
237

HIGH PERFORMANCE

 AIRLINE CREW-PAIRING OPTIMIZATION

CHRISTOS GOUMOPOULOS

∗

Dept. of Electrical & Computer Eng.,

Univ. of Patras, GR-26500, Greece

goumop@ee.upatras.gr

PANAYIOTIS ALEFRAGIS

Dept. of Electrical & Computer Eng.,

 Univ. of Patras, GR-26500, Greece

alefrag@ee.upatras.gr

EFTHYMIOS HOUSOS

Dept. of Electrical & Computer Eng.,

 Univ. of Patras, GR-26500, Greece

housos@ee.upatras.gr

*
Corresponding author

ABSTRACT

Crew-pairing optimization involves the creation of a

feasible and as close to optimum set of trips that cover all

the flying activity of an airline. The problem is NP-

complete which makes it computationally intractable and

its solution requires specialized algorithms and

heuristics. A major goal of the HPCN Esprit project

PAROS is to improve the speed of the crew-pairing

optimization process for the solution of very large

problems. In this paper the ability to efficiently solve

large crew pairing problems on a network of

workstations (NOW) is presented. The main components

of the crew-pairing optimization process are the pairing

generator and the pairing optimizer. Large crew pairing

problems from Lufthansa have been solved with a near

linear speedup on the generator and satisfactory results

on the optimizer.

KEYWORDS

parallel/distributed system, integer optimization, crew

scheduling, heterogeneous network computing.

1. INTRODUCTION

Every airline must every day cover all of its planned

flying activities by creating a work schedule for all of its

crew members. In the HPCN Esprit project PAROS the

user airline is Deutsche Lufthansa Airlines (LH), which

employs more than 3000 pilots and 12000 flight

attendants to fly one of the largest fleets in Europe and

world wide with over 200 aircrafts and over 6200 flights

per week. Total crew cost, which includes salaries,

benefits, and expenses, is for every airline one of the largest

operating costs. Therefore, a priority of the crew

management department at LH, as well as in every other

large airline, is to develop crew-scheduling processes that

achieve a high degree of crew utilization. To meet this

goal, crew planners have come to rely heavily on software

systems, spending hundreds of computing hours each

month for the solution of the problems. LH creates

schedules for its crew members every month. Each flight

in the month, also known as leg, has specific crew

requirements. To make the problem even more complex,

the crew members reside in ten different cities also called

crew bases in the airline industry. The scheduling of

crews to particular flights is done in sequences that start

and end at the same base. These sequences of flights are

called pairings.

Crew pairing optimization is an enormously complex

combinatorial problem because the set of possible pairings

is innumerable [1]. All large airlines find it

impossible to efficiently solve this problem globally. A

solution to the crew pairing optimization problem is a

number of pairings such that all flights in the planning

horizon are covered with the minimum cost. This is the

fully dated problem since it specifies particular calendar

days for the operation of all pairings. The fully dated

problem is very large and it is solved by first solving a

daily and a weekly approximation to the problem. The

daily problem assumes that the flight schedule is the same

every day. Once a daily solution is found it is interpreted

on the weekly schedule and pairings that include flights

that do not operate every day are re-optimized. In the

same manner a weekly problem solution is rolled out to

the fully dated problem by re-optimizing again the

exceptions.

The crew pairing optimization system used at LH, is

the Carmen automatic pairing construction system [2].

The Carmen system is also used by most of the major

European airlines. The Carmen system is based on an

approach in which the solution is iteratively improved by

selecting and solving a series of subproblems [3].

However, the runtime required for the solution of large

fleets is quite long and often the last available solution is

used due to specific time constraints. For example, at

present, a typical daily problem involving the scheduling

of a medium size LH fleet requires about 15 hours of

computing time, while for large problems, such as the

monthly schedule, as much as 150 hours are needed. In

contrast, LH would prefer to schedule their crews as fast

as possible which in turn would allow them to start the

scheduling process as late as possible, and thus minimize

the negative effects of schedule changes.

238

The availability of fast workstations has allowed the

airline companies to reduce the use of mainframes and

thus significantly reduced their operational costs.

