Department Knowledge Engineering
University of Vienna

Workshop on
Ontology and Enterprise Modelling:
Ingredients for Interoperability

Proceedings

In Conjunction with 5" International Conference on
Practical Aspects of Knowledge Management
December 2, 2004

Vienna, Austria

Edited by
Harald Kihn
BOC Information Systems GmbH

Supported by
Network of Excellence INTEROP
www.interop-noe.org

Program Committee

Yannis Charalabidis, Singular Software, Greece

Norbert Gronau, University Potsdam, Germany

Manfred Jeusfeld, University of Tilburg, Netherlands
Dimitris Karagiannis, University of Vienna, Austria
Michele Missikoff, Italian National Research Council, Italy
Dimitris Plexousakis, University of Crete, Greece

Benkt Wangler, University of Skévde, Sweden

Organization
Harald Kihn, BOC Information Systems, Austria

Contents

Preface

Theme 1: Ontology Building

1. Modelling Semantic Relations to Build an Inferential Engine for a Complex Knowledge
Domain
De Cindio, F.; Ripamonti, L. A.; Ferrara, A.; Peraboni, C.

2. Similarity for Ontologies - a Comprehensive Framework
Ehrig, M.; Haase, P.; Hefke, M.; Stojanovic, N.

3. Building an Ontology of Competencies
Posea, V.; Harzallah, M.

Theme 2: Model Driven Development

4. Achieving Enterprise Application Interoperability: Design Patterns and Directives
Charalabidis, Y.; Chen, D.

5. Defining Model Transformations for Business Process Models Graphically
Murzek, M.; Kramler, G.

6. Integration Approaches for Metamodelling Platforms
Kihn, H.; Bayer, F.

Theme 3: Web-based Systems

7. Extracting Ontologies for the Semantic Web from HTML Forms
Astrova, |.; Stantic, B.

8. Ranking Web Application Compositions Based on Ontology
Osawa, T.; Fukuta, N.; lijima, T.; Yamaguchi, T.

9. Applying MDA in Enterprise Application Interoperability: The PRAXIS Project
Karakoidas, V.; Androutsellis-Theotokis, S.; Spinellis, D.; Charalabidis, Y.

Theme 4: Ontology-based Frameworks

10. Ontology based Framework for Adaptive Web System
Kanjo, D.; Kawali, Y.; Tanaka, K.

11. Towards an Organizational Knowledge Representation Framework
Pietrantonio, R.; Ruffolo, M.

12. Distributed Autonomous Knowledge Acquisition and Dissemination Ontology based
Framework
Belsis, P.; Gritzalis, S.

Preface

“There exist various definitions on interoperability. According to the Oxford Dictionary,
interoperable means ‘able to operate in conjunction’. The word “interoperate” also
implies that one system performs an operation on behalf of another system. From
software engineering point of view, interoperability means that two co-operating
software systems can easily work together without a particular interfacing effort. It
also means establishing communication and sharing information and services
between software applications regardless of hardware platform(s). The
interoperability is considered achieved if the interaction can, at least, take place at
the three levels: data, application and business process with the semantics defined in

a business context.”

(From: Model driven and dynamic, federated enterprise interoperability architectures and
interoperability for non-functional aspects, Deliverable D9.1, State of the Art of Interoperability
Architecture Approaches, Version 1.0, page 13, November 2004, Network of Excellence INTEROP,
www.interop-noe.org)

“Ontology represent a new technology with the purpose to improve electronic
information organization, management, and understanding. An ontology is a
conceptual information model that describes “the things that exist” in a domain
(hence the name): concepts, properties, facts, rules and relationships. An ontology
acts as a standardized reference model to support information integration and
knowledge sharing. Hence, the role of ontology is twofold:

= it supports human understanding and communication,

* in machine-processable form, it facilitates content-based access, communication
and integration across different information systems.

These roles are both achieved by explicating and formalizing the meaning, or

semantics, of organization and enterprise application information resources.”

(From: Ontology-based integration of Enterprise Modelling and Architecture & Platforms, Deliverable
D8.1, State of the Art and State of Practice Including Initial Possible Research Orientations, Version
1.2, page 12, November 2004, Network of Excellence INTEROP, www.interop-noe.org)

In this workshop we explore important ingredients for interoperability in enterprise
systems: enterprise modelling and ontology. The workshop is structured into four
thematic sessions:

Ontology Building

Model Driven Development
Web-based Systems
Ontology-based Frameworks

el N

Dr. Harald Kihn
Vienna, December 2, 2004

Modelling semantic relations to build an
inferential engine for a complex knowledge
domain.

