrived at the BS 
and the sampling rate. By knowing these two 
parameters we can easily calculate the timestamp of 
each measurement.    

 
4.4. Power Management 

 
From the datasheets of Mica2 motes [5] the energy 

consumption for each node operation can be taken. The 
transmission of a packet requires about five times more 
energy than reading a sensor and storing the value 
locally. Thus, minimizing the number of transmissions 
required, as discussed in the previous section, is a 
critical step for extending the lifetime of the WSN. A 
simple technique in order to reduce the level of power 
consumption is to turn-on the radio of a node only 
when it is needed. However, a node not only sends 
measurement packets but as well may receive packets 
such as a new sampling rate by the BS or in the case of 
a multi-hop network, packets that should be forwarded 

to the next level. In the latter case a scheme that 
alternates the node state through sleep/wake cycles is 
more appropriate in order to preserve energy. S-MAC 
[14] is a MAC protocol, with available source code, 
designed to address the issue of energy efficiency and 
coordinated sleeping and therefore is well suited for 
supporting applications with sleep/wake cycles.  
 
5. Discussion 
 

The testing of our system took place in the lab. We 
have tested that the embedded and the external sensors 
can make accurate measurements, the motes can store 
measured values, the transmission of values and 
associated ID data trough the wireless link and the 
transmission of data from the BS to the database. For 
the measurements of the soil moisture we used a plant. 
The WSN was able to operate without interruption for 
15 days with a sampling rate of 3 seconds. Figure 3 
shows soil moisture variation and reaction to watering 
in the period of the 7 first days.  
 

 
Figure 3 – Soil moisture measurements 

   
From the lab tests, there is sufficient evidence that 

the system performs the basic functionality specified. 
The experiments serve as a feasibility study of our 
prototype and the design goals made. Using the 
TOSSIM simulator we tested our network in order to 
ensure that is functional for more than two nodes.  

During this endeavor several lessons have been 
learnt as several problems had to be encountered. We 
discuss first the issue of the development process. 
Using an incremental development model has proved 
to be an effective way to handle the specification of the 
requirements and the gradual design of the system. 
With many requirements unidentified and lack of 
experience in the hardware and software tools in the 
beginning, the prioritization of requirements and the 
tackling of the high priority tasks provided a feasible 
path towards implementing the WSN.   

Data aggregation and compression is vital due to the 
high cost of transmission and the limited energy 
constraints of motes. Whether data should be 
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aggregated at nodes or only significant changes in data 
in respect to expected values should be transmitted 
depends on the nature of the application and whether it 
is feasible to define successful thresholds.  

A constraint of our experimental process was the 
limited number of available motes. The network 
topology in our case was a simple V. A layered 
architecture is important in large WSNs due to limited 
energy and computational power of motes. The lower 
layer includes the motes which are less powerful and 
are used to take measurements, whereas the upper layer 
includes more powerful motes which perform data 
aggregation and fusion on the values taken from lower 
layer nodes. The use of TOSSIM simulator can verify 
the design decisions and the algorithms used in such 
large-scale networks. 

Finally, we report that we had to overcome a few 
obstacles with respect to the open source software that 
we have used for the development process. There was 
an unexpected and hard to spot incompatibility 
between different versions of the operating system 
regarding the Active Message structure. Finally, the 
undocumented code that is provided with the 
MoteWorks environment, led us to spend many hours 
of experimental programming. Conclusively, the use of 
open source software is a critical issue that requires 
gathering of as much information as possible about the 
hardware and software tools to be used. Backward 
compatibility is not always guaranteed.  

In the following table we summarize our experience 
from building a WSN for environmental monitoring in 
the form of guidelines. 

 
TABLE 1. DESIGN GUIDELINES FOR BUILDING A WSN FOR 

ENVIRONMENTAL MONITORING 
Topic Guidelines 
Development 
Model  

Incremental model. Perform risk analysis. Process 
can take the form of a light spiral model. 

Implementation Keep code size small. Do not use complicated 
and time consuming procedures. Implement 
reusable code modules. 

Power 
Management 

Using aggregation and compression techniques 
minimizes the number of transmitted messages. 
Multi-layered architecture for large-scale WSN. 

Data Integrity Implement a protocol that prevents data loss.  
Testing Testing is difficult due to non-determinism. 

Validate accuracy of sensors. External sensors 
need calibration.  Radio module is the most 
sensitive factor. Use simulator (e.g., TOSSIM) in 
order to verify protocol designs. 

Open Source  Be ready to confront issues regarding hardware 
and software compatibility. Study carefully the 
existent documentation and related work. 

Hardware 
Safety 

The nodes should be housed tightly in water-
proof packaging (e.g., IP-67 rated) to withstand 
harsh conditions.     

 
6. Conclusion  
 

We presented the design and implementation of a 
WSN for monitoring environmental variables and 
evaluated its effectiveness. Based on the acquired 
experience we described how we have confronted 
certain problems and we provided certain design 
guidelines for building such a system.  

Future work will focus on addressing the limitations 
of the current prototype and building a larger network 
with additional sensors such as a photosynthetic solar 
radiation meter. We plan also to deploy the network to 
an open field for agricultural monitoring.   
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