
TALKING PLANT: INTEGRATING PLANTS BEHAVIOR WITH

AMBIENT INTELLIGENCE

Ioannis Calemis
 1
, Christos Goumopoulos

 1, 2
, A. D. Kameas

1,2

Ioannis Calemis, calemis@cti.gr URL: http://daisy.cti.gr/calemis/ (corresponding author)

Dr. Eng. Christos Goumopoulos, goumopoulos @cti.gr URL: http://daisy.cti.gr/goumopoulos/

Dr. Achilleas D. Kameas, kameas@cti.gr URL: http://daisy.cti.gr/kameas/

1
Research Academic Computer Technology Institute

N. Kazatzaki str., University Campus,

GR 26500, Patras, Hellas.

Tel.: +30 2610 960200

Fax: +30 2610 960490

2
Hellenic Open University

23, Sahtouri Str

GR 26222, Patras, Hellas

Tel.: +30 2610 362564

Fax: +30 2610 361420

335

TALKING PLANT: INTEGRATING PLANTS BEHAVIOR WITH AMBIENT INTELLIGENCE

Ioannis Calemis, Christos Goumopoulos, and Achilles Kameas

Research Academic Computer Technology Institute, Research Unit 3, Design of Ambient Information Systems

Group, Patras, Hellas

{calemis, goumop, kameas}@cti.gr

Abstract. The aim of this work is to bring the Ambient Intelligence (AmI) (1) concept in a new level by

introducing it to living organisms – plants. In this paper we provide a concrete scenario where an augmented

plant, an ePlant can be incorporated in a ubiquitous computing environment in order to work together with

other augmented objects, artifacts, in order to provide to the environment status of its condition. The paper

presents the enabling infrastructure and the tools that are used to make such an application, and discusses on

how we can make these augmented items to collaborate in order to create mixed societies of plants and

artifacts.

INTRODUCTION

The vision of Ambient Intelligence (AmI) (1) implies

a seamless environment of computing, advanced

networking technology and specific interfaces. In one of

its possible implementations, technology becomes

embedded in everyday objects such as furniture, clothes,

vehicles, roads and smart materials, and people are

provided with the tools and the processes that are

necessary in order to achieve relaxing interactions with

this environment. Computer Technology Institute

through an EU funded research project, PLANTS (2),

has brought the AmI concept in a new level by

introducing it to living organisms – plants. While plants

are able to perceive the environment and send signals to

it, people aren’t able to understand these signals and to

fulfill the plants needs. With the introduction of

specialized sensors and a ubiquitous communication

environment, plants, not only are able to give the world

their needs but also to take actions for themselves.

Our research effort adheres to the AMI vision where

the virtual (computing) space will be seamlessly

integrated with our physical environment. To bring this

vision closer to reality several issues need to be

addressed and solutions be provided:

(i) software infrastructure for pervasive

computing that can support the integration between our

physical space and virtual computing space;

(ii) sensors and sensor network that can capture

and disseminate context information;

(iii) context-aware applications that use context

information to create intelligent artifacts and services;

(iv) embedding computing into physical entities;

(v) tools and user interfaces for supporting

ubiquitous computing.

This paper will provide a thorough example on how

an augmented plant, an ePlant, can perceive its

environment and how, through the use of appropriate

middleware and tools, the ePlant can “talk” with other

objects (artifacts), providing them the appropriate

knowledge to take actions or to give events to the

environment through to some interactive Artifact

devices. The user can take this knowledge, which is

perceived as the plants needs, and act accordingly, thus

establishing a human-plant communication channel.

The rest of the paper is organized as follows. Section

2 outlines the conceptual model for composing

Ubicomp applications where basic concepts and

components are identified and described. The

middleware that is used from all augmented Artifact

physical entities is presented in Section 3. In section 4

the presentation of the scenario is introduced. Sections 5

and 6 present the artifacts and the tools that are used in

the talking plant application. Section 8 gives the

implementation of the scenario. Section 7 gives a brief

state-of-the-art in the fields involved in this paper.

Finally, section 8 concludes this paper.

