
www.elsevier.com/locate/csi
Computer Standards & Interf
Specifying Privacy-Preserving Protocols in Typed MSR

Theodoros BalopoulosT, Stefanos Gritzalis, Sokratis K. Katsikas

Laboratory of Information and Communication Systems Security, Department of Information and Communication Systems Engineering,

University of the Aegean, Karlovassi, Samos, GR-83200, Greece

Available online 3 February 2005
Abstract

Privacy-preserving protocols, such as electronic cash, electronic voting and selective disclosure protocols, use special

message constructors that are not widely used in other types of protocols (for example, in authentication protocols). These

message constructors include blind signatures, commitments and zero-knowledge proofs. Furthermore, a standard

formalization of the Dolev-Yao intruder does not take into account these message constructors, nor does it consider some

types of attacks (such as privacy attacks, brute-force dictionary attacks and known-plaintext attacks) that privacy-preserving

as well as other types of protocols are designed to protect against. This paper aims to present an extension of Typed MSR in

order to formally specify the needed message constructors, as well as the capabilities of a Dolev-Yao intruder designed to

attack such protocols.

D 2005 Elsevier B.V. All rights reserved.

Keywords: Specification of security protocols; Privacy; Dolev-Yao intruder; Typed MSR
1. Introduction

Formal methods are an important tool for design-

ing and implementing secure cryptographic proto-

cols. By applying techniques concerned with the

construction and analysis of models and proving that

certain properties hold in the context of these

models, formal methods can significantly increase

one’s confidence that a protocol will meet its

requirements in the real world. However, some

requirements are not covered as much as others in
0920-5489/$ - see front matter D 2005 Elsevier B.V. All rights reserved.

doi:10.1016/j.csi.2005.01.008

T Corresponding author.

E-mail address: tbalopoulos@aegean.gr (T. Balopoulos).
the existing work on formal methods. A good

example is the requirement for the preservation of

an entity’s privacy. This paper builds on the Typed

MSR specification language [2,3] and aims to make

it suitable for the specification of privacy-preserving

protocols, as well as for the specification of a version

of the Dolev-Yao intruder [5] that is designed to

attack such protocols. Some aspects of these

extensions are useful in other types of protocols as

well.

The paper is organized as follows. In Section 2, we

give an overview of the standard version of Typed

MSR, as well as our extensions of the language’s

message constructors. In Section 3, we demonstrate

how our extensions can be used to make an
aces 27 (2005) 501–512

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512502
abstraction of three simple privacy-preserving pro-

tocols. In Section 4, we give an overview of typing

in Typed MSR, present our typing extensions and

apply them to our newly introduced message

constructors. In Section 5, we use our syntactical

and typing infrastructure to formally specify the

capabilities of a Dolev-Yao intruder targeted for

privacy-preserving protocols. We conclude the paper

with Section 6.
2. Typed MSR

Typed MSR is a strongly typed specification

language for security protocols, aiming to discover

errors in their design. It is particularly suitable for

privacy-preserving protocols because it features

memory predicates, which enable it to faithfully

encode systems consisting of a collection of coordi-

nated subprotocols—a common characteristic of

privacy-preserving protocols (consider for example

the electronic cash protocol, which consists of an

issuing and a showing/spending subprotocol). How-

ever, the standard language does not support the

message constructors needed for privacy-preserving

protocols. In Section 2.1 we give an overview of

messages in the standard version of Typed MSR, and

in Section 2.2 we introduce the needed message

constructors.

2.1. Overview of messages in Typed MSR

In Typed MSR, messages are obtained by applying

message constructors to a variety of atomic messages.

