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ABSTRACT 

Crew-pairing optimization involves the creation of a 

feasible and as close to optimum set of trips that cover all 

the flying activity of an airline. The problem is NP- 

complete which makes it computationally intractable and  

its solution requires specialized algorithms and      

heuristics. A major goal of the HPCN Esprit project 

PAROS is to improve the speed of the crew-pairing 

optimization process for the solution of very large 

problems. In this paper the ability to efficiently solve     

large crew pairing problems on a network of       

workstations (NOW) is presented. The main components  

of the crew-pairing optimization process are the pairing 

generator and the pairing optimizer. Large crew pairing 

problems from Lufthansa have been solved with a near 

linear speedup on the generator and satisfactory results      

on the optimizer. 
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1. INTRODUCTION 

Every airline must every day cover all of its planned 

flying activities by creating a work schedule for all of its 

crew members. In the HPCN Esprit project PAROS the  

user airline is Deutsche Lufthansa Airlines (LH), which 

employs more than 3000 pilots and 12000 flight    

attendants to fly one of the largest fleets in Europe and 

world wide with over 200 aircrafts and over 6200 flights  

per week. Total crew cost, which includes salaries,  

benefits, and expenses, is for every airline one of the largest 

operating costs. Therefore, a priority of the crew 

management department at LH, as well as in every other 

large airline, is to develop crew-scheduling processes that 

achieve a high degree of crew utilization. To meet this   

goal, crew planners have come to rely heavily on software 

systems, spending hundreds of computing hours each 

month for the solution of the problems. LH creates 

schedules for its crew members every month. Each flight    

in the month, also known as leg, has specific crew 

requirements. To make the problem even more complex, 

the crew members reside in ten different cities also called 

crew bases in the airline industry. The scheduling of     

crews to particular flights is done in sequences that start  

and end at the same base. These sequences of flights are 

called pairings.  

Crew pairing optimization is an enormously complex 

combinatorial problem because the set of possible pairings 

is innumerable [1]. All large airlines find it              

impossible to efficiently solve this problem globally. A 

solution to the crew pairing optimization problem is a 

number of pairings such that all flights in the planning 

horizon are covered with the minimum cost. This is the  

fully dated problem since it specifies particular calendar 

days for the operation of all pairings. The fully dated 

problem is very large and it is solved by first solving a   

daily and a weekly approximation to the problem. The   

daily problem assumes that the flight schedule is the same 

every day. Once a daily solution is found it is interpreted   

on the weekly schedule and pairings that include flights   

that do not operate every day are re-optimized. In the     

same manner a weekly problem solution is rolled out to    

the fully dated problem by re-optimizing again the 

exceptions.  

The crew pairing optimization system used at LH, is   

the Carmen automatic pairing construction system [2].           

The Carmen system is also used by most of the major 

European airlines. The Carmen system is based on an 

approach in which the solution is iteratively improved by 

selecting and solving a series of subproblems [3].  

However, the runtime required for the solution of large 

fleets is quite long and often the last available solution is 

used due to specific time constraints. For example, at 

present, a typical daily problem involving the scheduling   

of a medium size LH fleet requires about 15 hours of 

computing time, while for large problems, such as the 

monthly schedule, as much as 150 hours are needed. In 

contrast, LH would prefer to schedule their crews as fast    

as possible which in turn would allow them to start the 

scheduling process as late as possible, and thus minimize 

the negative effects of schedule changes.  
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The availability of fast workstations has allowed the 

airline companies to reduce the use of mainframes and    

thus significantly reduced their operational costs.  

However, the proliferation of workstations is in part 

responsible for the reduced efficiency of the hardware 

usage and the possible hardware infeasibility for large 

problems. This is in part resolved with the use of faster 

networks, and more efficient message passing systems, 

which allow for the full exploitation of idle CPU cycles   

and other global resources. These networks of   

workstations (NOW) can be used to execute in parallel  

most of the time consuming components of the crew  

pairing problem. This is the precise problem that the 

PAROS Esprit project is also attempting to address [4].  