A CONCEPTUAL MODEL FOR COMPOSING

UBICOMP APPLICATIONS

In our approach, an application is realised through the

cooperation of applications level components (nodes of

a distributed system) in the form of established logical

communication links between services and capabilities

offered by the artifact and the states and behaviours

inferred from the plants (in each case services/states are

provided through access points called plugs). The

plug/synapse model provides a conceptual abstraction

that allows the user to describe mixed society ubiquitous

applications (3), Kameas et al (4). To achieve collective

desired functionality, one forms synapses by associating

compatible plugs, thus composing applications using

Artifacts and ePlants as components. The use of high-

336

level abstractions, for expressing such associations,

allows the flexible configuration and reconfiguration of

mixed society applications with the use of appropriate

editing tools.

The basic definitions encapsulated in our conceptual

framework Drossos et al (5) are:

Artifacts: An artifact is a tangible object which bears

digitally expressed properties; usually it is an object or

device augmented with sensors, actuators, processing,

networking unit etc. or a computational device that

already has embedded some of the required hardware

components. Software applications running on

computational devices are also excessively considerd to

be artifacts.

ePlants: An ePlant is a kind of an artifact. A Plant is

transformed into an ‘ePlant’ through the

superimposition of a technological layer and may

represent either a specific plant or a set of plants (a set

may be defined in terms of specific plant species or a

number of plants in a particular location). The scope of

the system enables groups of ePlants to be organized

into a large number of nodes, to create a hierarchical

structure that evenly distributes the communication load

and other resource (power, memory, computation)

consumption and also facilitates distributed decision-

making. These nodal groupings are considered as ‘high-

level’ ePlants with the hierarchical structure adhering to

the philosophy of the software component-engineering

paradigm where composite components are synthesized

from simpler ones.

eEntity: An eEntity is a generalization of the ePlant and

the Artifact concept.

Artifact compositions: Two or more artifacts (simple or

composite) can be combined in an artifact composition.

Such compositions are the tangible bearers of UbiComp

applications and are regarded as service compositions;

their realization can be assisted by end-user tools.

bioGadgetWorld (bioGW): A bioGW is a kind of a

UbiComp application. It represents a collection of of

artifacts and ePlants that work together to achieve a

number of goals.

Properties: Artifacts have properties, which collectively

represent their physical characteristics, capabilities and

services. A property is modeled as a function that either

evaluates an artifact’s state variable into a single value

or triggers a reaction, typically involving an actuator.

Some properties (i.e. physical characteristics, unique

identifier) are artifact-specific, while others (i.e.

services) may be not. For example, attributes like

color/shape/weight represent properties that all physical

objects possess. The service light may be offered by

different objects. A property of an artifact composition

is called an emergent property. All of the artifacts

properties are encapsulated in a property schema

which can be send on request to other artifacts, or tools

(e.g. during an artifact discovery).

Functional Schemas: An artifact is modeled in terms of

a functional schema: { }nfffF K21 ,= , where each

function if gives the value of an observed property i in

time t. Functions in a functional schema can be as

simple or complex is required to define the property.

They may range from single sensor readings to rule-

based formulas involving multiple properties, to first-

order logic so that we can quantify over sets of artifacts

and their properties.

State: The values for all property functions of an artifact

at a given time are the state of the artifact. For an

artifact A, the set

{ })(),()(21 tfppppAP iin == K

 represents the state space of the artifact. Each member

of the state vector represents a state variable. The

concept of state is useful for reasoning about how things

may change. Restrictions on the value domain of a state

variable are then possible.

Transformation: A transformation is a transition from

one state to another. A transformation happens either as

a result of an internal event (i.e. a change in the state of

a sensor) or after a change in the artifact’s functional

context (as it is propagated through the synapses of the

artifact).

Plugs: Plugs are the constructs that we use to represent

properties of artifacts in the digital space. Plugs are

characterized by their direction and data type. Plugs

may be output (O) in case they manifest their

corresponding property (e.g. as a provided service),

input (I) in case they associate their property with data

from other artifacts (e.g. as service consumers), or I/O

when both happens. Plugs also have a certain data type,

which can be either a semantically primitive one (e.g.

integer, boolean, etc.), or a semantically rich one (e.g.

image, sound etc.). From the user’s perspective, plugs

make visible the artifacts’ properties, capabilities and

services to people and to other artifacts.