However, the proliferation of workstations is in part

responsible for the reduced efficiency of the hardware

usage and the possible hardware infeasibility for large

problems. This is in part resolved with the use of faster

networks, and more efficient message passing systems,

which allow for the full exploitation of idle CPU cycles

and other global resources. These networks of

workstations (NOW) can be used to execute in parallel

most of the time consuming components of the crew

pairing problem. This is the precise problem that the

PAROS Esprit project is also attempting to address [4].

In the context of the PAROS (Parallel Large Scale

Automatic Scheduling) project the consortium is faced

with the challenge of improving the performance and

extending the functionality of the Carmen crew

scheduling process on a NOW. Lufthansa possesses a

large number of powerful workstations connected with a

fast network. The results from the first project prototypes

demonstrate that it is possible to significantly improve the

speed of the crew scheduling process and extend the

practical range of solvable problems.

The remaining of the paper is organized as follows. In

section 2 we present the solution methodology of the

Carmen system. An analysis of the serial system is also

given in order to reveal the possibilities for parallel

computation. In section 3 we discuss the parallelization

approaches adopted for the pairing generation and the

pairing optimization components of the system. The

results realized from the parallelization are given in

section 4. Finally, conclusions and suggestions for future

work are discussed in section 5.

2. CREW PAIRING SOLUTION METHODOLOGY

Because of the combinatorial explosion of the crew

pairing problem, the present industry practice is to solve a

series of subproblems and combine the intermediate

results. The quality of the final solution depends on the

number of iterations performed (limited by the available

computer time) and also depends on the heuristics

implemented for the subproblem selection. While there is

no way of measuring how close the final schedules

obtained are to optimality, this method gives practical and

useful results.

2.1 CARMEN APC SYSTEM

The automatic pairing construction of the Carmen

system is called APC and each of its iterations involves

three basic steps: subproblem selection, pairing

generation, and pairing optimization (Figure 1). In the

subproblem selection step, heuristics that are mostly based

on manual crew planning methodologies and problem

characteristics contribute to the reduction of the number

of generated pairings and to the minimization of the local

solutions impact [3].

In the pairing generator, basically consisting of a

depth-first search algorithm, the search tree, determined

by the connection matrix, is pruned based on the user

controlling parameters and a complex set of rules in order

to avoid excessive generation of useless or illegal

pairings. Each pairing is associated with a cost value. LH

uses a complicated set of rules to determine the cost of a

pairing. Costing is based on attributes such as the number

of duty periods, the total time spanned by the pairing, and

the number of deadhead hours (hours that the crews fly as

passengers).

The third step is the selection of the best solution

pairings. Given a set of legal pairings, generated in the

previous step, one can formulate the problem of finding

the best collection of pairings, such that each flight is

covered by at least one pairing, as a set covering problem

[5], where the variables correspond to pairings and the

constraints correspond to the actual legs to be covered.

Current Pairings

Subproblem

Selection

Connection Matrix

Pairing

Generation

Set Covering Problem

Set Covering

Optimization

Improvement?

Solution

Update

YES

NO

FIGURE 1. THE CARMEN APC SUBPROBLEM

METHODOLOGY

The number of legs covered in every iteration is from

300 up to 1,200 for the large daily problems. As many as

1,000,000 pairings are often generated. In order to handle

the very large problems created by the generator, a set

covering optimizer which works well for very large

problems is used [6]. A typical run of the Carmen APC

system consists of 50-100 iterations. Within each iteration

and for all of the Lufthansa fleets that were tested, the

generator takes 5-8 times more than the optimizer. This is

partly due to the large and complex number of legality

checks the generator must perform and partly due to the

speed and performance of the optimization algorithm. The

memory requirements of the Carmen system are between

128 - 512MB for relatively large problems.