Typically, the atomic messages include principals,

keys, nonces and raw data. This is formalized by the

following grammatical production:

Atomic messages : a : : ¼ A Principalð Þ
j k ðKeyÞ
j n ðNonceÞ
j m ðRaw dataÞ

In Typed MSR A, k, n and m range over principal

names, keys, nonces and raw data, respectively. Raw

data denotes pieces of data whose sole function in a

protocol is that they are transmitted.
The message constructors typically present in

Typed MSR are those formalized by the following

grammatical production:

Messages: t : : ¼ a ðAtomic messagesÞ
j x ðVariablesÞ
j t1; t2 ðConcatenationÞ
j ftgk SymmetricQkey encryptionð Þ
j tf gf gk AsymmetricQkey encryptionð Þ
j ½t�k ðDigital SignatureÞ

We will use the letter t (possibly sub-scripted) to range

over messages. We will write A, k, n and m (possibly

sub-scripted) for atomic constants or variables that are

principals, keys, nonces and raw data, respectively.

We will also use the letter B for principals and the

letter S for servers (which are also principals). Note

that in Typed MSR, the seriffed letters are used

whenever the object we want to refer to cannot be but

a constant.

In this paper we choose a different meaning for the

digital signature constructor than the meaning chosen

in standard MSR. Instead of [t]k denoting both the

message t and its digital signature using key k, here it

will denote only the latter. This will become evident in

Section 3, where we present a high level view of some

privacy-preserving protocols.

2.2. Adding message constructors for privacy-

preserving protocols

To cope with privacy-preserving protocols we add

message constructors for blinding, commitment and

zero-knowledge proofs:

Messages: t : : ¼ . . . see aboveð Þ
j htikn Blindingð Þ
j tttn Commitmentð Þ
j w t : ns : k : nf j ðZero-knowledge proof Þ

The abstraction of blinding is based on Chaum’s

blinding [7,4], according to which the construction of

a blinded message depends on a blinding factor

(which we can abstract as a nonce) and on a public

key. The fundamental property is that if message htink
is signed using kV (the private key corresponding to

public key k), the resulting message can be unblinded

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512 503
using nonce n to produce the digital signature of

message t signed using kV.
The abstraction of commitment is based on the

non-interactive bit commitment using one-way hash

functions [8]. According to this method, the commit-

ment of a message is the hash of the concatenation of

the message with a salt value (which we can abstract

as a nonce). The fundamental properties are that

observing tttn will not reveal the values of t and n,

and that there is only one commitment for each

distinct message–nonce pair. Note that the latter

property is implicit, because Typed MSR messages

are atomic and can solely be constructed by message

constructors.

The abstraction of a zero-knowledge proof is based

on the non-interactive cut-and-choose protocol intro-

duced in the selective disclosure protocol of Holt and

Seamons. The interested reader can refer to section

3.2.2 of [6]. The fundamental property is that

observing wt : ns : k : nfj reveals the values of t and

htttns
infk , but not the values of ns, k and nf.

Notice that we have chosen to make all our new

message constructors non-interactive, so that they

share this property with the standard message

constructors of Section 2.1.
1 The shared key is associated with the minimum information

required to complete the purchase, for example the (anonymous)

post office box number of Alice.
3. Privacy-preserving protocols overview

At this point, we will demonstrate how the

message constructors described above may be used

to make abstractions of three simple privacy-

preserving protocols: an electronic cash protocol,

an electronic voting protocol and a selective

disclosure protocol. The aim is not to make

abstractions of real-world privacy-preserving proto-

cols, but only to justify the introduction of our new

message constructors.

3.1. Electronic cash protocol

3.1.1. Issuing

Alice wants to have some e-cash issued by her

bank. To do this, Alice sends to the bank Server a

zero-knowledge proof for the required amount,

encrypted using their shared key. The Server verifies

the proof, checks that message m has the format of

an e-coin (e.g. it is equal to the message
value=$10), debits Alice’s account, signs the blinded

e-coin’s commitment and sends the signature to

Alice.

A Y S : wm : s : ks : f jf gkAS

S Y A : htmtsiksf
h i

kVS

3.1.2. Showing

Alice unblinds the signature of the blinded

commitment, which gives her the signature of the

commitment. To spend the money at Bob’s shop,

she sends to Bob the signature of the commitment

and the data used in the computation of the

commitment, encrypted using their shared key.1

Bob verifies the bank Server’s signature and checks

that the commitment is indeed computed using the

data sent. He then forwards the data to the bank

Server, encrypted using their shared key. The Server

verifies its signature, checks again the commitment’s

computation, checks further that the e-coin has not

been spent before (double spending) and credits Bob’s

account.