Fiorella De Cindio, Laura Anna Ripamonti, Alfio Ferrara, Cristian Peraboni
D.I.Co. — Universita di Milano — Italy

fiorella.decindio@unimi.it, [ripamonti, ferrara]@dico.unimi.it, cris.peraboni@tin.it

ABSTRACT

Retrievability and reusability of Learning Objects (LOs) in a shared distributed
context is a relevant issue, primarily due to the resource-consumption that the
production of on-line courses implies. Ontologies can be effectively exploited
in order to provide a mean of searching based on a widely recognised
cataloguing criteria, that couples the rigorous directions provided both by the
SCORM and the ACM Computer Curricula standards, while enriching them
with meaningful semantic relations among stored LOs’ contents. The resulting
ontology-based searching engine will be embedded into a portal for distributing
PhD courses in Informatics of several Italian Universities'.

KEYWORDS

E-learning, SCORM, ACM Computer Curricula, ontology, semantic relations,
Semantic Web

1 This work has been partially supported by the Italian Ministry of Education, Universities, and Research in
the framework of the FIRB “Web-Minds” project N. RBNEOIWEIJT 005.

2 Modeling semantic relations to build an inferential engine for a complex knowledge
domain.

1. Introduction

The WEB-MINDS (Wide-scalE, Broadband, MIddleware for Network Distributed

Services) project involves a number of Italian Universities, and is aimed at the
development of an effective middleware framework for accessing information and
services (both with mobile and not devices) using a peer-to-peer architecture. In this
work, we focus on the project work package that addresses the issue of e-learning in a
distributed context, with special attention to the definition of an ontology representing
the Computer Science knowledge domain.
The aim is to support the development and distribution of Computer Science courses
for PhD students through the net. After a testing phase, the searching and
downloading capabilities of the developed portal will be extended also to
undergraduate courses. Since the environment will be embedded into a general
middleware platform and integrated with different existing Learning Management
Systems (LMSs), a strong emphasis has been put on the modularity and scalability
aspects, defining the general structure shown in Fig.1: a central catalogue contains
referrals to the whole set of Learning Objects (LOs) stored in several local
repositories (eventually linked to a specific LMS). An user accessing the portal can
search for specific contents through an interface onto the ontology-based catalogue
and then download the LOs s/he is interested into. We won’t dig any further into the
overall structure, since the focus of this work is on the definition of the very core of
the system, that is to say the ontology upon which we are building the project’s
searching engine. Actually, since e-learning courses production is an expensive
activity, it is fundamental to produce contents that, if necessary, can be easily
retrieved and reused: this implies the application of universally used standards and the
definition of a tool able to allow detailed search among existing shared LOs. To
accomplish this goal, at least two dimensions need to be included in whichever
cataloguing system we can imagine: a mean of standardizing the LOs format and a
universally shared representation of the specific knowledge domain (in our case the
Computer Science disciplines) for classifying LOs content. Ontologies are generally
recognized as an essential tool for supporting a common representation and
understanding of a domain of interest (an ontology allows users to classify
information in terms of concepts, properties, and semantic relations). We will
combine the above two dimensions, and then enrich them by adding semantically
significant relations, for creating an ontology-based cataloguing system, able to
guarantee: that the catalogue is understood, shared and accepted universally by the
domain’s actors (teachers, students, ...), an exhaustive coverage of the domain; and
an easy extendibility of the catalogue itself. Moreover, since the portal uses web-
based technologies, for representing the ontology we adopt OWL (Web Ontology
Language), that in the Semantic Web context [Berners-Lee, et al., 2001], has been
recently proposed as a standard capable of joining the Description Logics semantics
with the syntactical freedom of RDF (Resource Description Framework) [Smith (Ed.)
et al., 2004].

Modeling semantic relations to build an inferential engine for a complex knowledge domain. 3

ontology

Figure 1 — WEB-Minds project portal overall structure

2. An ontological representation of LOs based on SCORM and ACM-CC
standards

Several definition of ontology have been proposed [Guarino and Giaretta, 1995];

in this paper, according to [Gruber, 1993] and [Studer et al., 1998], we define an
ontology as a formal specification of a shared conceptualization, since we are
interested in emphasizing the role of ontologies in providing a definition of concepts
that could be shared by a wide community of users that have the same, or similar,
needs. Moreover, our approach is aimed at providing a reusable skeleton for several
possible knowledge bases, as suggested in [Swartout and Gil, 1995].
In particular, we address the problem of building a single “global” ontology by
combining the ontological representation of the SCORM (Shareable Content Object
Reference Model initiative) and ACM-Computer Curricula (ACM-CC) [ACM, 2001]
models. As a matter of fact, the growing interest around e-learning issues has made
indispensable the creation and adoption of standards able to guarantee that learning
contents are sharable and portable through different LMSs. The standardisation
process has crystallized into the SCORM (Sharable Content Object Reference Model)
standard [Advanced Distributed Learning, 2003]. Hence, we included a representation
of SCORM metadata into the ontology. On the other hand, our aim is providing the
portal with cataloguing capabilities that go beyond a mere “taxonomisation” of its
content. To provide a mean for selecting, navigating and exploiting semantic relations
referred to LOs’ content, we have adopted the ACM Computer Curricula (ACM-CC)
standard for classifying LOs on the basis of their knowledge content (for the specific
reasons for choosing ACM-CC instead of the ACM standard see [De Cindio et al.,
2004]).