Synapses: Synapses are associations between two

compatible plugs. In practice, synapses relate the

functional schemas of two different artifacts. When a

property of a source artifact changes, the new value is

propagated through the synapse to the target artifact.

337

The initial change of value caused by a state transition

of the source artifact causes finally a state transition to

the target artifact. In that way, synapses are a realization

of the functional context of the artifact.

To achieve collective desired functionality, one forms

synapses by associating compatible plugs, thus

composing applications using artifacts as components.

Two levels of plug compatibility exist: Direction and

data type compatibility. According to direction

compatibility output or I/O plugs can only be connected

to input or I/O plugs. According to Data type

compatibility, plugs must have the same data type to be

connected via a synapse. However, this is a restriction

that can be bypassed using value mappings in a synapse.

No other limitation exists in making a synapse.

Although this may mean that meaningless synapses are

allowed, it has the advantage of letting the user create

associations and cause the emergence of new

behaviours that the artifact manufacturer may have

never thought of. Meaningless synapses can also be

seen as having much in common with runtime errors in

a program, where the program may be compiled

correctly but does not manifest the desired by the

programmer behavior.

The use of high-level abstractions, for expressing such

associations, allows the flexible configuration and

reconfiguration of UbiComp applications. It only

requires that artifacts are able to communicate and they

have to run the distributed management system

(middleware) in order to “comprehend” each-other, so

that users can access their services, properties and

capabilities in a uniform way.

THE EPLANTOS MIDDLEWARE

The outline of the ePlantOS architecture is shown in

Figure 1. This middleware is an upgraded version of the

middleware presented in Drossos et all (5). Thus it

encapsulates the basic features of the kernel and

incorporates new modules, specifically developed for

managing plant behaviour. The ePlantOS kernel

implements the plug/synapse model manifesting the

artifact’s services and capabilities through plugs, while

providing the mechanisms (API and protocols) to

perform synapses with other artifacts via the application

layer. Synapses can be considered as virtual channels

that feed the lower communication levels with high-

level data. Interfacing with networking mechanisms

(transport layer) is done via the Java platform and

finally data are transmitted through the physical layer to

the other end of the synapse to follow the reverse

process of transforming low-level information (e.g.

messages) to high-level one (e.g. service requests). Data

departing or arriving to plugs usually affect one or more

of the device capabilities (sensors/actuators), while the

kernel assumes the responsibility of translating those

data to artifact behavior (e.g. activate a specific actuator

in order to achieve a goal).

Process

Manager

Peer-to-Peer

Communication Module

Hardware State

Manager

Ontology

Manager

Jess Inference

Engine

Rule

Manager

PLANTS

ontology

Rule

base

Interaction

Module

Figure 1. ePlantOS architecture outline

The ePlantOS kernel encompasses a Communication

Module, a Process Manager, a Hardware State Manager,

an Ontology Manager a Rule Manager and a Jess

Inference Engine as shown in the Figure 1. The

Communication Module Kameas et al (6) is responsible

for communication between different ePlant/Artifact

nodes. This module implements algorithms and

protocols for wireless, connectionless communication

(using the 802.11b/g protocol) as well as mechanisms

for internal diffusion of information exchanged. The

Process Manager is the coordinator module of

ePlantOS. Some of its most important tasks are to

manage the processing policies of the ePlantOS, to

accept and serve various tasks set by the other modules

of the kernel and to implement the Plug/Synapse model.

The Hardware State Manager is a repository of the

hardware environment (sensors/actuators) inside

ePlantOS reflecting at each particular moment the state

of the hardware. Through the Ontology Manager

ePlants/Artifacts can obtain context-awareness and

manifest higher-level behavior (7), Goumopoulos et al

(8). Applications state their resource or service needs

through concepts that are part of the artifact’s ontology.