A Y B : m; s; tmts½ �kV
S

n o
kAB

B Y S : m; s; tmts½ �kV
S

n o
kBS

Notice that the Server does not know s, so even if Bob

and the Server cooperate in an effort to disclose

Alice’s identity, they will fail.

3.2. Electronic voting protocol

3.2.1. Issuing

Alice wants to participate in an electronic election

held by a trusted voting Server. To do this, Alice sends

to the Server a zero-knowledge proof for each of the

two possible votes of this election, encrypted using

their shared key. The Server verifies the proofs,

checks that Alice is eligible for voting and that

messages m1 and m2 represent the possible votes,

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512504
signs the blind commitment of each vote and sends

the signatures back to Alice.

A Y S : wm1 : s1 : kS : f1j; wm2: s2: kS : f2jf gkAS

S Y A : htm1ts1
ikSf1

h i
kVS
; htm2ts2

ikSf2
h i

kVS

3.2.2. Showing

Alice unblinds the signatures of the blinded commit-

ments, which gives her the signatures of the commit-

ments. She can now choose the commitment of the vote

she wishes to cast, and send the corresponding

signature to the Server via an anonymous channel,

together with the data used in the computation of the

commitment (one of which is the vote’s representa-

tion). The Server verifies its own signature and after

checking that the commitment is indeed computed

using the data sent, it accepts Alice’s vote.

A Y S : ma; sa; tmatsa

� �
kV
S

Notice that the Server has no way of linking sa to Alice.

3.3. Selective disclosure protocol

3.3.1. Issuing

Alice wants to demonstrate to Bob a certain

attribute about herself, but she does not want to
disclose to him any other information about her. To do

so, Alice contacts the Server of a trusted certificate

authority which issues selective disclosure certificates,

and sends it a zero-knowledge proof about her

attribute, encrypted using their shared key. The Server

verifies the proof, checks that m is a proper message

certifying a true attribute of Alice, signs the blind

commitment and sends the signature back to Alice.

A Y S : wm : s : ks : f jf gkAS

S Y A : htmtsikSf
h i

kV
S

3.3.2. Showing

Alice unblinds the signature of the blinded

commitment, which gives her the signature of the

commitment. She can now send this signature to Bob,

together with the data used in the computation of the

commitment, via an anonymous channel. Bob verifies

the Server’s signature and after checking that the

commitment is indeed computed using the data sent, it

accepts the attribute in message m.

A Y B : m; s; tmts½ �kV
S

Notice that the Server does not know s, so even if Bob

and the Server cooperate in an effort to disclose

Alice’s identity, they will fail.
4. Types

Typed MSR employs types to enforce basic well-formedness conditions (e.g. that only keys can be used to

encrypt a message), as well as to provide a statically checkable way to ascertain desired properties (e.g. that no

principal can grab a key he is not entitled to access).

4.1. Overview of types in Typed MSR

The typing of Typed MSR is based on the notion of dependent product types with subsorting [1] and the basic

types used are summarized in the following grammar:

Types: s : : ¼ principal ðPrincipalsÞ
j nonce Noncesð Þ
j shK A B ðShared keysÞ
j pubK A ðPublic keysÞ
j privK k ðPrivate keysÞ
j msg ðMessagesÞ

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512 505
We will use the letter s (variously decorated) to range over types. The types principal and nonce are used to

classify principals and nonces, respectively. The type shK A B is used to classify the keys shared between A and B.

The type pubK A is used to classify the public keys of A. The type prvK k is used to classify the private key that

corresponds to the public key k. Finally, the typemsg is used to classify generic messages, which include raw data,

but also all the other stated types.