2.1 Design methodology: synthesis approach and one shot strategy
To design the “global” ontology we have adopted the synthesis approach
[Holsapple & Joshi 2002], that allows the creation of an ontology by synthesising

4 Modeling semantic relations to build an inferential engine for a complex knowledge
domain.

common characteristics between two (or more) ontologies. Thus, before undertaking
the synthesis phase, it has been necessary to define the two “input” ontologies,
describing respectively the ACM-CC taxonomy, and the SCORM metadata. To this
extent the one-shot strategy (Fig.2) [Gomez-Perez, Fernandez-Lopez and Corcho,
2003] has been adopted. This approach, that has been followed till the formalization
phase, allowed us to build the ontologies starting from the two standards’
specifications and a bunch of textual information. The data analysis activity allowed
us to select relevant elements and their properties among the information sources.
During the conceptualization phase we have analysed the meaning of concepts, the
relations among them, and types and cardinalities of properties. Finally the ontologies
have been formalized, formally defining concepts, relations among them, properties
and relations among properties and concepts, while building specific restrictions
where necessary.

Development activites

| Data analysis > > formalization > implementation> maintenance >

| Control | Quality assurance |

Figure 2 — one-shot strategy activities

2.2 Deriving the SCORM ontology from XML-schema

SCORM structures learning contents in Content Model Component that are then
packaged into Content Packages for sharing them among SCORM-conformant
systems. Each Content Model Component, and each Content Package (or Content
Aggregation), should be described using metadata compliant with the IEEE
1484.12.1-2002 standard [http:/Itsc.ieee.org/wg12/20020612-Final-LOM-Draft.html
]. Thus we can imagine each Content Component stored in the system as a LO, and
we have modeled the LOMs (Learning Objects Metadata) structure considering them
as autonomous objects able to describe whichever Content Component can enter the
system. In the Data Analysis activity phase that has been conducted on the IEEE
document, we have selected representative concepts among metadata. We have
reconstructed the metadata eXtensible Markup Language (XML)-schema in order to
obtain a more structured view, and then we have collected information on each
element belonging to a LOM - so to determine its role and nature -, and thus defining
the whole set of concepts belonging to the ontology and their properties. It is
important to point out that not the whole set of concepts is derived directly from
LOMs: some of them have been modelled as concept specifically for our purposes
(e.g. the vocabulary item concept has been derived from the vocabulary data type,
that represents any term in any vocabulary in the SCORM standard). The following
Conceptualization phase has focused on determining semantic relations existing
among concepts and properties. This activity, coupled with the definition of the nature
(datatype property or object property), the type (for the datatype properties) and the
cardinality of each property, allowed us to draw the H-MODEL [Castano et al., 2004]
schematically represented in Fig.3 (for figure readability only the principal items have

Modeling semantic relations to build an inferential engine for a complex knowledge domain. 5

been sketched). Then, during the Formalization phase, we have transformed the
conceptual model into a formal one, using Protégé [http://protege.stanford.edu]. Each
concept has been translated into an OWL class, and each property has been modelled,
according to its nature, into a DataType or an Object Property. Then properties have
been associated to related classes, imposing appropriate restriction on cardinalities
values. Finally, we have transformed semantic relations among concepts into relations

among classes.
annotation O\
technical

educational

rights

classification

Software-
component A& L\ T T, '@
B metaMetadata taxon item
contributeO"m. -

identifier.O- -----

Figure 3 - H-MODEL of the SCORM ontology

2.3 Representing the Computer Science knowledge domain through an ACM-
CC-based ontology
As a starting point for building the ACM-CC ontology we adopted an existing

DAML+OIL (DARPA Agent Markup Language + Ontology Reference Layer)
ontology developed by the University of Trento [Saini P., Ronchetti M., 2003]. Since
that representation of the Computer Science (CS) domain of knowledge was only
partially adequate for our purposes, several modifies and improvements have been
introduced. We have deeply analysed the ACM-CC standard document [ACM, 2001],
with an eye to the use we would do of its taxonomy: for this reason we have chosen to
base our ontology only on the Appendix A of the standard, that describes in very
details the Computer Science Body of Knowledge, disregarding Appendix B, that
focuses mainly on defining how undergraduate courses should be organized in order
to be consistent with the ACM standard?.
Appendix A taxonomy is organized into three hierarchical levels (Fig.4):

1. Area: the higher level, representing a specific discipline;

2. Unit: representing a single module within an area;

3. Topic: the lower level f the hierarchy, details its unit’s content.
In our ontological representation each of these levels has been modelled in such a way
that relevant semantic relations among items (area, unit, topic) can be easily traced.