Finally the Rule Manager and the Jess Inference Engine

are responsible of the decision making process of the

ePlant/Artifact. The decision-making process is based

on a set of rules in operational representation forms that

are applied on existent knowledge and allow the use of

the ePlants ontology for reasoning providing inferential

and validation mechanisms. The reasoning is on the

definition of the PLANTS ontology, which may use

simple description logic or user-defined reasoning using

first-order logic.

SCENARIO

The prototype is an everyday application that takes

place in the office, and aims at facilitating the user in

looking after his/her indoor plants, despite his/her

pressing working time patterns. This ambient-

338

intelligence scenario demonstrates, effectively, the

concept of communicating plant, in the context of an

every-day environment (e.g., an office) with several

layers of decision-making.

The scenario is quite simple. A person has a plant in his

office. However busy he may be, he still loves to take

care of the plant. Several everyday objects are in his

disposal for giving him an appropriate feedback (Lamp,

MP3Player, Mobile Phone). Our aim is to form such an

application (bioGW) where the plant will be able to

provide to the human the appropriate feedback of his

condition.The sequence of the scenario’s interactions is

shown in Figure 2.

ePlant

eMobilePhone

eLamp

eCarpet

eMoodCube

eMP3Player

Need

Water

User inside

Office ?

User

available ?

Yes

Yes

visual

notification

No

acoustic

notification

S
M

S

n
o
ti

fi
ca

ti
o
n

bioGW

Editor

SLADA

Do nothing
No

Figure 2. Indoor PLANTS bioGW flowchart diagram

The main actor is the ePlant. The ePlant decides

whether it needs water or not using its sensors readings

and the appropriate decision making mechanism

incorporated in it. An augmented carpet is in the area,

an eCarpet whose role is to provide information to the

application if the user is inside his office. Similarly, a

eMoodCube (a device where the user can set in certain

position and change its color, reflecting the user’s

mood) provides an indication whether the user is

available or not.

An augmented Lamp (eLamp) and an MP3Player

(eMP3Player) are used to provide visual and acoustic

notification respectively to the user. This notification is

given according to the status of the eMoodCube. If the

eMoodCube is set to “Do not disturb” status, the user is

not notified at all. Lastly, in the case the user is not in

his/her office, the application uses the eMobilePhone

(an augmented Mobile Phone) to send him a SMS and

inform him/her about the watering needs of the plant.

COMPONENTS TAKING PART IN THE

SCENARIO

The application-level software components that are

necessary for the realization of the above scenario are

described as follows:

ePlant: The ePlant based on its sensor readings is

capable of deciding whether it needs water or not. These

sensors fall into 2 categories: Thermistors, that is

sensors that can perceive the temperature of the plants

leaves and the environment and Soil Moisture Probes,

which are able to measure the moisture of the soil. The

species of the plant is selected based on the available

domain knowledge, from which specific rules will arise

and become embedded into the ePlant’s knowledge

base. The rules combine the information given from the

sensors above in order to provide a concrete decision on

the current plant’s state.

 eMobilePhone: The eMobilePhone is a personal java

enabled mobile phone, used for sending SMS to other

mobile phones. There is the software part of the

eMobilePhone that represents the entity of the mobile

phone in the virtual world. When the eMobilePhone s/w

receives a request to notify the user via an SMS, the

software will connect through Bluetooth to the mobile

phone device and send the SMS to the corresponding

telephone number.

eLamp: The eLamp is an augmented floor lamp used

for visual notifications. The lamps switch is controlled

by an FPGA. This FPGA receives commands through

the serial port and adjust the state of the eLamp

accordingly.

eCarpet: The eCarpet is an augmented carpet with

pressure sensors attached, used for sensing the

occupancy of the office (i.e. if the user is in the office).

Based on the sequence the pressure sensors are pressed

the eCarpet is capable of deducing if someone is

entering or leaving a room, thus if the user is present or

not.

eMoodCube: The eMoodCube is an augmented

Mathmos lamp with tilt switches attached, used for

defining the current status/mood of the user, such as

“available for acoustic nification”, “available for visual

notification”, “do not disturb”, etc.

eMP3Player: The eMP3Player is a winamp based mp3

player, used to play audio messages.