The notion of dependent product types with subsorting we mentioned above accommodates our need of having

multiple classifications within a hierarchy. For example, everything that is of type nonce, is also of typemsg—but

the inverse is not true. Therefore, we say that nonce is a subsort ofmsg. We will use the notation sDsV to state that

s is a subsort of sV. The following rules can now be presented:

principal : : msg
P

nonce : :msg
P

shK A B : : msg
P

pubK A : : msg
P

privK k : : msg
P

4.2. Adding types for privacy-preserving protocols

To better cope with privacy-preserving protocols, we add types for tractable, semitractable and intractable

messages:

Types : s : : ¼ . . . ðsee aboveÞ
j tract ðTractable messagesÞ
j semitract ðSemitractable messagesÞ
j intract ðIntractable messagesÞ

These three types are used to classify messages according to their commonness. In other words, they

qualitatively classify the number of possible values a message can have.

The type tract is used to classify messages that are very common. Because of the tractable number of their

possible values, we consider that an intruder (regardless of whether these messages are publicly known or not)

is able to find them out by successfully employing a brute-force dictionary attack on them. On the other hand, if

a principal reveals the same (tractable) message in more than one protocol or subprotocol execution, the intruder

will not be able to link these executions together (at least not because of this particular message). Therefore, this

classification isolates pieces of information on the secrecy of which it is erroneous to base the correctness of a

protocol, but on the anonymity of which it is safe to do so.

The type intract is used to classify messages that are extremely uncommon. These are pieces of information on

the secrecy of which it is safe to base the correctness of a protocol, but on the anonymity of which it is certainly

erroneous to do so.

The type semitract is used to classify messages that are common enough to be considered realistic candidates for

brute-force dictionary attacks, but not common enough to be considered anonymous. It is not safe to base the

correctness of a protocol either on the secrecy of such pieces of information, nor on their anonymity.

We will now classify each of the standard types according to their tractability. Private keys, shared keys and

nonces should be regarded as intractable. Principals should be regarded as semitractable: we should not base the

correctness of protocols on the number of available principals. Public keys should also be regarded as

semitractable for the same reason. Notice that this classification conveniently enforces that everyone has access to

public keys. The following rules can now be presented:

principal : : semitract
PPPPPPPPPPPPPPPPPPPPPPP

nonce : : intract
PPPPPPPPPPPPPPPPP

shK A B : : intract
PPPPPPPPPPPPPPPPPP

pubK A : : semitract
PPPPPPPPPPPPPPPPPPPPP

privK k : : intract
PPPPPPPPPPPPPPPPPP

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512506
The classification of messages that are not keys, nor nonces, nor principals will be dealt with by signatures,

which are described in Section 4.3. To complete our subsorting rules, we add rules that classify tractable,

semitractable and intractable messages as messages:

tract : : msg
P

semitract : :msg
P

intract : : msg
P

4.3. Signatures

Typed MSR has typing rules that check whether an expression built according to the syntax of messages can be

considered a ground message. These rules systematically reduce the validity of a composite message to the validity

of its sub-messages. In this way, it all comes down to what the types of atomic messages are. Typed MSR uses

signatures to achieve independence of rules from atomic messages. A signature is a finite sequence of declarations

that map atomic messages to their type. The grammar of a signature is given below:

Signatures: R : : ¼ Empty signatureð Þ
j R; a : s Atomic message declarationð Þ

For our extended type system, we will need two signatures. Signature R will map atomic messages to one of the

standard types, and signature G will map them to one of the extended types, i.e. classify them into tractable,

semitractable or intractable. We will write t:Rs to say that message t has type s in signature R, and we will write

t:GsV to say that message t has type sV in signature G. Hence the following two rules:

R; a : s; RVð Þpa :R s
PPPPPPPPPPPPPPPPPPPP

G; a : s;GVð Þpa :G s
PPPPPPPPPPPPPPPPPP

4.4. Type rules for message constructors

We will now introduce type rules for all the message constructors presented in Sections 2.1 and 2.2 that use the

new types introduced in Section 4.2 in order to further check the groundness of messages.