In the context of the PAROS (Parallel Large Scale 

Automatic Scheduling) project the consortium is faced  

with the challenge of improving the performance and 

extending the functionality of the Carmen crew     

scheduling process on a NOW. Lufthansa possesses a    

large number of powerful workstations connected with a 

fast network. The results from the first project prototypes 

demonstrate that it is possible to significantly improve the 

speed of the crew scheduling process and extend the 

practical range of solvable problems.  

The remaining of  the paper is organized as follows. In 

section 2 we present the solution methodology of the 

Carmen system. An analysis of the serial system is also 

given in order to reveal the possibilities for parallel 

computation. In section 3 we discuss the parallelization 

approaches adopted for the pairing generation and the 

pairing optimization components of the system. The   

results realized from the parallelization are given in    

section 4. Finally, conclusions and suggestions for future 

work are discussed in section 5. 

2. CREW PAIRING SOLUTION METHODOLOGY 

Because of the combinatorial explosion of the crew 

pairing problem, the present industry practice is to solve a 

series of subproblems and combine the intermediate  

results. The quality of the final solution depends on the 

number of iterations performed (limited by the available 

computer time) and also depends on the heuristics 

implemented for the subproblem selection. While there is 

no way of measuring how close the final schedules  

obtained are to optimality, this method gives practical and 

useful results. 

2.1 CARMEN APC SYSTEM 

The automatic pairing construction of the Carmen 

system is called APC and each of its iterations involves 

three basic steps: subproblem selection, pairing 

generation, and pairing optimization (Figure 1). In the 

subproblem selection step, heuristics that are mostly based 

on manual crew planning methodologies and problem 

characteristics contribute to the reduction of the number     

of generated pairings and to the minimization of the local 

solutions impact [3].  

In the pairing generator, basically consisting of a 

depth-first search algorithm, the search tree, determined    

by the connection matrix, is pruned based on the user 

controlling parameters and a complex set of rules in order  

to avoid excessive generation of useless or illegal     

pairings. Each pairing is associated with a cost value. LH 

uses a complicated set of rules to determine the cost of a 

pairing. Costing is based on attributes such as the number  

of duty periods, the total time spanned by the pairing, and 

the number of deadhead hours (hours that the crews fly as 

passengers). 

The third step is the selection of the best solution 

pairings. Given a set of legal pairings, generated in the 

previous step, one can formulate the problem of finding    

the best collection of pairings, such that each flight is 

covered by at least one pairing, as a set covering problem 

[5], where the variables correspond to pairings and the 

constraints correspond to the actual legs to be covered.  

Current Pairings

Subproblem

Selection

Connection Matrix

Pairing

Generation

Set Covering Problem

Set Covering

Optimization

Improvement?

Solution

Update

YES

NO

 

FIGURE 1. THE CARMEN APC SUBPROBLEM 

METHODOLOGY 

The number of legs covered in every iteration is from 

300 up to 1,200 for the large daily problems. As many as 

1,000,000 pairings are often generated. In order to handle 

the very large problems created by the generator, a set 

covering optimizer which works well for very large 

problems is used [6]. A typical run of the Carmen APC 

system consists of 50-100 iterations. Within each iteration 

and for all of the Lufthansa fleets that were tested, the 

generator takes 5-8 times more than the optimizer. This is 

partly due to the large and complex number of legality 

checks the generator must perform and partly due to the 

speed and performance of the optimization algorithm. The 

memory requirements of the Carmen system are between 

128 - 512MB for relatively large problems. 
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2.2 SERIAL SYSTEM ANALYSIS 

