
Design guidelines for building a wireless sensor network for environmental
monitoring

Nikos Giannopoulos2, Christos Goumopoulos1,2, Achilles Kameas1,2

1Research Academic Computer Technology Institute,
N. Kazantzaki, 26500 Rio Patras, Hellas

2Hellenic Open University, 16, Sahtouri Str, Patras, Hellas
ngianop@gmail.com, goumop@cti.gr, kameas@eap.gr

Abstract

Environmental monitoring is a critical process that
demands accuracy, reliability and stability at the
operation level. Monitoring variables such as
temperature, humidity, barometric pressure, soil
moisture and ambient light facilitates research in fields
such as precision agriculture, habitat monitoring,
weather monitoring etc. The use of wireless sensor
networks (WSNs) provides a technology solution for
dynamic and unattended environmental monitoring,
under the condition that requirements such as efficient
power management and system robustness are
satisfied. This paper presents the design and
implementation of a WSN for monitoring
environmental variables and evaluates its
effectiveness. Based on the acquired experience we
describe how we have confronted certain problems
such as network synchronization and data consistency
and we provide certain design guidelines for building
such a system.

Keywords: Wireless Sensor Networks, Environmental
Monitoring, Software Engineering.

1. Introduction

Recent advances in the technology of electronic

circuits gave the opportunity for minimizing the size
and reducing the cost of circuits’ productions. This
rapid development led to the implementation of
autonomous compact nodes (motes) that are capable to
run complicate operations consuming very little energy
using plain batteries. These nodes have approximately
the size of a box of matches. Such nodes communicate
wirelessly and use sensors that are capable to measure
physical variables such as temperature, moisture, light
level etc. The most important thing is that they do not
need the human presence in order to operate. This

gives the advantage of using them in remote places that
may be also hazardous for the human life as for
example in volcanoes.

These nodes consist of a wireless communication
unit, a microprocessor, a data acquisition unit and a
memory unit. The existence of both microprocessor
and memory unit give the ability the nodes to be
programmed in order to perform specific
measurements taken either at fixed time intervals [1] or
based on an event driven model [2]. Also they can be
programmed in such ways in order to follow specific
routing protocols [3].

WSNs allow the coverage of wide geographical
areas. The range of the area depends on several factors
such as the number of nodes, the way that have been
placed and the range of the wireless units. Researchers
have proposed placements in a structure aiming for
power efficiency and data reliability [4].

This paper presents the design and implementation
of a WSN for monitoring environmental variables and
evaluates its effectiveness using laboratory tests. In
order to develop the monitoring applications we used
on the hardware side the Mica2 motes by Crossbow
[5], embedded and external sensors; on the software
side we have used TinyOS [6], an open source
operating system developed by the University of
Berkeley and NesC [7], a component-based and event-
driven programming language.

The main contribution of this paper is to provide a
number of design guidelines for implementing a WSN
for environmental monitoring. We also discuss how
certain parameters have been selected for maximizing
network reliability and lifetime and how certain issues
have been confronted such as network synchronization
and data consistency.

In Section 2 we present related work. Section 3
gives an overall description of the system developed
and the tools that were used. In Section 4 we outline
the constraints and the design goals that were
established as well as the solutions that were provided.

2009 13th Panhellenic Conference on Informatics

978-0-7695-3788-7/09 $25.00 © 2009 IEEE

DOI 10.1109/PCI.2009.17

148

Authorized licensed use limited to: Hellenic Open University. Downloaded on July 19,2010 at 09:59:31 UTC from IEEE Xplore. Restrictions apply.

In the next section we discuss the lessons learnt from
this effort and finally we give the conclusions.

2. Related Work

A large number of projects regarding environmental

monitoring is running or have successfully completed
in all over the world [8]. The encouraging results give
the necessary credits for further improvements and
development of the specific technology. One such
effort applied WSN technology to monitor the
extremely dangerous and hostile environment of the
Tungarahua volcano [9]. Scientists placed a WSN into
the volcano to monitor volcanic eruptions with low-
frequency acoustic sensors and data were received for
54 hours.