4.4.1. Concatenation

The concatenation of two messages of the same type will yield a message of that type.

Gp t1 : s Gp t2 : s
Gp t1; t2 : s

The concatenation of two messages of different types will yield a message of the least tractable type among the

types of the original messages.

Gp t1 : tract Gp t2 : semitract
Gp t1; t2 : semitract Gp t2; t1 : semitract

Gp t1 : tract Gp t2 : intract
Gp t1; t2 : intract Gp t2; t1 : intract

Gp t1 : semitract Gp t2 : intract
Gp t1; t2 : intract Gp t2; t1 : intract

Note that in Typed MSR concatenated messages can be taken apart.

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512 507
4.4.2. Symmetric-key and asymmetric-key encryption

The tractability of the resulting ciphertext is defined to be the same as the tractability of the plaintext.

Gp t : s Rpk : shK AB

Gp tf gk : s
Gp t : s Rpk : pubK A

Gp tf gf gk : s

The implication is that the ciphertext of a tractable or semitractable message can now be cryptanalyzed by an

intruder and the original plaintext will instantly be made available. The aim is to enforce that only intractable

messages are enciphered, so that known-plaintext attacks are not possible. One way to make a tractable or

semitractable message into an intractable one is to concatenate it with a nonce (see rules for concatenation).

We believe that these type rules are fully in line with the black-box view on cryptography that the Dolev-Yao

abstraction adopts. The type rules only enforce a safer use of cryptography; they do not poison the abstraction with

low-level details.

4.4.3. Digital signature

Similar considerations apply to digital signatures.

Gp t : s RpkV : privK k

Gp t½ �kV : s

4.4.4. Commitment

Commitments may be considered to be intractable because of the nonce (salt value) used in the calculation.

Gp t : s Rpns : nonce
Gptttns

: intract

4.4.5. Blind signatures

Blind signatures may be considered to be intractable because of the nonce (blinding factor) used in the

calculation.

Gp t : s Rpk : pubK A Rpnf : nonce

Gphtiknf : intract

4.4.6. Zero-knowledge proofs

The zero-knowledge proof itself can be considered to be intractable, as two nonces are used in its calculation (a

salt value and a blinding factor). However, we require that the underlying message of a zero-knowledge proof is

tractable in order to enforce anonymity, and thus protect privacy. Consider for example that, if e-coins were issued

at any possible denomination, the bank would be able to identify the spender in most cases.

Gp t : tract Rpns : nonce Rpk : pubK A Rpnf : nonce
Gp wt : ns : k : nf j : intract

5. The Dolev-Yao intruder

The Dolev-Yao abstraction [5] assumes that elementary data, such as keys or nonces, are atomic rather than

strings of bits, and that the operations needed to assemble messages, such as concatenation or encryption, are pure

constructors in an initial algebra. Typed MSR fits very well in this abstraction: elementary data are indeed atomic

and messages are constructed solely by message constructors.

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512508
In this section, we present a version of the Dolev-Yao intruder which is useful in discovering more types of

attacks in privacy-preserving (as well as other types of) protocols. The rules that formally describe the new

capabilities of the intruder are represented in the same way as in [2], i.e. using the format shown in the

following diagram:
It has been proved [9] that there is no point in considering more than one Dolev-Yao intruder in any given

system. Therefore, we can select a principal, I say, to represent the Dolev-Yao intruder. Furthermore, we associate I
with an MSR memory predicate MI(_), whose single argument can hold a message, to enable I to store data out of

sight from other principals.

5.1. Standard version of the Dolev-Yao intruder

The standard version of the Dolev-Yao intruder can do any combination of the following operations:

! Intercept and learn messages

! Make copies of known messages

! Transmit known messages

! Decompose known (concatenated) messages

! Concatenate known messages

! Decipher encrypted messages if he knows the keys

! Encrypt known messages with known keys

! Sign messages with known keys

! Access public information

! Generate fresh data

The interested reader can refer to Ref. [2] for the formal specification of these operations in Typed MSR.