239

2.2 SERIAL SYSTEM ANALYSIS

In the Carmen APC system the generator and the

optimizer could both run faster if parallel processing

techniques were used. Profiling analysis of the serial

system reveals that the pairing generation phase takes,

depending on the type and the size of the problem, 70-

85% of the runtime required for the solution of each

problem. Since there exists a pairing generation

algorithm, which is fully amenable to parallel

computation, we expect significant runtime reductions of

the generation phase when a large number of networked

workstations is used. The set covering optimization step

takes 10-20% of the total runtime and it appears to be less

amenable to efficient parallelization. A parallelization

strategy for this phase will be discussed later. However,

the optimizer can exploit the global memory resources of

the NOW which is extremely important for large dated

problems. Finally, 5-10% of the time is consumed in the

analysis and the subproblem selection that is inherently a

sequential process. This gives an upper bound to the

speedup of the overall solution process equal to 10-20

irrespectively of the number of processors used.

3. PARALLEL CREW PAIRING OPTIMIZATION

As a result of the previous analysis, the parallel crew

pairing optimization system will consist of three

components: the parallel generator, the parallel optimizer

and the sequential subproblem selection process.

A major goal of the PAROS project, as stated before,

is to improve run times for solving large problems. To be

successful in improving speed by parallelization and

developing new heuristics, it is of great importance to

have a data model that gives fast access methods for the

most frequently used operations, but is also memory

efficient. Therefore the data model of the system has been

changed to be also more memory efficient. In the

remaining of this section we will describe the

parallelization strategies for both the pairing generation

and pairing optimization steps.

3.1 PAIRING GENERATION COMPONENT

Figure 2 shows an example of a typical pairing that

starts and ends in Frankfurt (FRA), an LH crew base,

displaying such pairing attributes as duty periods,

overnight rests, and briefing and debriefing times. The

construction of crew pairings is complicated by a complex

set of union, company and governmental rules and

regulations. These rules vary by crew type (pilot or flight

attendant), crew size, aircraft type, and type of operation

(domestic or international). Work rules concern duty

periods and rests. A stringent union rule specifies

maximum duty length, which varies between 14 and 16

hours. Other duty rules govern the maximum flying time

allowed and the maximum number of flights permitted.

The governmental regulations minimize crew fatigue and

ensure passenger safety. Minimum rest requirements are

tied to the flying time scheduled in a moving 24-hour

window.

Local

Time
FRA

9:00

MUC

10:00

HAM

14:00

STR

15:00

MUC

11:00

HAM

13:00

Briefing

8:00

Debriefing

15:15

STR

8:00

MUC

9:00

ATH

16:00

FRA

19:30

MUC

10:00

ATH

14:45

Briefing

7:00

Debriefing

19:45

DUTY PERIOD #1 DUTY PERIOD #2

TIME AWAY FROM BASE

Overnight

Rest

FIGURE 2. A TYPICAL PAIRING

3.1.1 THE PAIRING GENERATION

ALGORITHM

The generator creates a large number of pairings by

connecting legs to each other in different combinations.

One of the most basic and conceptually clear algorithm

for the generation process is a depth first search in a

search tree stored in a data structure known as the

connection matrix. The connection matrix represents in

mathematical terms a directed connection graph among

the legs. A node of the graph corresponds to a leg and an

edge represents a legal pair-wise connection. The possible

connections for every leg are organized in a priority list

based on the special characteristics of each connection.

The search always begins from a subset of legs known as

start legs, being those legs that depart from a crew base.

In a similar manner end legs leading back to the same

crew base can be identified for every start leg. The

concurrency is here since the generation for each start leg

is independent of the generation of every other start leg.

The size and the shape of each tree that must be explored

are not known ahead of time. This makes load balancing

extremely important.

The generator search is limited by a maximum number

of branches considered in each node of the search tree.

This maximum number of connecting branches is known

as the search width and its typical value range from 5-8

connections (Figure 3). In every step of the depth first

search the created sequence is checked for legality. Illegal

paths are not investigated further assuming that the rules

have a monotonic behavior. This implies that if a

sequence is illegal it can not become legal by adding more

legs to it. Depending on the rules, and the size and

structure of the problem, the generation time in each

iteration could take from a few minutes to many hours.