2 The very reason for this choice is that undergraduate courses structure often has particularities
depending on the specific Country, while Appendix B is specially tailored on USA courses
structure.

6 Modeling semantic relations to build an inferential engine for a complex knowledge
domain.

Area 1 Unit 1.1 |——{ Topic |
CS Body of
Knowledge e Unit |_‘_‘ Topic |

Figure 4 — ACM-CC taxonomy structure

Area ~@ DS
DS5_Graphs_
. and_trees DS1_Functions_
Unit \é Relations_And_

DS2_Basic_ Sets

Loai
DS2.5_Validity oate
Topic DS2.1_Propositional_
Logic

DS2.3_Truth_Tabl
—> subClassOf 1 flin_lables
Fig. 5— H-MODEL of the ACM CC ontology

Actually, since the solution developed by the University of Trento modelled the Unit
class as a subclass of the Area class (and thus each area of the ACM-CC taxonomy
was an instance of the Area class, each unit an instance of the Unit class and each
topic a property of its unit), it was very difficult to trace new semantic relations
among items. Our solution implies the use of three general classes: Area, Unit
(subclass of Area) and Topic (subclass of Unit). Hence, each topic is no longer
modelled as an instance of its generic class, but as a subclass. For this reasons, e.g.,
the DS — Discrete Structure Area is a child class of the generic class Area (see Fig.5).
Moreover, each class referred to an item is a subclass of the class referred to the item
that precedes in the hierarchy of the taxonomy. Thus, e.g., the Propositional Logic
topic is represented as a child class of the Topic class and of the class related to the
DS2 — Basic Logic unit, that, in its turn, is a child of the Uit class and of the class
related to the DS — Discrete Structure area, that, as we said, is a subclass of the Area
class. Last but not least, the taxonomy has been extended by adding an identifier to
each topic. As a result our ontological representation do contains the whole set of the
taxonomy items modelled as concepts endowed with an identifier, thus allowing to
trace navigable semantic relations among them quickly and easily. The ontology has
then been completed by selecting, defining and adding semantic relations.

One of the main aim of the portal is to make possible researches among the LOs
stored in the distributed repositories that will give as output not only the results of the

Modeling semantic relations to build an inferential engine for a complex knowledge domain. 7

specific query (e.g. all the LOs containing theoretical lessons on “OS7.3 — security
methods and devices”), but also one or more lists containing LOs semantically related
to the query subject. To achieve this goal it has been necessary to identify all the
different types of semantic relations and what kind of items each of them may
connect. Tab.l summarises the results. Once established all the possible type of
relations, the text of the ACM-CC standard has been carefully read in order to identify
and formalize semantic relations among its items applying a collaborative approach.
This process, still going on, has been broken down into two phases: in a first step,
semantic relations have been extrapolated exclusively through the cues explicitly
present in the text. Then, experts of the field are being involved, in order to validate
these relations. This approach should minimize the presence of subjective perceptions
into the ontology, that must preserve the maximum universality in the description of
its specific domain.

Table 1 - possible semantic relations among the ACM-CC based ontology items

SEMANTIC RELATION TYPE ITEMS RELATED DESCRIPTION
is subClassOf Area-unit, unit- Describes ACM-CC taxonomy structure
topic, topic-subtopic
is suggested for any item A should be a prerequisite for learning item B
is required for any item A do is a_prerequisite for learning item B
is detailed by any item A may be further deepened by learning item B

2.4 Synthesising the global ontology from SCORM and ACM-CC ontological
representations

To merge the two ontologies in a single “global” one, a deep analysis of the
concepts present into each of them has been conducted in order to select common
concepts. We have focused on the Taxonltem concept belonging to the SCORM-
based ontology and on its relations with other concepts, since it represents the
structure of any generic item in the classification and characterises the item through
three properties:

- source: that identifies the classification system to which the item belongs;

- id: that identifies one specific item into the classification system;

- taxon entry: that contains the label associated to the item.
This concept is referred by the Classification class through the TaxonPath attribute,
that identifies possible classification paths for the LO of which is a metadata. Hence,
the global ontology is composed by an orthogonal connection between the two
ontologies through Taxonltem, that “contains” a navigable representation of the
Computer Science knowledge domain. As a result, the searching engine that will be
embedded into the Webminds portal will be able to provide an answer to different
type of queries, producing at the meantime a list of all the other LOs related to the
subject of the answer, distinguishing among those which are related to issues that are
suggested or compulsory prerequisite for studying a specific topic, or are useful for
further deepening it.