In the Carmen APC system the generator and the 

optimizer could both run faster if parallel processing 

techniques were used. Profiling analysis of the serial  

system reveals that the pairing generation phase takes, 

depending on the type and the size of the problem, 70-   

85% of the runtime required for the solution of each 

problem. Since there exists a pairing generation     

algorithm, which is fully amenable to parallel   

computation, we expect significant runtime reductions of 

the generation phase when a large number of networked 

workstations is used. The set covering optimization step 

takes 10-20% of the total runtime and it appears to be less 

amenable to efficient parallelization. A parallelization 

strategy for this phase will be discussed later. However,    

the optimizer can exploit the global memory resources of 

the NOW which is extremely important for large dated 

problems. Finally, 5-10% of the time is consumed in the 

analysis and the subproblem selection that is inherently a 

sequential process. This gives an upper bound to the 

speedup of  the overall solution process equal to 10-20 

irrespectively of the number of processors used. 

3. PARALLEL CREW PAIRING OPTIMIZATION 

As a result of the previous analysis, the parallel crew 

pairing optimization system will consist of three 

components: the parallel generator, the parallel optimizer 

and the sequential subproblem selection process. 

A major goal of the PAROS project, as stated before,    

is to improve run times for solving large problems. To be 

successful in improving speed by parallelization and 

developing new heuristics, it is of great importance to    

have a data model that gives fast access methods for the 

most frequently used operations, but is also memory 

efficient. Therefore the data model of the system has been 

changed to be also more memory efficient. In the   

remaining of this section we will describe the 

parallelization strategies for both the pairing generation  

and pairing optimization steps.  

3.1 PAIRING GENERATION COMPONENT 

Figure 2 shows an example of a typical pairing that 

starts and ends in Frankfurt (FRA), an LH crew base, 

displaying such pairing attributes as duty periods,  

overnight rests, and briefing and debriefing times. The 

construction of crew pairings is complicated by a complex 

set of union, company and governmental rules and 

regulations. These rules vary by crew type (pilot or flight 

attendant), crew size, aircraft type, and type of operation 

(domestic or international). Work rules concern duty 

periods and rests. A stringent union rule specifies  

maximum duty length, which varies between 14 and 16 

hours. Other duty rules govern the maximum flying time 

allowed and the maximum number of flights permitted.   

The governmental regulations minimize crew fatigue and 

ensure passenger safety. Minimum rest requirements are 

tied to the flying time scheduled in a moving 24-hour 

window.  
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FIGURE 2. A TYPICAL PAIRING 

 

3.1.1 THE PAIRING GENERATION 

ALGORITHM 

The generator creates a large number of pairings by 

connecting legs to each other in different combinations. 

One of the most basic and conceptually clear algorithm     

for the generation process is a depth first search in a     

search tree stored in a data structure known as the 

connection matrix. The connection matrix represents in 

mathematical terms a directed connection graph among    

the legs. A node of the graph corresponds to a leg and an 

edge represents a legal pair-wise connection. The possible 

connections for every leg are organized in a priority list 

based on the special characteristics of each connection.   

The search always begins from a subset of legs known as 

start legs, being those legs that depart from a crew base.     

In a similar manner end legs leading back to the same     

crew base can be identified for every start leg. The 

concurrency is here since the generation for each start leg   

is independent of the generation of every other start leg.  

The size and the shape of each tree that must be explored 

are not known ahead of time. This makes load balancing 

extremely important. 

The generator search is limited by a maximum number 

of branches considered in each node of the search tree.   

This maximum number of connecting branches is known   

as the search width and its typical value range from 5-8 

connections (Figure 3). In every step of the depth first 

search the created sequence is checked for legality. Illegal 

paths are not investigated further assuming that the rules 

have a monotonic behavior. This implies that if a     

sequence is illegal it can not become legal by adding more 

legs to it. Depending on the rules, and the size and   

structure of the problem, the generation time in each 

iteration could take from a few minutes to many hours. 
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FIGURE 3. SEARCH TREE AND SEARCH WIDTH 

3.1.2 PARALLELIZATION STRATEGY  

The parallelization of the pairing generator is based on a 

manager/worker scheme. The manager distributes 

dynamically the start legs and the necessary additional 

problem information to the workers on a demand driven 

manner. The workers must generate all the legal pairings 

and return them to the manager. The goal is to minimize   

the idle time and the communication. To minimize idle  

time we do load balancing and we do overlapping     

between computation and communication. To minimize 

communication we use large messages (buffering of 

pairings in the workers) in order to reduce the high   

network latency penalty. 