339

TOOLS FOR COMPOSING UBICOMP

APPLICATIONS

In order to create the appropriate bioGW we need the

support of certain tools. These tools are the Supervising

Logic and Data Acquisition (SLADA) tool and bioGW

Editor (bioGWE). The former is used to manipulate the

rules of an eEntity (ePlant/Artifact) and to monitor its

variables (data, actions, states) during its lifecycle,

while the later is used for creating connections through

eEntities and Composing bioGWs.

Supervising Logic and Data Acquisition (SLADA)

tool

The main purpose of the SLADA tool is to provide the

ability to the user to monitor and manage a remote

ePlant. The main functionalities of SLADA fall into two

categories:

• Monitoring of the Various components of the

remote ePlant

• Altering the rule base of the ePlant

The logical communication channel that is used

between the ePlant and SLADA is provided by the

ePlantOS middleware. SLADA and ePlant exchange

information through a specific Synapse between a

specially designed Plug, the Monitoring Plug, or

MPlug. The MPlug inherits its basic properties from the

Plug class, therefore, has all the abilities of a single

Plug. However, its functionality is enhanced in the

following capabilities(Figure 3).

Plant-OSPlant-OS

MPlug
Ontology Manager

MPlug

Communication
Module

Communication
Module

Inform

ePlant

SLADA

Net

State Variable
Manager Notify

Inference Engine

Rule Manager
Inform

Notify

Figure 3. MPlug Communication Scheme

• Monitoring of the low-level context of the host
ePlant. When created, the MPlug is connected to

the state variable manager in order to retrieve the

low level data of the host ePlant. From this point on

any change on those data is reflected to the MPlug

through an event based mechanism.

• Monitoring of high level state: The MPlug may

receive high level monitoring data, provided by the

inference engine, representing higher level states of

the ePlant. These variables are processed in the

same manner as the state variables.

• Monitoring the variables of a remote ePlant. The

MPlug can receive the variables of a remote ePlant

(via a synapse), and monitor the data they represent

• Modifying the rule Base. The MPlug provides the

appropriate mechanism for requesting the rule base

for the Rule Manager of the local ePlant, sending it

to SLADA as well as sending the modified Rules

back to ePlant

For modifying the rule base SLADA provides a

complete, user friendly, Graphical environment, where

the creator of the bioGW can modify the rules to

express his needs (Figure 4)

Figure 4. Rules Editing

bioGW Editor (bioGWE)

This tool is an extension of a previous tool called

GadgetWorld Editor Mavromatti et al (9) and provides

an extensive set of operations on ePlants, Synapses and

bioGWs.

In order to operate the bioGWE the presence of

eEntities within range is required. The bioGWE

discovers all eEntities in the area. When a Discovery is

initiated, the GEManager initiates the Peer Discovery

Protocol and sends through the Plant-OS a Discovery

Message. All the eEntities that receive this message

send back to the editor an advertisement message

containing the ePlant’s T-Plug, which contains

information about an eEntity’s physical characteristics,

as well any information about the eEntity’s plugs. By

using the eEntities found and provided in the editing

pane the user can create its own bioGWs. The creation

of the Gadgetworld can be done in a set of simple steps,

After using that simple steps to connect all the

appropriate plugs, the BioGadgetWorld is ready to be

activated and used. The bioGWE then sends to the

gadget of each synapse a synapse initiation message.

Each gadget that receives a synapse initiation message

proceeds with synapse activation. When the synapsing

340

process is finalized, the ePlants inform the GE about the

status of the synapse. From that moment on the eEntities

are connected with each other form a concrete

BioGadgetWolrd

IMPLEMENTATION OF THE SCENARIO

A high-level view of the plugs and synapses that are

necessary for the implementation of the Indoor

BioGadgetWorld is given in Figure 5.