8 Modeling semantic relations to build an inferential engine for a complex knowledge
domain.

3. Conclusion & future developments

The present work outlines the design of a shared and agreed upon classification
system for cataloguing LOs of PhD courses in Informatics stored in a distributed
structure, providing - at the same time - a mean for supporting not-trivial queries on
the stored LOs, and thus assuring both retrievability and reusability. The next step of
our work will be the design and implementation of an appropriate searching engine
able to exploit the semantic richness provided by the ontology.

References

ACM, 2001, Computing Curricula 2001 Computer Science, Final Report.

Advanced Distributed Learning, 2003, Sharable Content Object Reference Model (SCORM) —
The SCORM Content Aggregation Model, Version 1.3 Working Draft 1.

Berners-Lee T. , Hendler J. and Lassila O., 2001. The Semantic Web. Scientific American.
May.

Castano S., Ferrara A., Montanelli S., Racca G., 2004, From Surface to Intensive Matching of
SemanticWeb Ontologies. In: Proc. of the 3th Int. Workshop on Web Semantics (WEBS) at
DEXA 2004, Zaragoza, Spain, IEEE Computer Society (to appear).

De Cindio F., Ripamonti L.A., Ferrara A., Peraboni C., 2004, Combining SCORM metadata
and ACM Computer Curricula to create an ontology for cataloguing learning objects. In
Proc. of IADIS International Conference on Cognition and Exploratory Learning in Digital
Age (CELDA 2004), 15-17 Dec., Lisbon, Portugal (to appear).

Gomez-Perez A., Fernandez-Lopez M., Corcho O., 2003, Ontological Engineering Advanced
Information and Knowledge Processing series, Springer Verlag.

Gruber R., 1993, Toward Principles for the Design of Ontologies Used for Knowledge Sharing,
Stanford Knowledge Systems Laboratory Technical Report KSL 93-04.

Guarino N., and Giaretta P., 1995. Ontologies and Knowledge Bases: Towards a
Terminological Clarification. In Mars N. (Ed.) Towards Very Large Knowledge Bases:
Knowledge Building and Knowledge Sharing. University of Twente, Enschede, The
Netherlands. IOS Press, Amsterdam, The Netherlands, pp.25-32.

Holsapple C.W., Joshi K.D., 2002, A collaborative approach to Ontology design.
Communication of the ACM, Vol.45, N.2, pp.42-47, February 2002.

IMS, 2003, IMS Content Packaging Information Model, Version 1.1.3 Final Specification

Saini P., Ronchetti M., 2003, Deriving onftology-based metadata for e-learning from the ACM
computing curricula, # DIT-03-017 University of Trento — Department of Information and
Communication Technology.

Smith M. K. (Ed.), et al, 2004. OWL Web Ontology Language Guide,
http://www.w3.0rg/TR/2004/REC-owl-guide-20040210.

Studer R., Benjamins V.R., Fensel D., 1998. Knowledge Engineering: Principles and Methods.
Data Knowl. Eng. N.25, Vol.1-2, pp. 161-197.

Swartout W., Gil Y., 1995, Expect: Explicit representations for flexible acquisition. 9th
Workshop on Knowledge Acquisition for Knowledge Based Systems (KAW’95), Banff,
Canada.

Similarity for Ontologies - a Comprehensive Framework

Marc Ehrig, Peter Haase
Mark Hefke?, Nenad Stojanovic

Hnstitute AIFB, University of Karlsruhe
2FZI Research Center for Information Technologies at the University of Karlsruhe
{ehrig, haase, stojanovic }@aifb.uni-karlsruhe.de
hefke@fzi.de

Abstract. In this paper we present a comprehensive framework for measuring
similarity within and between ontologies as a basis for the collaboration across
various application fields. In order to define such a framework, we base our work
on an abstract ontology model that allows to adhere to various existing and evolv-
ing ontology standards. The main characteristics of the framework is its layered
structure: We have defined three levels on which the similarity between two enti-
ties (concepts or instances) can be measured: data layer, ontology layer, and con-
text layer, that cope with the data representation, ontology meaning and the usage
of these entities, respectively. In addition, in each of the layers corresponding
background information is used in order to define the similarity more precisely.
The framework is complete in the sense of covering the similarity between all el-
ements defined in the abstract ontology model by comprising similarity measures
for all above-named layers as well as relations between them. Moreover, we have
validated our framework with several practical case studies in order to prove ben-
efits of applying our approach compared to traditional similarity measures. One
of these case studies is described in detail within the paper.