5.2. Extended version of the Dolev-Yao intruder

The version of the intruder that is presented here is an extended version in two ways. Firstly, one of the

intruder’s standard operations will be generalized in line with the new types introduced in Section 4.2. More

specifically, we will replace the last operation, i.e. the intruder’s ability to generate fresh data, with two new

operations: the ability to generate fresh intractable data, and the ability to guess tractable and semitractable data.

The intruder will be able either to guess the exact message required for his/her attack if this is possible, or to

generate a fresh message of the required type otherwise. Secondly, the intruder will now be able to handle

messages constructed using the message constructors introduced in Section 2.2.

We will now formally specify the new operations in Typed MSR.

5.2.1. Generate fresh intractable data

The intruder may generate fresh nonces, fresh private keys, fresh shared keys, as well as other intractable

messages.

d Y at :G intract:MI tð Þð ÞI

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512 509
5.2.2. Guess tractable and semitractable data

The intruder may guess or get access to public keys, principals, as well as other tractable or semitractable

messages.

8t :G tract: d Y MI tð Þð ÞI 8t :G semitract: d Y MI tð Þð ÞI

Notice that this rule can be used together with the previous one to allow the intruder to generate a key-pair by

first generating a fresh private key, and then by dguessingT the corresponding public key. However, the intruder is

not able to guess the private keys of other principals.

5.2.3. Blind messages

The intruder may blind a message given a public key and a blinding factor (nonce).

8t :R msg:
8A :R principal:
8k :R pubK A:
8n :R nonce:

MI tð Þ
MI kð Þ
MI nð Þ

Y MI htikn
� �

0
BB@

1
CCA

I

5.2.4. Unblind messages

The intruder may unblind a (blinded) message given the blinding factor (nonce).

8t :R msg:
8A :R principal:
8k :R pubK A:
8n :R nonce:

MI htikn
� �

MI nð Þ
Y MI tð Þ

0
BB@

1
CCA

I

5.2.5. Unblind signatures

The intruder may unblind a (blinded) signature given the blinding factor (nonce), if the public key used in the

blinding corresponds to the private key used in the signing.

8t :R msg:
8A :R principal:
8k :R pubK A:
8kV :R privK k:
8n :R nonce:

MI htikn
h i

kV

� �
MI nð Þ

Y MI t½ �kV
� �

0
BBBB@

1
CCCCA

I

5.2.6. Commit to a message

The intruder may commit to a message given a salt value (nonce).

8t :R msg:
8n :R nonce:

MI tð Þ
MI nð Þ Y MI tttnð Þ

� �I

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512510
5.2.7. Generate a zero-knowledge proof

The intruder may generate a zero-knowledge proof given a message, a salt value (nonce), a public key and a

blinding factor (nonce).

8t :R msg:
8ns :R nonce:
8A :R principal:
8k :R pubK A:
8nf :R nonce:

MI tð Þ
MI nsð Þ
MI kð Þ
MI nf

� � Y MI wt : ns : k : nf j
� �

0
BBBB@

1
CCCCA

I

5.2.8. Observe a zero-knowledge proof

The intruder will get the same information as anyone else who observes the zero-knowledge proof

(see Section 2.2).

8t :R msg:
8ns :R nonce:
8A :R principal:
8k :R pubK A:
8nf :R nonce:

MI wt : ns : k : nf j
� �

Y
MI tð Þ
MI htttns

iknf
� �

0
BBBB@

1
CCCCA

I

5.3. Linking protocol executions

A typical requirement for privacy-preserving protocols is that it should not be possible to link protocol or

subprotocol executions together. Informally, when we say that two executions of a protocol cannot be linked to a

given principal (usually the one whose privacy the protocol is supposed to protect), we mean that it is not possible

for the Dolev-Yao intruder to deduce whether the same principal participated in both executions, even if the Dolev-

Yao intruder manages to overtake all the other principals and get hold of their long-term secrets. Indeed, the

example protocols of Section 3 are designed so that the execution of the issuing subprotocol and the execution of

the showing subprotocol cannot be linked to Alice.