240

Visited node

Pruned node

search width = 2

FIGURE 3. SEARCH TREE AND SEARCH WIDTH

3.1.2 PARALLELIZATION STRATEGY

The parallelization of the pairing generator is based on a

manager/worker scheme. The manager distributes

dynamically the start legs and the necessary additional

problem information to the workers on a demand driven

manner. The workers must generate all the legal pairings

and return them to the manager. The goal is to minimize

the idle time and the communication. To minimize idle

time we do load balancing and we do overlapping

between computation and communication. To minimize

communication we use large messages (buffering of

pairings in the workers) in order to reduce the high

network latency penalty.

Load balancing is achieved by implementing a

dynamic workload distribution scheme that implicitly

takes into account the speed and the current load of each

machine. The number of start legs that are sent to each

worker is also changing dynamically with a fading

algorithm. In the beginning a large number of start legs is

given and in the end only one start leg per worker is

assigned. Efficiency is also improved by pre-fetching. A

worker is requesting the next bunch of start legs before it

is needed. It can then perform computation while the

manager is servicing its request. Fault tolerance has also

been implemented. Parallel generator can recover from

task and host failures. For example, a worker failure is

detected by the manager which also keeps the current

computing state of the worker. In case of a failure the

state is used for re-assigning the unfinished part of the

work to another worker.

We have developed a performance model in order to

evaluate the parallel generator algorithm. We measure

primarily the efficiency of the parallel generator. From

this metric the speedup can also be obtained. The model

uses a number of assumptions for the shake of simplicity

and in-order to abstract insignificant details. We assume:

idle time very close to zero, all processors equal and not

loaded, unloaded network, no competition for bandwidth

among the workers (true for asynchronous algorithms),

insignificant communication cost of generation start-up.

We can easily prove that the efficiency and the

speedup of the parallel generator is a function of the

granularity, G of the problem.

 E
G

G
Generator = +1

 (1)

S P
G

G
Generator = ⋅

+1
 (2)

where P in (2) is the number of processors used. The

granularity is defined as the computation time (Tcomp) to

communication time (Tcomm) ratio. It is given also from

the following equation:

 G
EfBa

gdr
P

T
CMsize

comp

=

+ ⋅

 (3)

The granularity of the problem depends mainly on two

parameters, the effective bandwidth (EfBa) and the

generation data rate (gdr). The second term in the

denominator of (3) represents the cost to broadcast the

connection matrix (CMsize) to the workers in the start-up

phase and usually it is not important.

The generation data rate depends on the complexity of

the rules and the speed of the processor. Profiling analysis

shows that for typical problem parameters the generator

produces about 80 pairings per second on a high end

workstation. This gives a data rate of about 8 KB/sec

since each pairing requires 100 bytes to encode. This

figure compared with the 1 MB/sec bandwidth of standard

Ethernet gives a high granularity value. Consequently,

parallel generation is fully scalable and we expect high

efficiency, and linear speedup for a large number of

workstations even on an Ethernet network. Of course,

contention from other users in the network will influence

the parallel generation performance.

3.2 PAIRING OPTIMIZATION COMPONENT

The optimization algorithm is an approximation solver

for 0-1 ILP (Integer Linear Programming) problems. At

present, it is used within the Carmen APC system to solve

large scale set covering problems with base capacity

constraints [2], that are created by the pairing generator.

This problem can be expressed mathematically as follows:

min cx

Ax 1≥ (set covering constraints)

Dx d ≤ (base capacity constraints)

x , = 0 1

where A is a 0-1 matrix and D is arbitrary non-negative.

This problem is NP-hard, which indicates that finding the

optimal solution may be extremely time consuming for

large problems.

241

The mathematical foundations of the serial algorithm

are described in [6]. In brief, the algorithm works as a

simple dual ascent method, designed to use only

operations that are efficient for large problems. An

approximation scheme that manipulates the cost vector c

as little as possible to give 0-1 solution to the primal

problem is used. The magnitude of the manipulations is

controlled by a parameter κ , which is slowly increased

from 0 up to its maximum value of 1 during each

iteration. A high level description of the algorithm

follows:

Optimization algorithm

c = c , reset all s
i
 to 0, κ = 0

repeat

 for every constraint i

 r
i
 = c

i
- s

i

 s
i
 = a function of r

i
, bi and κ

 c
i
 = r

i
 + s

i

 increase κ according to a heuristic rule

until no sign changes in c

where c are the reduced costs that the algorithm operates

on, c
i
 is the sub-vector of c corresponding to the non-

zero elements of constraint i, s
i
 is the contribution to c by

constraint i.