Figure 5. Plugs and synapses for the implementation

of the Indoor BioGadgetWorld

We note that for the ePlant, eCarpet and eMoodCube

the evaluation of the state (in case of the plant) or the

service and capability (in case of an everyday object) is

based on a local decision making scheme, because the

assessment logic depends only on knowledge that is

managed by the specific component through its attached

sensor network and rule-base. On the other hand, the

service provided by the eMobilePhone, eLamp and

eMP3Player depends on a global decision making

scheme, because the rules that govern the decision to

offer a service have to take into account the

state/capability information of several eEntities. For

example, to decide whether to make the lamp blinking

(visual notification service to the user) we have to take

into account the state of the ePlant, provided by the

NeedWater plug, the capability of the eCarpet to sense

the presence of the user in the office, provided by the

OfficeOccupied plug and the capability of the

eMoodCube to map the mood of the user, through the

Mood plug. Thus, to turn on or off the lamp we have to

define a rule that takes into account all the above plugs.

The following table summarizes the properties, plugs

and functional schemas of each eEntity participating in

the Indoor BioGadgetWorld.

TABLE 1 - BioGadgetworld Configuration

eEntity Properties Plugs Functional Schemas

ePlant Determining the state of the

plant, whether the plant

needs irrigation or not.

NeedWater:

{OUT|Boolean}
PlantTemp � read(Thermistors)

SoilHumidity �

read(MoistureProbe)

AmbientTemp � read(Thermistors)

IF PlantTemp - AmbientTemp >

ePlant.TempThreshold OR

SoilHumidity <

ePlant.HumidityThreshold

THEN NeedWater � TRUE

ELSE NeedWater � FALSE

eCarpet The carpet is placed at the

entrance of the office. As

the user enters or leaves

he/she is forced to step over

the carpet. The eCarpet

monitors the direction of

this movement and updates

its plug accordingly.

OfficeOccupied:

{OUT|Boolean}

SensorArray � read(SensorNetwork)

OfficeOccupied �

FindMovementDirection(SensorArray)

eMoodCube As the moodCube is turned

it changes its color and

represents user’s mood.

Possible selections are:

• DO_NOT_DISTURB,

• NOTIFY_VISUAL,

• NOTIFY_ACOUSTIC

Mood:

{OUT|Enumeration}

Position � read(Sensors)

Mood �

MapPositiontoMood(Position)

eMobilePhone Send SMS Service (S1) SMS:

{IN|Boolean}

IF ePlant.NeedWater AND NOT

eCarpet.OfficeOccupied

THEN S1()

eLamp Light service (S2) OnOff: IF ePlant.NeedWater AND

341

eEntity Properties Plugs Functional Schemas

{IN|Enumeration} eCarpet.OfficeOccupied AND

eMoodCube.Mood = NOTIFY_VISUAL

THEN S2(BLINK)

eMP3Player Playing message service

(S3)

Play:

{IN|Boolean}

IF ePlant.NeedWater AND

eCarpet.OfficeOccupied AND

eMoodCube.Mood = NOTIFY_ACOUSTIC

THEN S3(A user-defined audio

message)

Figure 6. Combining eEntities in the bioGWEditor to create the Indoor bioGW

The composition of the above bioGadgetWorld, in terms

of components and synapses between them, is greatly

facilitated by the use of the bioGWEditor (see Figure 6)

Furthermore the definition of the functional schemas, in

terms of rules, for the operation of the various eEntities

in the Indoor bioGadgetWorld is facilitated by the use

of the SLADA Tool and in particular its rule editor

subsystem.

When the creation and activation of the BioGadgetwold

is completed, the user should be able to use it

seamlessly. As described in section 4 when the plant

should need water, it would be able to communicate

with the user through vocal, optical or text messages,

and the user should make an action on for it.

RELATED WORK

Previous work on this subject can be defined in many

fields. The first one is the application field where we

need to define the work that has been done in the field

of plant monitoring and automated irrigation processes.

In that we can find many companies that provide

sensors that can monitor the different plant parameters

(Soil moisture, temperature, Chlorophyll etc.), such as

Phytech Ltd.(10) And ICT Internactional (11). Phytech

in particular has established a technique called

Phytomonitoring that describes the process of a plant

lifecycle monitoring. This however is not done

automatically but through data collection from the

sensors and user interaction on the rules.