A protocol that allows the Dolev-Yao intruder to link two protocol executions together is not necessarily

vulnerable to an attack, so we need to add extra rules that express that such a property is undesirable in a

protocol. To this end, we introduce the Dolev-Yao intruder’s eavesdropping memory predicate, EI(_), whose

single argument can hold a message. The eavesdropping memory predicate is associated with the following

intruder’s operations.

5.3.1. Record messages

In general, the Dolev-Yao Intruder records messages by using three of his allowed operations: First he intercepts

the messages (removing them from the network), then he makes a copy of them, and finally he transmits the copies

(keeping a single instance of each message he intercepted). The eavesdropping memory predicate must not be

allowed to make copies of messages (see next operation for an explanation), so it must have a rule that will allow it

to record messages in one shot, as follows:

8t :R msg:N tð Þ Y
N tð Þ
EI tð Þ

� �I

Note that in Typed MSR, N(_) is the network predicate.

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512 511
5.3.2. Link two protocol executions together

We assume that two protocol executions can be linked together only because the same intractable or

semitractable message is being transmitted in both of them. By definition, tractable messages cannot be used for

linking, as their limited range of possible values guarantees that they will be in frequent use by most principals. We

will use the letter L to represent a successful linking.

8t :G intract:
EI tð Þ
EI ðtÞ

Y L
� �I

8t :G semitract:
EI tð Þ
EI ðtÞ

Y L
� �I

Note that these rules would not stand if the eavesdropping memory predicate was allowed to make copies of

the messages it records. Note further that these rules are too restrictive in the sense that: (i) they apply to all

principals, not just the one whose privacy the protocol must preserve, and (ii) they apply even within the

same protocol or subprotocol run. However, we believe that these restrictions would not pose a problem to

real-world protocols. For example, there is no reason two principals should exchange the same intractable or

semitractable message more than once in the same protocol or subprotocol execution, even if this poses no

privacy risk.
6. Summary and conclusions

In this paper, we have presented an extension of

Typed MSR that makes it more suitable for the

specification of privacy-preserving protocols. The

introduced non-interactive message constructors for

blind signatures, commitments and zero-knowledge

proofs make the standard language rich enough to

specify protocols such as electronic cash, electronic

voting and selective disclosure protocols. The

introduced type rules make the standard language

more capable of statically checking for desired

properties in privacy-preserving as well as other

types of protocols. More specifically, the introduced

types can be used in the specification of protocols

in order to statically check against attacks on

privacy, brute-force dictionary attacks and known-

plaintext attacks. Finally, the introduced version of

the Dolev-Yao intruder creates a formal framework

on which attacks on privacy-preserving protocols

may be attempted.

Further work will include the development of a

stricter and richer type system and the formal

specification of real-world privacy-preserving proto-

cols in the extended language.
References

[1] D. Aspinall, A. Compagnoni, Subtyping dependent types, in: E.

Clarke (Ed.), Proceedings of the 11th Annual Symposium on

Logic in Computer Science, IEEE Computer Society Press,

1996 July, pp. 86–97.

[2] Iliano Cervesato, Typed multiset rewriting specifications of

security protocols, in: A. Seda (Ed.), First Irish Conference on

the Mathematical Foundations of Computer Science and

Information Technology—MFCSIT’00, ENTCS, vol. 40, Elsev-

ier, Cork, Ireland, 2000 July 19–21, pp. 1–43.

[3] Iliano Cervesato, Typed MSR: syntax and examples, in: V.I.

Gorodetski, V.A. Skormin, L.J. Popyack (Eds.), First Interna-

tional Workshop on Mathematical Methods, Models and

Architectures for Computer Networks Security—MMM’01,

LNCS, vol. 2052, Springer-Verlag, St. Petersburg, Russia,

2001 May 21–23, pp. 159–177.

[4] David Chaum, Security without identification: transaction

systems to make big brother obsolete, Communications of the

Association for Computing Machinery 28 (10) (1985 October)

1030–1044.