3.2.1 PARALLELIZATION STRATEGY

Since the nature of the algorithm is iterative,

parallelization has to work within the iterations. The

iteration over the constraints is selected for parallelization.

The idea is to let every processor have a local copy of the

reduced cost vector and be responsible for a subset of the

constraints in the original problem. This will also

distribute the memory requirements, which are important

for large problems. To ensure similarity between the local

copies communication is required.

Mathematically, we duplicate the variables x to x, ′x ,

′ ′x , K so that each processor receives its own copy of

variables, and add the constraints x = ′x = ′ ′x = K to the

problem. We also partition the original constraints (A, b)

into groups (′ ′A , b), (′ ′ ′ ′A , b), etc.

The efficiency of the above scheme depends on the

relation between the computation time and the

communication time (granularity). With strict synchroni-

zation and full updating of the constraints x = ′x = ′ ′x =

K after every iteration of a single constraint, it is

possible to emulate the exact behavior of the serial

algorithm. On the other hand, very little communication

would lead to convergence problems and poor solution

quality. However, under certain circumstances, a

compromise could give both good solutions and

significant speedup.

In principle, two constraints that do not share any

variables can be iterated independently. In this effect, a

partitioning strategy that allocates constraints to the given

number of processors in such a way that the amount of

communication is minimized is desirable. However, this

must be done under the restriction that constraints should

be evenly balanced on the processors. For set covering

problems with a block diagonal structure, the need of

updating through communication will be significantly

lower than for random problems, provided that the blocks

can be successfully assigned to the given number of

processors. In practice, some problems that arise from

merged fleets could have such structure to a certain

degree.

The problem of optimal partitions is related to the

well-known NP-hard problem of graph partitioning [7].

However, we do not essentially need an optimal

partitioning solution, but only a reasonable

approximation. Several software packages for this

problem exist like METIS, PARTY, JOSTLE, Scotch. We

use a fast greedy algorithm with node exchange. A

specific observation for the fully dated problems of LH is

that sorting the pairings by departure time of the first leg

should result to a natural partition.

A significant observation that can justify further

relaxation of the communication is the following.

Dependencies between constraints are only important if

they involve critical variables [8]. If a group of constraints

do not have any common critical variables, and the

iteration of each constraint, does not change the critical

variables of any other constraint, the constraint

calculations can be made independently of each other, and

will give the same result as serial computation in any

order. Based on this, a very relaxed protocol for updating

the reduced cost vector sparingly in a more coarse-grained

fashion was tested with mixed results. Experiments have

shown that the magnitude of relaxation has to be carefully

tuned in order to achieve quality solutions. A high

magnitude can give speedups but low quality. A lower

one can guarantee convergence and quality but gives slow

execution. An update of the cost vector after the iteration

of 5-15 constraints, depending on the size and the

structure of the problem, has empirically been found

acceptable.

The most important result of this parallel algorithm is

that it is able to find solutions of similar quality compared

to the serial version, in spite of the fact that updates of

constraints on different processors are done independently

of each other. This also indicates that the strategy will be

able to solve larger problems than the ones we can solve

on a single machine, exploiting the distributed memory,

which will by itself can be useful even without a speedup.

For instances of problems where a block structure can be

found a maximum speedup of 2 has been achieved on 4

processors. However, only a few problems can have this

242

property, and for the majority of the problems only a

limited number of independent constraints can be found.

4. IMPLEMENTATION FRAMEWORK AND

EXPERIMENTAL RESULTS

For the implementation of the parallel generator and

the parallel optimizer the PVM message passing system

was used [9]. PVM (Parallel Virtual Machine) is a

software framework that emulates a generalized

distributed memory multiprocessor in heterogeneous

networked environments. The system is portable and

provides support for heterogeneity, robustness, and a

simple but complete API. In addition auxiliary systems,

including monitoring and debugging tools [10] (XPVM,

TotalView, etc.), are available and have been used for the

development of the parallel system. The notification

mechanism of PVM was found particularly useful since it

enabled application level fault tolerance to be

incorporated in the implementation.