1 Introduction

The importance of ontologies as "an explicit specification of a shared conceptualiza-
tion” [1] increased drastically in the last years, especially for the applications that
require integration of heterogenous data, like knowledge management. Indeed, on-
tology becomes a very important technology for the improvement of the inter/intra-
organizational exchange of knowledge and services. Moreover, ontology-based knowl-
edge management enables a variety of new retrieval services, like personalization and
cooperative answering. The key issue is that an ontology supports more granular views
on the knowledge items that should be exchanged, enabling in that way the more
context-sensitive retrieval process than in the traditional knowledge management sys-
tems. For example, if a user makes the query "fast Jaguars”, an ontology-based system,
by using the conceptual model of a domain, can distinguish between the various in-
terpretations of the term Jaguar (e.g. car and animal) and enable the user to find only
relevant items. However, due to the ambiguity in translating a user’s information need
in a query, an efficient knowledge management system should enable the user to find
some items that do not match perfectly his query, but that are relevant for his need. For
example, if a user wants to find information about the safety issues of Jaguar X, the

relevant information could be documents about safety issues of the Ferrari Y, which has
showed the same characteristics as Jaguar X in several crash tests. It is clear this calcu-
lation of the similarity between two items has to be performed very carefully in order
to ensure that all relevant items and no irrelevant items will be retrieved. Moreover, the
similarity computation depends on personal rules and preferences as well as on per-
sonal interpretation. To get a grip on arising problems from the above-described exam-
ples, it is in our opinion necessary to combine ontology-based technologies with novel
approaches for similarity computation. Therefore we have developed a general frame-
work for calculating the similarity within and between ontologies by also focusing on
domain knowledge that has direct influence on the similarity. The main characteristics
of the developed comprehensive framework is its layered structure: We have defined
three layers on which the similarity between two entities, can be measured: data layer,
ontology layer, and context layer, that cope with the data representation, ontological
meaning and the usage of these entities, respectively. In that way, different layers con-
sider different aspects of the nature of entities which are combined in the final judging
about their similarity. Moreover, in each layer corresponding background information is
used in order to define the similarity more precisely. Our intention is not only to develop

a collection of existing methods for measuring similarity, but rather to define a frame-
work that will enable their effective systematization regarding the task of comparing
ontologies. The framework is complete in the sense of covering the similarity between
all elements defined in the abstract ontology model and comprises several new methods
in order to achieve such a completeness. Moreover, it provides some inter-/intralayer
relations between methods, that enable the methods to be applied more efficiently. The
framework has been validated with several practical case studies which are directly fo-
cusing on every single layer as well as their interaction in order to deliver a proof of
concept.

The paper is organized as follows: In Section 2 we first introduce a formal model for
ontologies and similarity in ontologies and thendescribe our general framework com-
prising three different layers for similarity computation. In Section 4 we validate our
framework with a selected case study. After a discussion of related work in Section 5
we conclude with remarks outlining some future work.

2 Definitions

In this section we introduce basic definitions of ontologies and similarity. Upon these
we build our similarity framework.
2.1 Ontology Model

In our framework we will adhere to the Karlsruhe Ontology Model[2], which we adapt
to also accommodate datatypes:

Definition 1 (Ontology with Datatypes).An ontology with datatypes is a structure

OT = (Cv Ta §C7 ST7 R7 A7 OA,0R, SRa SA)

consisting of a set of conceptsaligned in a hierarchy<., a set of relations? with
<g, the signaturerp: R — C x C, a set of datatype®’ with <, a set of attributes
A with <4, and the signature 4, : A — C x T. For a relationr € R, we define its
domainand its range bylom(r) := w1 (ocg(r)) andrange(r) := ma(or(r)).

Ontologies formalize the intensional aspects of a domain. The extensional part is pro-
vided by a knowledge base, which contains assertions about instances of the concepts
and relations.

Definition 2 (Knowledge Base with Datatypes)A knowledge base with datatypiss
a structure

KBt = (Ckp,Tkp,RrB,Axp,I,V,ic, i1, LRyt A)

consisting of fours setSk g, Txg, Rxp and Axp as defined above, a set of instances
I, a set of data value¥, the concept instantiation-: Cxp — ‘B(I), the data value
instantiationcr : Txp — P(V), the relation instantiationr: Rxp — PB(I2), and
the attribute instantiations: Axp — P x V).

2.2 Similarity

Common sense tells that two entities need common characteristics (or attributes) in
order to be considered similar. Formalizing the concept of similarity, we refer to the
definition of a similarity function introduced by [3]:

Definition 3 (Similarity Measure). A similarity measure is a real-valued function
sim(x,y) : S* — [0,1] on a setS measuring the degree of similarity between
andy.

Though there may be split opinions about the propertiesiof, it is generally
agreed thatim ought to be reflexive and symmetric, i.e.

Va,y € Sitholds l.sim(z,z)=1 (reflexivity)
2.sim(x,y) = sim(y,z) (Symmetry)

Similarity for Ontologies

Definition 4. Now given two knowledge bases with datatypes and the corresponding
ontologies(K B;, 0;) and (K B;, O;), we can compare elements§B"" as given by
the following family of functions:

sim : (E;) x (E;) — [0..1],

whereFE; € {O“ C;,T;, R;, A;, I;, ‘/z} and Ej S {Oj, Cj, Tj, Rj, Aj, Ij, ‘/}} and E;
and E; are of the same kind, i.e. both are instances or both are concepts, etc.