Load balancing is achieved by implementing a   

dynamic workload distribution scheme that implicitly   

takes into account the speed and the current load of each 

machine. The number of start legs that are sent to each 

worker is also changing dynamically with a fading 

algorithm. In the beginning a large number of start legs is 

given and in the end only one start leg per worker is 

assigned. Efficiency is also improved by pre-fetching. A 

worker is requesting the next bunch of start legs before it    

is needed. It can then perform computation while the 

manager is servicing its request. Fault tolerance has also 

been implemented. Parallel generator can recover from  

task and host failures. For example, a worker failure is 

detected by the manager which also keeps the current 

computing state of the worker. In case of a failure the      

state is used for re-assigning the unfinished part of the   

work to another worker. 

We have developed a performance model in order to 

evaluate the parallel generator algorithm. We measure 

primarily the efficiency of the parallel generator. From    

this metric the speedup can also be obtained. The model 

uses a number of assumptions for the shake of simplicity 

and in-order to abstract insignificant details. We assume: 

idle time  very close to zero, all processors equal and not 

loaded, unloaded network, no competition for bandwidth 

among the workers (true for asynchronous algorithms), 

insignificant communication cost of generation start-up. 

We can easily prove that the efficiency and the    

speedup of the parallel generator is a function of the 

granularity, G of the problem. 

   E
G

G
Generator = +1

     (1) 

S P
G

G
Generator = ⋅

+1
                (2) 

where P  in (2) is the number of processors used. The 

granularity is defined as the computation time (Tcomp) to 

communication time (Tcomm)  ratio. It is given also from     

the following equation:  

 G
EfBa

gdr
P

T
CMsize

comp

=

+ ⋅

   (3) 

The granularity of the problem depends mainly on two 

parameters, the effective bandwidth (EfBa) and the 

generation data rate (gdr). The second term in the 

denominator of (3) represents the cost to broadcast the 

connection matrix (CMsize) to the workers in the start-up 

phase and usually it is not important.  

The generation data rate depends on the complexity of 

the rules and the speed of the processor. Profiling analysis 

shows that for typical problem parameters the generator 

produces about 80 pairings per second on a high end 

workstation. This gives a data rate of about 8 KB/sec     

since each pairing requires 100 bytes to encode. This   

figure compared with the 1 MB/sec bandwidth of standard 

Ethernet gives a high granularity value. Consequently, 

parallel generation is fully scalable and we expect high 

efficiency, and linear speedup for a large number of 

workstations even on an Ethernet network. Of course, 

contention from other users in the network will influence 

the parallel generation performance. 

3.2 PAIRING OPTIMIZATION COMPONENT 

The optimization algorithm is an approximation solver 

for 0-1 ILP (Integer Linear Programming) problems. At 

present, it is used within the Carmen APC system to solve 

large scale set covering problems with base capacity 

constraints [2], that are created by the pairing generator. 

This problem can be expressed mathematically as follows:  

min cx  

Ax    1≥      (set covering constraints) 

Dx d   ≤   (base capacity constraints) 

x  ,  = 0 1  

where A is a 0-1 matrix and D is arbitrary non-negative. 