The experiments have been performed on a hetero-

geneous network of HP workstations (715/50, 715/100,

735, 750 and C-180), connected by Standard Ethernet at

the computing center of the University of Patras. The

execution times presented were obtained during nights

when almost exclusive usage of the network and the

workstations was possible. We have measured the

speedup of the parallel generator and optimizer using as

reference processor (RP) the HP 715/100 model, see the

discussion about speedup and efficiency for a

heterogeneous network.

For our experiments we used three typical LH

problems. The characteristics of these problems are given

in Table 1. The size of an input problem for the parallel

generator is determined by the number of start legs, while

the size of an input problem for the parallel optimizer is

determined by the number of the generated pairings.

Problem

Name

No of start legs

Set-up

overhead

Generated

pairings

LH1 1366 1.2 sec 43932

LH2 2984 2.5 sec 97075

LH3 5968 4 sec 194150

TABLE 1. TYPICAL PAIRING PROBLEMS

In Table 2 and Table 3 we report the elapsed time and

the speedup achieved for the parallel generator and the

parallel optimizer respectively. In Table 2, #(Net, RP)

denotes the relative power of our heterogeneous network

with respect to the RP processor. The results have been

slightly approximated for the shake of the presentation.

For the parallel optimizer it was possible to use four

identical workstations.

Speedup and Efficiency for a Heterogeneous Network

The speedup (1) and efficiency (2) on homogeneous

networks is naturally relative to any of the similar

processors.

S N
T

T N
()

()

()
=

1 (1) E N
S N

N
()

()
= (2)

where N is the number of processors and T(1/N) is the

execution time of the parallel algorithm on 1/N

processors.

For heterogeneous networks of processors, the

speedup can no more be implicitly relative to the

execution time on one processor but must be explicitly

relative to the execution time on a reference processor

(RP), because all processors are no more identical. Let RP

be the processor used for the execution of the sequential

algorithm. We define the speedup of a parallel algorithm

for the heterogeneous case as:

S N et R P
T R P

T N et
(,)

()

()
= (3)

where Net denotes the network, T(RP) is the execution

time of the sequential algorithm, and T(Net) is the

execution time of the parallel algorithm on the network.

Then we define the relative power #(Net, RP) of a

heterogeneous network with respect to processor RP as

 #(Net, RP) = γ i

i

Net

=

∑
1

 (4)

whereγ i is the normalized processor speed defined as the

ratio between the execution time of the algorithm on

processor i and the execution time of the algorithm on

processor RP, and |Net| is the number of processors in the

network. Then #(Net, RP) can be seen as the equivalent

number of reference processors for the algorithm that is

considered. We can prove that S(Net, RP) ≤ #(Net, RP).

The efficiency of the parallel algorithm will be:

 E N et
S N et R P

N et R P
()

(,)

(,)
= (5)