Next fields are mainly technological. Getting in the

Ubiquitous Environment Domains, we need to see what

options are available. One key aspect is the middleware

through which the artifacts can communicate through

each other. Well known communication systems are

JAVA RMI (12) Jini (13),(14) JXTA (15). Jxta in

particular is a set of open, generalized P2P protocols,

which allow any connected device on the network to

communicate and collaborate as a peer. Project Jxta

comes closest to be selected as the networking module

for the ePlant/Artifact framework. Each ePlant/Artifact

can function as a Jxta peer providing services through

its Plugs. The Biogadgetworlds can be thought of as an

analogy to groups in the JXTA terminology. But the

342

currently available version of Jxta has been developed

with the Java Standard edition in mind. Though ports to

other Java editions and implementations on other

platforms are available, most of them lose some

functionality. Jxme, which is the port of Jxta to Java

Micro Edition, is a bare-naked implementation and

above that requires the services of a Jxta relay to

function as a P2P peer.

In the field of Ubiquitous computing environments

we can check the Disappearing Computer Initiative (16)

where a numerous projects were successfully finished.

In particular we can define Smarts-Its Holmquist L.E.,

et al. (17), where small-scale smart devices can be

attached to mundane everyday artifacts to augment

these with a "digital self". These devices will be as

cheap, as unobtrusive and as generic as state-of-the-art

smart labels (i.e., RFID tags). In addition these devices

will be enabled with perception of their environment,

with peer-to-peer communication, and with

customizable behaviour.

In the Disappearing Computer Initiative we can also

mention eGadgets project (3), whose platform has been

the base on designing the ePlantOS system for the

PLANTS Projects. The main purpose of eGagdets was

to develop and validate an architectural style for

tangible, communicating artifacts [=a Gadgetware

Architectural Style (GAS)]. Extrovert Gadgets are

objects with communicative abilities. The objects and/or

their environments can be enhanced by intelligence. A

multitude of loosely coupled gadgets can be bound into

ad-hoc interacting clusters which display collective

function, thus forming a gadgetworld. The Gadgetware

Architecture Style (GAS) provides a common

conceptual framework for designers and people, to use

e-gadgets as building blocks for composing

gadgetworlds.

One interesting approach is the TinyOS (18) that is

an event based operating environment designed for use

with embedded networked sensors. More specifically, it

is designed to support the concurrency intensive

operations required by networked sensors with minimal

hardware requirements. There are hundreds of TinyOS

projects throughout the world. Other related research

efforts are Gaia Román M. and Campbell R.H (19) that

provides an infrastructure to spontaneously connect

devices offering or using registered services. Gaia-OS

requires a specific system software infrastructure using

CORBA objects, while mobile devices cannot operate

autonomously without the infrastructure; and BASE

Román M. and Campbell R.H (20) which is a

component-oriented micro-kernel based middleware,

which, although provides support for heterogeneity and

a uniform abstraction of services, the application

programming interface requires specific programming

capabilities by users

Whereas all the above may be used to formulate a

Human-Plant environment, no concrete solution has

ever been given. The only similar solution is the one

given from PlantCare, where an autonomous application

is introduced that takes care of houseplants using a

sensor network and a mobile robot LaMarca A. et al.

(21).However in this application, the emphasis is given

on discussing technical challenges encountered during

the deployment of the application. Our approach in

contrast emphasizes the development of an architecture

that views plants and associated computation as an

integral part and allows the interaction of plants,

artefacts and people to form a synergistic and scalable

application.

CONCLUSIONS

In this paper we have given a practical way, on how,

with the appropriate augemented plants and items (that

we’ve called ePlants and Artifacts), middleware, and

tools we can create a ubiquitous environment for our

plant, through which it can communicate with us. The

scenario is versatile, which means that we can alter with

a little work the scenario, to embed other ways of

communication, other messages or to make the plant

able to serve itself. For example by adding to the

scenario an irrigation system, and connecting the plant

with the appropriate service we can modify the scenario,

where the plant, under certain conditions to be able to

irrigate itself. This can be done easily only by adding

one more synapse from the ePlant to the Irrigation

System, and setting the appropriate conditions for

triggering this action.