The LOFAR [10] and PLANTS [11] projects
applied WSNs in the precision agriculture domain. The
aim of both projects is the monitoring of microclimate
in agriculture. Both projects are based on custom
micro-controller nodes that are similar to Mica2 motes
equipped with special-purpose sensors. The idea is
that a number of nodes are placed in a field. The
network can use the MintRoute routing protocol that is
available with TinyOS. These motes transmit data to
each other which ultimately are gathered at a
collection-point. In the case of PLANTS the data
collected are analyzed in order to take proactive
actions such as irrigation or fertilization by activating
the corresponding actuators.

Finally, a WSN was placed in Pinjar north of Perth
in Western Australia to monitor spatial variations in
surface soil moisture over time [2]. The network
consists of Mica2 motes on MDA platforms. The
collected data are sent via a GSM gateway to a
database viewable from an internet web page using the
SOAP protocol and web services.

While most related work focus on certain
characteristics of WSN development such as
communication protocols, power management etc., the
contribution of this paper is to present a
methodological approach on developing such systems.
We report our experience on tackling critical issues
that may arise during the development process and
provide certain guidelines to handle them.

3. System Description

In this section we shall briefly describe the WSN
that we developed for environmental monitoring. Our
WSN will be able to perform measurements for
temperature, humidity, light level and soil moisture.
The data will be gathered by the sensors and will be
transmitted to the base station (one-hop network). The

base station through appropriate interface will log the
data in a database. Through a web based application
the user will be able to monitor the collected data and
request graphs on demand. Finally, the user will be
able to change certain variables of the network mainly
for debugging purposes. The architecture of the system
is illustrated in a high-level view in Figure1.

In addition, the monitoring application logic can
incorporate rules that change the sampling rate
proactively. For instance, a rule can be defined that
says when the difference of the temperature within an
hour is above a certain limit then increase the sampling
rate from hours to minutes (e.g., because a rainfall has
been detected).

Figure 1 – High-level system architecture

3.1. Hardware Tools

Το implement our WSN we used the following
hardware [5]:
• Three MPR2400 MICAz modules.
• The MIB520CA base station module.
• One MDA100CA data acquisition board. It

provides a precision thermistor, a light
sensor/photocell and general prototyping area.

• One MDA300 data acquisition board which
includes an onboard temperature and humidity
sensor.

Finally, we used the moisture probe Echo-10 by
Decagon [12], which was plugged on MDA300
acquisition board as we shall explain later.

3.2. Software Tools

For the needs of our project we used a variety of
programming environments. For the implementation of
the applications which run on the motes we used the
nesC programming language and the MoteWorks
environment [13]. We used Java to implement the
application for the communication between the
MIB520CA and the database. For the web based
application we used the Microsoft Visual Studio .Net
2003 and the .aspx technology. For the graphs we used
the Dundas Chart for asp .net 2003. Finally, we used

149

Authorized licensed use limited to: Hellenic Open University. Downloaded on July 19,2010 at 09:59:31 UTC from IEEE Xplore. Restrictions apply.

the Microsoft SQL Server 2000 to develop the
database in which the data will be logged.

4. Design and Implementation

The nature of the hardware of WSNs imposes many
constraints that must be considered when establishing
the design goals and trade-offs of the applications.
These constraints are mainly attributed to the limited
resources of the motes: processing power, memory,
communication bandwidth/range and power supply.
Therefore, developers need to take into account energy
requirements during the design phase.

Regarding the engineering approach we followed,
given that no prior experience existed, we had to be
ready to confront several new challenges and to
overcome many difficulties. For that reason a risk
management analysis had to be done before starting the
implementation. During that phase, we identified the
potential risks that would jeopardize the project. The
risks were classified into the following categories:
sensitive equipment usage, integration of
heterogeneous systems and technologies, open source,
insufficient tool documentation, limited number of
nodes, measurement accuracy and network reliability.
After creating the list of the risks, a risk analysis was
performed evaluating the issues depending on the
severity and the impact of each of them on the project.
A major issue that we had to confront related to the
combination of TinyOS with Crossbow software.
Although the use of open source software has many
advantages like no cost and customizability, it may
also come with a few holes. The most important in our
case were related with the inadequate documentation
and the existence of not well tested code.