3 General Framework

Since an ontology represents a conceptualization of a domain, comparing two ontology
entities goes far beyond the representation of these entities (syntax level). Rather, it
should take into account their relation to the real world entities they are referencing,
i.e. their meaning, as well as their purpose in the real world, i.e. their usage. In order to
achieve such a comprehensive comparison, we use a semiotic view (theory of signs) on
ontologies and define our framework for similarity in three layers, as shown in Figure
1: Data-, Ontology-, and Context Layer. We further enhance these by an additional
orthogonal field representing specific domain knowledge. Initial blueprints for such a
division in layers can be found in the semiotics (theory of signs) for example in [4],
where they are callesymboli¢ semantiandpragmaticlayer, respectively.

Context Layer o

£33

Ontology Layer © =

a gy Lay e %
o C

Data Layer 0 x

Fig. 1. Layer Model

Data Layer On this first layer we compare entities by only considering data values of
simple or complex data types, such as integers and strings. To compare data values, we
may use generic similarity functions such as the edit distance for strings. For integers
we can simply determine a relative distance between them. The complex data types
made up from simple data types would also require more complex measures, but which
are effectively completely based on simple measures.

Definition 5 (Similarity based on Data).

$iMgqta : (E;) X (Ej) — [0..1]

computes the similarity of entities based on the corresponding data ve]jussd V;
occurring in K B; and K B;.

Ontology Layer Inthe second layer, the ontology layer, we consider semantic relations
between the entities. In fact, we use the graph structure of the ontology to determine
similarity. For specific predefined relations such as taxonomies or restrictions we can
use specific heuristics. For example, certain edges could be interpreted as a subsump-
tion hierarchy. It is therefore possible to determine the taxonomic similarity based on
the number ofs-a edges separating two concepts. Besides intensional features we can
also rely on the extensional dimension i.e. assess concepts to be the same, if their in-
stances are similar. The similarity measures of the ontology layer can include similarity
measures of the data layer to determine the basic similarities.

Definition 6 (Similarity based on Ontology Structures).

Simontology : (El) X (Ej) - [01]

computes the similarity of entities based on the ontological structurds 8%, O;) and
(K By, 0;5).

Context Layer On this layer we consider how the entities of the ontology are used
in some external context. This implies that we use information external to the ontology
itself. Although there are many contexts in which an ontology can be considered (for ex-
ample the context in which an ontology is developed, or in which it has been changed),
from the point of view of determining the similarity, the most important one is the appli-
cation context, e.g. how an entity of an ontology has been used in the context of a given
portal. An example for this is themazon.conportal in which, given information about
which people buy which books, we can decide if two books are similar or not in a given
context. We assume that an ontology can be used for annotating content/documents in
an information portal. Therefore, the similarity between two ontology entities can be
easily determined by comparing their usage in an ontology-based application. A naive
explanation is that similar entities have similar patterns of usage. However, the main
problem is how to define these usage patterns in order to discover the similarity in the
most efficient way. In order to generalize the description of such patterns we reuse the
similarity principle from CBR gimilar problems have similar solutiopg the terms

of the usagesimilar entities are used in similar conteXt/e use both directions of the
implication in discovering similarity: if two entities are used in the same (related) con-
text then these entities are similar and vice versa: if in two contexts the same (related)
entities are used then these contexts are similar.

Definition 7 (Similarity based on Context).

Simcontewt . (EZ) X (Ej) - [01]

computes the similarity of entities based on some context external to the ontologies.

Domain Knowledge Special shared ontology domains e.g. the bibliographic domain,
have their own additional vocabulary. The right part of Figure 1 therefore covers
domain-specific aspects. As this domain-specific knowledge can be situated at any level
of ontological complexity, it is presented as a box across all of them. Just like we use

general similarity features to compare ontologies we can also do so with domain spe-
cific features.

Amalgamation For the computation of the overall similarity between two entities we
use an amalgamation function that combines the results of the individual similarity
functions of the layers described above, i.e.

Definition 8 (Amalgamation of similarity functions).
sim(eq, ep) = A(simi(eq,ep), -, simy(eq, ep))

wheresim denotes the overall similarity, and the amalgamation function composing
individual similaritiessim; (i € {1,--- ,n}).

4 Application Scenario

We have validated our similarity framework in varoius different application scenarios,
such as Case-based Reasoning [5] and Usage Mining [6]. To illustrate the application of
our similarity framework, we present Bibster, a semantics-based bibliographic Peer-to-
Peer system. It can be treated as a Peer-to-Peer-based knowledge management system,
since it enables the efficient access to the information stored in a Peer-To-Peer network.
Bibster addresses researchers in a community that share bibliographic metadata via a
Peer-to-Peer system. Many researchers own hundreds of kilobytes of bibliographic in-
formation, in dozens of BibTeX files. At the same time, many researchers are willing
to share these resources, provided they do not have to invest work in doing so. Bibster
enables the management of bibliographic metadata in a Peer-to-Peer fashion: It allows
to import bibliographic metadata, e.g. from BibTeX files, into a local knowledge repos-
itory, to share and search the knowledge in the Peer-to-Peer system, as well as to edit
and export the bibliographic metadata.