Thus with the appropriate tools we can create a closer

relation between Human-Plant, where the plant would

be able to express its needs and the human to be able to

satisfy them. So as the dog than needs to be fed barks to

his boss, we’ve managed to make the plant “bark”

ACKNOWLEDGEMENT

This paper describes research carried within the

PLANTS project (IST FET Open IST-2001-38900);

more info can be found at

http://www.edenproject/PLANTS. The authors wish to

thank their fellow researchers in the PLANTS

consortium.

REFERENCES

1. IST Advisory Group. (2003, September). Ambient

Intelligence: from vision to reality. Available:

http://www.cordis.lu/ist/istag-reports.htm

2. PLANTS Consortium: PLANTS roadmap, PLANTS

IST-2001-38900 Technical Report, April 2004

3. e-Gadgets project website: http://www.extrovert-

gadgets.net

4. Kameas A., et al.: An Architecture that Treats

Everyday Objects as Communicating Tangible

Components. In Proceedings of the 1st IEEE

343

International Conference on Pervasive Computing

and Communications (PerCom03), Fort Worth,

USA, 2003.

5. Drossos, N., Goumopoulos, C. and Kameas, A., A

Conceptual Model and the Supporting Middleware

for Composing Ubiquitous Computing Applications,

Proc. of the IEE International Workshop on

Intelligent Environments, Colchester, UK, 28-29

June 2005

6. Kameas A., et al, “eComp: An Architecture that

Supports p2p Networking Among Ubiquitous

Computing Devices”, in Proceedings of the 2nd

International Conference on Peer-to-Peer Computing

(P2P’02), Linköping, Sweden, Sept 2002

7. The Plant Ontology™ Consortium,

http://www.plantontology.org

8. Goumopoulos, C., Christopoulou, E., Drossos, N.,

and Kameas,The PLANTS System: Enabling Mixed

Societies of Communicating Plants and Artifacts, A.,

Proc. of the 2nd European Symposium on Ambient

Intelligence (EUSAI 2004), LNCS 3295, pp. 184-

195, ISBN 3-540-23721-6, Springer-Verlag,

Eindhoven, the Netherlands, November 8-10, 2004.

9. Mavrommati I., Kameas A. and Markopoulos P.: An

Editing tool that manages device associations in an

in-home environment. In Proceedings of the Second

International Conference on Appliance Design

(2AD), HP Labs, Bristol, UK, 11-13 May 2004, 104-

111

10. PhyTech: Phytomonitoring™,

http://www.phytech.co.il/phyt.html

11. ICT International

http://www.ictinternational.com.au/plants.htm

12. "Jini Architectural Overview", Technical White

Paper, Sun Microsystems.

13. JINI http://www.sun.com/software/Jini

14. "Java remote method invocation-distributed

computing for java", White Paper, Sun

Microsystems

http://java.sun.com/products/jdk/rmi/index.html

15. Project JXTA web site 6 Conclusions and Future

work http://www.jxta.org

16. Disappearing Computer initiative:

http://www.disappearing-computer.net

17. Holmquist L.E., et al, “Smart-Its Friends: A

Technique for Users to Easily Establish Connections

between Smart Artifacts”, in Proceedings of

UBICOMP 2001, Atlanta, GA, USA, Sept. 2001

18. TinyOS http://www.tinyos.net/

19. Román M. and Campbell R.H., “GAIA: Enabling

Active Spaces”, Proceedings of the 9th ACM

SIGOPS European Workshop, pp. 229-234,

Kolding, Denmark, September 2000

20. Becker C., et al, “BASE - A Micro-broker-based

Middleware For Pervasive Computing”, in

Proceedings of the 1st IEEE International

Conference on Pervasive Computing and

Communication (PerCom03), Fort Worth, USA,

2003.

21. LaMarca A. et al.: PlantCare: An Investigation in

Practical Ubiquitous Systems. 4th International

Conference on Ubiquitous Computing (Springer-

Verlag Lecture Notes in Computer Science Vol.

2498), Goteborg, Sweden, September 2002, 316-

332.