As a consequence of the constraints discussed
above we have followed an incremental development
model with risk analysis and assessment which can be
seen as a light spiral model. The basic functional
requirements of the project were specified in the
previous section. Furthermore, two critical non
functional requirements specified are data reliability
and power efficiency.

4.1. Network Synchronization

Network synchronization is achieved by exchanging
a sequence of messages when the network starts to
operate. Upon starting a node sets a boolean variable
isSynch to FALSE and sends a synchronization request
message to the base station (BS). A FALSE value
means that the node has not been synchronized.

After sending the request the node turns to stand-by
mode. Upon receiving the synchronization request

from all nodes the BS sends a synchronization signal
which contains also the sampling rate. After receiving
the synchronization signal, each node sets isSynch to
TRUE and starts the timer that controls the sampling
rate. When the user or the application logic changes the
sampling rate in the network, the BS broadcasts a
STOP message to all nodes. When the node receives
the STOP message, immediately stops its timer and
sends back to the BS an ACKN message that has
stopped. Upon receiving the acknowledgment from all
nodes the BS broadcasts a new synchronization
message to the network. Each node that will receives
the SYNCH message starts the timer with the new time
interval and sends back to the base station an ACKN
message. If the BS will not receive the ACKN from all
the nodes, reports the error and repeats the procedure.

4.2. Data Consistency

Data reliability is a critical issue for WSNs. We

have to ensure that the system will not lose packets.
One way to achieve that is by numbering the packets
with the data that each node sends. Each packet takes a
number before being transmitted back to BS. After the
packet’s transmission, it is stored in the memory of the
node. The basic message structure of a TinyOS packet
is 36 bytes by default. This includes 7 bytes of generic
Active Message fields and a maximum of 29 bytes for
the payload. The payload is determined by the
application. Part of the payload structure of the
message is shown in Figure 2 (we omit the standard
fields of TinyOS message_t structure).

Figure 2 – Part of the message structure

The important point is that the BS keeps the last
packet id of each node. If the BS receives a packet
from a node having packet id greater than the one from
the last received packet, infers that it has lost a packet.
Then the BS sends a request to the specific node,
asking for the lost packet(s) by sending the specific
id(s). To avoid network congestion the BS checks
periodically (e.g., a few times a day depending on the
sampling rate) that all packets have been received and
broadcasts an acknowledgement signal so that the
nodes can reuse their local memory.

An additional measure we have used to handle
memory shortage is the node to explicitly ask for
reconciliation with the BS. If the BS returns a message
that doesn’t need reconciliation the node will clear the

150

Authorized licensed use limited to: Hellenic Open University. Downloaded on July 19,2010 at 09:59:31 UTC from IEEE Xplore. Restrictions apply.

buffer. The reconciliation can be achieved by sending
to the BS the last package id so that the BS can
perform data consistency verification.

4.3. Data Aggregation

Data aggregation is a solution that helps the

network to consume less energy considering that the
packet transmission is a highly energy consuming
operation. Aggregation requires to separate the
transmission rate from the sampling rate (the former is
larger than the latter). Each time a measurement is
completed the result is stored in node’s memory. When
a transmission timer elapses, the node reads from
memory the collected data, performs the aggregation
and sends an aggregated packet to the BS.

We have tested the Delta compression algorithm as
part of the aggregation process. The specific algorithm
is used for files’ compression and is based on the
practice of sending characters and their frequency.
According to the Delta algorithm and supposing we
have five values to send to the BS (e.g., 10, 20, 10, 15,
20), the packet that will be sent will be the following
10x2 20x2 15x1 instead of 5 simple messages. Another
approach of using Delta is not to send the frequency of
values measured but the change in the value from some
expected value. In many cases, with well chosen
expected values, these changes tend to be small relative
to the range of possible values and lead to a high
frequency of values within a small range.