[5] D. Dolev, A.C. Yao, On the security of public key protocols,

IEEE Transactions on Information Theory 2 (29) (1983)

198–208.

[6] Jason E. Holt, Kent E. Seamons, Selective disclosure credential

sets, http://citeseer.nj.nec.com/541329.html, 2002.

[7] Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone,

Handbook of Applied Cryptography, CRC Press, 1997.

[8] Bruce Schneier, Applied Cryptography, John Wiley and Sons,

1996.

http://citeseer.nj.nec.com/541329.html
http://citeseer.nj.nec.com/541329.html

T. Balopoulos et al. / Computer Standards & Interfaces 27 (2005) 501–512512
[9] Paul Syverson, Catherine Meadows, Iliano Cervesato, Dolev-

Yao is no better than Machiavelli, in: P. Degano (Eds.), First

Workshop on Issues in the Theory of Security – WITS’00,

2000 July, pp. 87–92.
Theodoros Balopoulos was born in Greece

in 1978. He holds a BA in Computer

Science from the University of Cambridge,

UK. Currently he is a PhD candidate at the

Department of Information and Communi-

cations System Engineering, University of

the Aegean, Greece. His research interests

include information security, security pro-

tocols and privacy. His published scientific

work includes two conference papers.
Stefanos Gritzalis was born in Greece in

1961. He holds a BSc in Physics, an MSc

in Electronic Automation, and a PhD in

Informatics all from the University of

Athens, Greece. Currently he is an Asso-

ciate Professor at the Department of Infor-

mation and Communication Systems

Engineering, University of the Aegean,

Greece, and a Director of the Info-Sec-

Lab. He has been involved in more than 30

national and CEC funded R and D projects
in the areas of Information and Communication Systems. His

published scientific work includes six books (in Greek) on

Information and Communication Technologies topics, and more

than 70 journal and national and international conference papers.

The focus of these publications is on Information and Communi-

cation Systems Security. He has served in program and organizing

committees of national and international conferences on Informatics

and is a reviewer for several scientific journals.
Sokratis K. Katsikas was born in Greece

in 1960. He received the Diploma in

Electrical Engineering degree from the

University of Patras, Greece, the MSc in

Electrical and Computer Engineering from

the University of Massachusetts at

Amherst, USA, and the PhD in Computer

Engineering from the University of Patras,

Greece. He now is Professor at the Depart-

ment of Information and Communication

Systems Engineering and Rector of the
University of the Aegean, Greece. He has authored or co-authored

more than 140 technical papers and conference presentations in his

areas of research interest, which include information and commu-

nication systems security, estimation theory, adaptive control, and

artificial intelligence. He has served on steering, program and

organizing committees of international conferences Informatics and

is a reviewer for several scientific journals.

	Specifying Privacy-Preserving Protocols in Typed MSR
	Introduction
	Typed MSR
	Overview of messages in Typed MSR
	Adding message constructors for privacy-preserving protocols

	Privacy-preserving protocols overview
	Electronic cash protocol
	Issuing
	Showing

	Electronic voting protocol
	Issuing
	Showing

	Selective disclosure protocol
	Issuing
	Showing

	Types
	Overview of types in Typed MSR
	Adding types for privacy-preserving protocols
	Signatures
	Type rules for message constructors
	Concatenation
	Symmetric-key and asymmetric-key encryption
	Digital signature
	Commitment
	Blind signatures
	Zero-knowledge proofs

	The Dolev-Yao intruder
	Standard version of the Dolev-Yao intruder
	Extended version of the Dolev-Yao intruder
	Generate fresh intractable data
	Guess tractable and semitractable data
	Blind messages
	Unblind messages
	Unblind signatures
	Commit to a message
	Generate a zero-knowledge proof
	Observe a zero-knowledge proof

	Linking protocol executions
	Record messages
	Link two protocol executions together

	Summary and conclusions
	References