This problem is NP-hard, which indicates that finding the 

optimal solution may be extremely time consuming for 

large problems. 
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The mathematical foundations of the serial algorithm 

are described in [6]. In brief, the algorithm works as a 

simple dual ascent method, designed to use only   

operations that are efficient for large problems. An 

approximation scheme that manipulates the cost vector c   

as little as possible to give 0-1 solution to the primal 

problem is used. The magnitude of the manipulations is 

controlled by a parameter κ , which is slowly increased 

from 0 up to its maximum value of 1 during each      

iteration. A high level description of the algorithm    

follows: 

Optimization algorithm 

c = c , reset all s
i
 to 0, κ  = 0  

repeat  

 for every constraint i 

  r
i
 = c

i 
- s

i 

                    s
i
 = a function of r

i
, bi and κ  

                 c
i
 = r

i
 + s

i
 

    increase κ according to a heuristic rule 

until no sign changes in c  

 

where c are the reduced costs that the algorithm operates 

on, c
i
 is the sub-vector of c corresponding to the non-  

zero elements of constraint i, s
i
 is the contribution to c  by 

constraint i. 

3.2.1 PARALLELIZATION STRATEGY 

Since the nature of the algorithm is iterative, 

parallelization has to work within the iterations. The 

iteration over the constraints is selected for parallelization. 

The idea is to let every processor have a local copy of the 

reduced cost vector and be responsible for a subset of the 

constraints in the original problem. This will also   

distribute the memory requirements, which are important 

for large problems. To ensure similarity between the local 

copies communication is required.  

Mathematically, we duplicate the variables x to x, ′x , 

′ ′x , K  so that each processor receives its own copy of 

variables, and add the constraints x = ′x = ′ ′x = K  to the 

problem. We also partition the original constraints (A, b) 

into groups ( ′ ′A , b ), ( ′ ′ ′ ′A , b ), etc.  

The efficiency of the above scheme depends on the 

relation between the computation time and the 

communication time (granularity). With strict synchroni-

zation and full updating of the constraints x = ′x = ′ ′x =  

K   after every iteration of a single constraint, it is   

possible to emulate the exact behavior of the serial 

algorithm. On the other hand, very little communication 

would lead to convergence problems and poor solution 

quality. However, under certain circumstances, a 

compromise could give both good solutions and   

significant speedup. 

In principle, two constraints that do not share any 

variables can be iterated independently. In this effect, a 

partitioning strategy that allocates constraints to the given 

number of processors in such a way that the amount of 

communication is minimized is desirable. However, this 

must be done under the restriction that constraints should  

be evenly balanced on the processors. For set covering 

problems with a block diagonal structure, the need of 

updating through communication will be significantly  

lower than for random problems, provided that the blocks 

can be successfully assigned to the given number of 

processors. In practice, some problems that arise from 

merged fleets could have such structure to a certain    

degree.  

The problem of optimal partitions is related to the 

well-known NP-hard problem of graph partitioning [7]. 

However, we do not essentially need an optimal  

partitioning solution, but only a reasonable    

approximation. Several software packages for this   

problem exist like METIS, PARTY, JOSTLE, Scotch. We 

use a fast greedy algorithm with node exchange. A     

specific observation for the fully dated problems of LH is 

that sorting the pairings by departure time of the first leg 

should result to a natural partition. 

A significant observation that can justify further 

relaxation of the communication is the following. 

Dependencies between constraints are only important if 

they involve critical variables [8]. If a group of constraints 

do not have any common critical variables, and the  

iteration of each constraint, does not change the critical 

variables of any other constraint, the constraint   

calculations can be made independently of each other, and 

will give the same result as serial computation in any    

order. Based on this, a very relaxed protocol for updating 

the reduced cost vector sparingly in a more coarse-grained 

fashion was tested with mixed results. Experiments have 

shown that the magnitude of relaxation has to be carefully 

tuned in order to achieve quality solutions. A high 

magnitude can give speedups but low quality. A lower     

one can guarantee convergence and quality but gives slow 

execution. An update of the cost vector after the iteration   

of 5-15 constraints, depending on the size and the    

structure of the problem, has empirically been found 

acceptable. 