A consequence of using Delta is that we need to
send extra information for each type of measurement.
The problem that arises in this situation is that we lose
the time that each value was taken. A solution to that
problem is to use the time the packet arrived at the BS
and the sampling rate. By knowing these two
parameters we can easily calculate the timestamp of
each measurement.

4.4. Power Management

From the datasheets of Mica2 motes [5] the energy

consumption for each node operation can be taken. The
transmission of a packet requires about five times more
energy than reading a sensor and storing the value
locally. Thus, minimizing the number of transmissions
required, as discussed in the previous section, is a
critical step for extending the lifetime of the WSN. A
simple technique in order to reduce the level of power
consumption is to turn-on the radio of a node only
when it is needed. However, a node not only sends
measurement packets but as well may receive packets
such as a new sampling rate by the BS or in the case of
a multi-hop network, packets that should be forwarded

to the next level. In the latter case a scheme that
alternates the node state through sleep/wake cycles is
more appropriate in order to preserve energy. S-MAC
[14] is a MAC protocol, with available source code,
designed to address the issue of energy efficiency and
coordinated sleeping and therefore is well suited for
supporting applications with sleep/wake cycles.

5. Discussion

The testing of our system took place in the lab. We
have tested that the embedded and the external sensors
can make accurate measurements, the motes can store
measured values, the transmission of values and
associated ID data trough the wireless link and the
transmission of data from the BS to the database. For
the measurements of the soil moisture we used a plant.
The WSN was able to operate without interruption for
15 days with a sampling rate of 3 seconds. Figure 3
shows soil moisture variation and reaction to watering
in the period of the 7 first days.

Figure 3 – Soil moisture measurements

From the lab tests, there is sufficient evidence that

the system performs the basic functionality specified.
The experiments serve as a feasibility study of our
prototype and the design goals made. Using the
TOSSIM simulator we tested our network in order to
ensure that is functional for more than two nodes.

During this endeavor several lessons have been
learnt as several problems had to be encountered. We
discuss first the issue of the development process.
Using an incremental development model has proved
to be an effective way to handle the specification of the
requirements and the gradual design of the system.
With many requirements unidentified and lack of
experience in the hardware and software tools in the
beginning, the prioritization of requirements and the
tackling of the high priority tasks provided a feasible
path towards implementing the WSN.

Data aggregation and compression is vital due to the
high cost of transmission and the limited energy
constraints of motes. Whether data should be

151

Authorized licensed use limited to: Hellenic Open University. Downloaded on July 19,2010 at 09:59:31 UTC from IEEE Xplore. Restrictions apply.

aggregated at nodes or only significant changes in data
in respect to expected values should be transmitted
depends on the nature of the application and whether it
is feasible to define successful thresholds.

A constraint of our experimental process was the
limited number of available motes. The network
topology in our case was a simple V. A layered
architecture is important in large WSNs due to limited
energy and computational power of motes. The lower
layer includes the motes which are less powerful and
are used to take measurements, whereas the upper layer
includes more powerful motes which perform data
aggregation and fusion on the values taken from lower
layer nodes. The use of TOSSIM simulator can verify
the design decisions and the algorithms used in such
large-scale networks.

Finally, we report that we had to overcome a few
obstacles with respect to the open source software that
we have used for the development process. There was
an unexpected and hard to spot incompatibility
between different versions of the operating system
regarding the Active Message structure. Finally, the
undocumented code that is provided with the
MoteWorks environment, led us to spend many hours
of experimental programming. Conclusively, the use of
open source software is a critical issue that requires
gathering of as much information as possible about the
hardware and software tools to be used. Backward
compatibility is not always guaranteed.

In the following table we summarize our experience
from building a WSN for environmental monitoring in
the form of guidelines.

TABLE 1. DESIGN GUIDELINES FOR BUILDING A WSN FOR

ENVIRONMENTAL MONITORING
Topic Guidelines
Development
Model

Incremental model. Perform risk analysis. Process
can take the form of a light spiral model.