#(Net,RP) 1 2 4 5 7 8 10

LH

1
T(Net) 34.5 18.2 8.8 7.3 5.2 4.5 3.6

 S(Net,RP) 1 1.89 3.9 4.7 6.65 7.6 9.7

LH

2
T(Net) 76.6 39.8 20.2 16.1 11.4 10.2 8.0

 S(Net,RP) 1 1.92 3.8 4.75 6.72 7.52 9.6

LH

3
T(Net) 153 79.7 39.2 32.0 22.6 20.2 16

 S(Net,RP) 1 1.92 3.91 4.8 6.79 7.6 9.6

TABLE 2. ELAPSED TIME T (Net) (min) AND

SPEEDUP S(Net,RP) FOR A TYPICAL ITERATION

OF THE PARALLEL GENERATOR

243

 N 1 2 3 4

LH1 T(N) 123 117 145 167

 S(N) 1 1,05 0,85 0,74

LH2 T(N) 256 147 156 174

 S(N) 1 1,74 1,64 1,47

LH3 T(N) 314 254 289 293

 S(N) 1 1,24 1,09 1,07

TABLE 3. ELAPSED TIME T(N) (sec) AND SPEEDUP

S(N) FOR A TYPICAL RUN OF THE PARALLEL

OPTIMIZER

For the generator the speedup in all cases is almost

linear to the number of processors, while the optimizer

can only achieve slight speedups. Given that the Carmen

system generator, which is currently in production at LH,

requires about 80% of the total system runtime, the

overall performance will be significantly improved. For

example, a crew scheduling problem that requires 20

hours to solve completely, would take about 5.5 hours

with 10 identical machines and 4.8 hours with 20

machines assuming that everything else remained as in the

current Carmen system.

5. CONCLUSIONS AND FUTURE WORK

Crew pairing optimization is one of the major

problems that an airline company must solve. It is time

consuming and deadline driven. In this paper we have

presented strategies and specific results that improve and

extend the successful Carmen APC system with the use of

parallel processing on a NOW. The pairing generation

phase is the dominant part of the system and can be

efficiently parallelized on a large number of workstations,

achieving a significant performance improvement. A

nearly linear reduction of the pairing generation runtime is

possible due to the highly parallelizable pairing

generation procedure. The set covering optimization

phase can benefit from the global memory resources of

the NOW for large problems. For problems that exhibit a

block like structure moderate speedup can also be

achieved on a small NOW.

The improvements in performance translate immeiatey

in significant financial and strategic benefits for the

airlines. The ability to start the planning process as close

to the day of operation as possible allows for fast market

reactions and reduces the need for continuous

rescheduling, thus reducing the solution quality, due to

unexpected aircraft assignments and other schedule

changes. Faster solution times translate to higher

productivity of the airline crew management department

since crew schedules can be created closer to the actual

day of operation, which is very important in the new

deregulated environment in Europe and elsewhere. In

addition, the high performance of the parallel generator

allows larger problems to be solved since in the sequential

system the slow runtime was the constraining factor.

Future work includes an investigation of an alternative

parallelization strategy for the pairing optimization phase

that distributes the variables and not the constraints over

the processors. This approach has the advantage that small

volume of data must be communicated between the

processors. However, the need to exchange several small

messages, makes the approach extremely sensitive to the

network communication latency. Finally, a better and

more direct integration between the parallel generator and

the parallel optimizer is being investigated.

REFERENCES

[1] G.W. Graves, R.D. McBride and I. Gershkoff, Flight

Crew Scheduling, Management Science, 39(6),

1993, 736-745.

[2] E. Anderson, E. Housos, N. Kohl and D. Wedelin,

OR in the airline industry, Crew Pairing Optimization

chapter, 228-258, Boston, London, Dordrecht,

Kluwer Academic Publishers, 1997.

[3] E. Housos and T. Elmroth, Automatic Subproblem

Optimization for Airline Crew Scheduling,

Interfaces 27:5, 1997, 68-77.

[4] PAROS consortium, Technical annex for the Esprit

project 20.115: Parallel large scale automatic

scheduling, PAROS, January 1996.

[5] G.L. Nemhauser and L.A. Wolsey. Integer and

Combinatorial Optimization. Wiley - Interscience,

1988.

[6] D. Wedelin, An algorithm for large scale 0-1 integer

programming with application to airline crew

scheduling, Annals of Operations Research, vol. 57,

1995, 283-301.

[7] A. Gupta, Fast and effective algorithms for graph

partitioning and sparse-matrix ordering, IBM

Journal of Research & Development, 41(1/2), 1997,

171-184.

[8] PAROS consortium, D5.3 Parallel optimizer

prototype, University of Patras, May 1997.

[9] G. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.

Mancheck and V. Sunderam. PVM: Parallel Virtual

Machine, MIT Press, 1994.

[10] A. Beguelin and V. Sunderam, Tools for Monitoring,

Debugging, and Programming in PVM, Proceedings

of EuroPVM 96, Munich, Germany, Oct. 1996, 7-13.