The most important result of this parallel algorithm is 

that it is able to find solutions of similar quality compared  

to the serial version, in spite of the fact that updates of 

constraints on different processors are done independently 

of each other. This also indicates that the strategy will be 

able to solve larger problems than the ones we can solve    

on a single machine, exploiting the distributed memory, 

which will by itself can be useful even without a speedup. 

For instances of problems where a block structure can be 

found a maximum speedup of 2 has been achieved on 4 

processors. However, only a few problems can have this 
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property, and for the majority of the problems only a  

limited number of independent constraints can be found. 

4. IMPLEMENTATION FRAMEWORK AND 

EXPERIMENTAL RESULTS 

For the implementation of the parallel generator and   

the parallel optimizer the PVM message passing system  

was used [9]. PVM (Parallel Virtual Machine) is a   

software framework that emulates a generalized   

distributed memory multiprocessor in heterogeneous 

networked environments. The system is portable and 

provides support for heterogeneity, robustness, and a 

simple but complete API. In addition auxiliary systems, 

including monitoring and debugging tools [10] (XPVM, 

TotalView, etc.), are available and have been used for the 

development of the parallel system. The notification 

mechanism of PVM was found particularly useful since it 

enabled application level fault tolerance to be    

incorporated in the implementation.  

The experiments have been performed on a hetero-

geneous network of HP workstations (715/50, 715/100, 

735, 750 and C-180), connected by Standard Ethernet at  

the computing center of the University of Patras. The 

execution times presented were obtained during nights 

when almost exclusive usage of the network and the 

workstations was possible. We have measured the    

speedup of the parallel generator and optimizer using as 

reference processor (RP) the HP 715/100 model, see the 

discussion about speedup and efficiency for a 

heterogeneous network. 

For our experiments we used three typical LH  

problems. The characteristics of these problems are given  

in Table 1. The size of an input problem for the parallel 

generator is determined by the number of start legs, while 

the size of an input problem for the parallel optimizer is 

determined by the number of the generated pairings. 

Problem 

Name 

 

No of start legs 

Set-up 

overhead 

Generated 

pairings 

LH1 1366 1.2 sec 43932 

LH2 2984 2.5 sec 97075 

LH3  5968 4 sec 194150 

 

TABLE 1. TYPICAL PAIRING PROBLEMS 

 

In Table 2 and Table 3 we report the elapsed time and 

the speedup achieved for the parallel generator and the 

parallel optimizer respectively. In Table 2, #(Net, RP) 

denotes the relative power of our heterogeneous network 

with respect to the RP processor. The results have been 

slightly approximated for the shake of the presentation.   

For the parallel optimizer it was possible to use four 

identical workstations. 

 

Speedup and Efficiency for a Heterogeneous Network 

The speedup (1) and efficiency (2) on homogeneous 

networks is naturally relative to any of the similar 

processors. 

S N
T

T N
( )

( )

( )
=

1    (1)            E N
S N

N
( )

( )
=       (2) 

where N is the number of processors and T(1/N) is the 

execution time of the parallel algorithm on 1/N    

processors. 

For heterogeneous networks of processors, the    

speedup can no more be implicitly relative to the    

execution time on one processor but must be explicitly 

relative to the execution time on a reference processor 

(RP), because all processors are no more identical. Let RP 

be the processor used for the execution of the sequential 

algorithm. We define the speedup of a parallel algorithm  

for the heterogeneous case as: 

S N et R P
T R P

T N et
( , )

( )

( )
=    (3) 

where Net denotes the network, T(RP) is the execution   

time of the sequential algorithm, and T(Net) is the  

execution time of the parallel algorithm on the network. 

Then we define the relative power #(Net, RP) of a 

heterogeneous network with respect to processor RP as  

  #(Net, RP) = γ i

i

Net

=

∑
1

                  (4) 

whereγ i  is the normalized processor speed defined as the 

ratio between the execution time of the algorithm on 

processor i and the execution time of the algorithm on 

processor RP, and |Net| is the number of processors in the 

network. Then #(Net, RP) can be seen as the equivalent 

number of reference processors for the algorithm that is 

considered. We can prove that S(Net, RP) ≤  #(Net, RP). 