Implementation Keep code size small. Do not use complicated
and time consuming procedures. Implement
reusable code modules.

Power
Management

Using aggregation and compression techniques
minimizes the number of transmitted messages.
Multi-layered architecture for large-scale WSN.

Data Integrity Implement a protocol that prevents data loss.
Testing Testing is difficult due to non-determinism.

Validate accuracy of sensors. External sensors
need calibration. Radio module is the most
sensitive factor. Use simulator (e.g., TOSSIM) in
order to verify protocol designs.

Open Source Be ready to confront issues regarding hardware
and software compatibility. Study carefully the
existent documentation and related work.

Hardware
Safety

The nodes should be housed tightly in water-
proof packaging (e.g., IP-67 rated) to withstand
harsh conditions.

6. Conclusion

We presented the design and implementation of a
WSN for monitoring environmental variables and
evaluated its effectiveness. Based on the acquired
experience we described how we have confronted
certain problems and we provided certain design
guidelines for building such a system.

Future work will focus on addressing the limitations
of the current prototype and building a larger network
with additional sensors such as a photosynthetic solar
radiation meter. We plan also to deploy the network to
an open field for agricultural monitoring.

9. Reference

[1] Beckwith, R., Teibel, D., and Bowen, P., Report from the

Field: Results from an Agricultural Wireless Sensor Network,
In 29th IEEE International Conference on Local Computer
Networks (LCN’04), pp. 471–478, 2004.

[2] Cardell-Oliver, R., Kranz, M., Smettem, K., and Mayer, K., A
Reactive Soil Moisture Sensor Network: Design and Field
Evaluation. International Journal of Distributed Sensor
Networks, 1:149-162, 2005.

[3] Heinzelman, W. R., Chandrakasan, A., and Balakrishnan, H.,
Energy-Efficient Communication Protocol for Wireless
Microsensor Networks, In 33rd Conference on System
Sciences, IEEE, CS, pp. 8020, 2000.

[4] Ganesan, D., Cristescu, R., Beferull-Lozano, B., Power-
efficient sensor placement and transmission structure for data
gathering under distortion constraints, In IPSN’04, ACM Press,
pp. 142–150, 2004.

[5] Crossbow Technology Inc., Mica2 Motes Specifications,
http://www.xbox.com/

[6] TinyOS, http://www.tinyos.net.
[7] Gay, D., et al, The nesC language: A holistic approach to

networked embedded systems, In ACM SIGPLAN on PLDI,
ACM, pp. 1-11, 2003.

[8] Hakala, I., Tikkakoski, M., Kivela, I., Wireless Sensor Network
in Environmental Monitoring-Case Foxhouse, 2nd Inter. Conf.
on Sensor Technologies and Applications, pp. 202-208, 2008.

[9] Werner-Allen, G., Johnson, J., Ruiz, M., Lees, J., Welsh, M.,
Monitoring volcanic eruptions with a wireless sensor network,
In 2nd European Workshop on WSNs, pp. 108-120, 2005.

[10] Baggio, A., Wireless Sensor Networks in Precision
Agriculture, In ACM Workshop Real-World WSNs, 2005.

[11] Goumopoulos, C., Kameas, A., and Oflynn B., Proactive
Agriculture: An Integrated Framework for Developing
Distributed Hybrid Systems, In Ubiquitous Intelligence and
Computing (UIC-07), Springer-Verlag, pp. 214-224, 2007.

[12] Decagon, http://www.decagon.com/echo/
[13] Crossbow Technology Inc., MoteWorks Brochure,

http://www.xbow.com/Products/Product_pdf_files/Wireless_pd
f/MoteWorks_OEM_Edition.pdf

[14] Ye, W., Heidemann, J., Estrin D., Medium Access Control with
Coordinated Adaptive Sleeping for Wireless Sensor Networks,
IEEE/ACM Trans. on Netw., 12:493–506, 2004.

152

Authorized licensed use limited to: Hellenic Open University. Downloaded on July 19,2010 at 09:59:31 UTC from IEEE Xplore. Restrictions apply.