The efficiency of the parallel algorithm will be: 

                   E N et
S N et R P

N et R P
( )

( , )

# ( , )
=                      (5) 

#(Net,RP) 1 2 4 5 7 8 10 

LH

1 
T(Net) 34.5 18.2 8.8 7.3 5.2 4.5 3.6 

 S(Net,RP) 1 1.89 3.9 4.7 6.65 7.6 9.7 

LH

2 
T(Net) 76.6 39.8 20.2 16.1 11.4 10.2 8.0 

 S(Net,RP) 1 1.92 3.8 4.75 6.72 7.52 9.6 

LH

3 
T(Net) 153 79.7 39.2 32.0 22.6 20.2 16 

 S(Net,RP) 1 1.92 3.91 4.8 6.79 7.6 9.6 

 

TABLE 2. ELAPSED TIME T (Net) (min) AND 

SPEEDUP S(Net,RP)  FOR A TYPICAL ITERATION   

OF THE PARALLEL GENERATOR 
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 N 1 2 3 4 

LH1 T(N) 123 117 145 167 

 S(N) 1 1,05 0,85 0,74 

LH2 T(N) 256 147 156 174 

 S(N) 1 1,74 1,64 1,47 

LH3 T(N) 314 254 289 293 

 S(N) 1 1,24 1,09 1,07 

 

TABLE 3.  ELAPSED TIME T(N)  (sec) AND SPEEDUP 

S(N) FOR A TYPICAL RUN OF THE PARALLEL 

OPTIMIZER 

 

For the generator the speedup in all cases is almost 

linear to the number of processors, while the optimizer     

can only achieve slight speedups. Given that the Carmen 

system generator, which is currently in production at LH, 

requires about 80% of the total system runtime, the     

overall performance will be significantly improved. For 

example, a crew scheduling problem that requires 20    

hours to solve completely, would take about 5.5 hours    

with 10 identical machines and 4.8 hours with 20    

machines assuming that everything else remained as in the 

current Carmen system.  

5. CONCLUSIONS AND FUTURE WORK 

Crew pairing optimization is one of the major    

problems that an airline company must solve. It is time 

consuming and deadline driven. In this paper we have 

presented strategies and specific results that improve and 

extend the successful Carmen APC system with the use of 

parallel processing on a NOW. The pairing generation 

phase is the dominant part of the system and can be 

efficiently parallelized on a large number of workstations, 

achieving a significant performance improvement. A  

nearly linear reduction of the pairing generation runtime is 

possible due to the highly parallelizable pairing    

generation procedure. The set covering optimization    

phase can benefit from the global memory resources of     

the NOW for large problems. For problems that exhibit a 

block like structure moderate speedup can also be   

achieved on a small NOW.  

The improvements in performance translate immeiatey 

in significant financial and strategic benefits for the  

airlines. The ability to start the planning process as close    

to the day of operation as possible allows for fast market 

reactions and reduces the need for continuous  

rescheduling, thus reducing the solution quality, due to 

unexpected aircraft assignments and other schedule 

changes. Faster solution times translate to higher 

productivity of the airline crew management department 

since crew schedules can be created closer to the actual    

day of operation, which is very important in the new 

deregulated environment in Europe and elsewhere. In 

addition, the high performance of the parallel generator 

allows larger problems to be solved since in the sequential 

system the slow runtime was the constraining factor. 

Future work includes an investigation of an alternative 

parallelization strategy for the pairing optimization phase 

that distributes the variables and not the constraints over  

the processors. This approach has the advantage that small 

volume of data must be communicated between the 

processors. However, the need to exchange several small 

messages, makes the approach extremely sensitive to the 

network communication latency. Finally, a better and    

more direct integration between the parallel generator and 

the parallel optimizer is being investigated. 
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