In Bibstet we make use of two common ontologies for the representation of bibli-
ographic metadata: The first ontology is the Semantic Web Research Community On-
tology (SWRC$, which models among others a research community, its researchers,
topics, publications, and properties between them [7]. The second ontology is the ACM
topic hierarchy, according to which our publications are classified.

4.1 Usage of Similarity

Ontology-based similarity measures are used for a variety of functionalities in the Bib-
ster system:

! http://bibster.semanticweb.org/
2 http://lwww.semanticweb.org/ontologies/swrc-onto-2001-12-11-daml
3 http://lwww.acm.org/class/1998/

Duplicate detectionDue to the distributed nature and potentially large size of the Peer-
to-Peer network, the returned result set for a query might be large and contain dupli-
cate answers. Furthermore, because of the heterogeneous and possibly even contradict-
ing representation, such duplicates are often not exactly identical copies. The ontology
based similarity function allows us to effectively determine the similarity between the
different answers and to remove apparent duplicate results. Instead of confronting the
user with a list of all individual results, we are able to present query results grouped by
semantic duplicates.

Peer Selection with Semantic Topologieshe Bibster system, the user can specify the
scope of a query: He can either query the local knowledge, direct the query to a selected
set of peers, or can query the entire peer network. For the latter option, the scalability
of the Peer-to-Peer network is essentially determined by the way how the queries are
propagated in the network. Peer-to-Peer networks that broadcast all queries to all peers
do not scale — intelligent query routing and network topologies are required to be able
to route queries to a relevant subset of peers that are able to answer the queries. In the
Bibster system we apply the model of expertise based peer selection as proposed in [8].
Based on this model, peers advertise semantic descriptions of their expertise specified
in terms of the ACM topic hierarchy. The knowledge about the expertise of other peers
forms a semantic topology, in which peers with a similar expertise are clustered. That
means, a semantic link between two peers is established, if their expertise is similar
according to the similiarity function. To determine an appropriate set of peers to forward

a query to, a matching function determines how closely the semantic content of a query
that references an ACM topic matches the expertise of a peer.

RecommendationBibster features recommender functionality that allow personalized
access to the bibliographic metadata available in the Peer-to-Peer network according to
the particular needs of the users. In a nutshell, the recommender functions are based on
the idea that if a publication is known to be relevant, a similar publication might also be
relevant.

In more detail, the recommender functions build upon the semantic representation
of the available metadata, including content and usage information: The bibliographic
metadata is represented according to the two bibliographic ontologies (SWRC and
ACM). These ontological structures are then exploited to help the user formulate se-
mantic queries. Query results again are represented according to the ontology. These
semantic representations of the knowledge available on the peers, the user queries and
relevant results allow us to directly create a semantic user profile. The semantic simi-
larity function determines how well a publication matches the user profile. Potentially
interesting publication are then recommended to the user.

4.2 Methods

We will now describe the specific methods applied in the system grouped by the layers
Data Layer Ontology LayerandContext LayerWe also show how we expldiiomain
Knowledgen the individual layers.

Data Layer On this layer we compare the literal values of specific attributes of the
publication instances. For example, to detect typical differences in the representation of
a publication title for the duplicate detection, we use $ymtactic Similarityfunction

and are thus able to handle spelling errors or mismatches in capitalization, which is
important for example for duplicate detection:

Syntactic Similarity[9] introduced a measure to compare two strings, the so called edit
distance. For our purposes of similarity we rely on the syntactic similarity of [4] which
is inverse to the edit distance measure:

min(|vl\, ‘1}2|) — €d(’l)1,1)2)

) 1)

SiMsyntactic(V1,v2) := max(0, min(orl.Toa])
The idea behind this measure is to take two strings and determine how many atomic
actions are required to transform one string into the other one. Atomic actions would be
addition, deletion, and replacement of characters, but also moving their position.

Further, we are using domain specific background knowledge to define more mean-
ingful similarity measures. For example, for bibliographic metadata we know that at-
tributes such as first and middle names are often abbreviated: In these cases we compare
only the characters in front of the abbreviation dot. For other attributes expansion of the
abbreviations makes sense before comparing them.

Ontology Layer To compare the classifications of two publications according to the
ACM topic hierarchy, we use thEaxonomic Similarity for Conceptg/e can then build

the semantic topology of the Peer-to-Peer network according to the taxonomic simi-
larity of the peers’ expertise, i.e. the classified topics of the publications shared by the
peer. This is necessary for efficient peer selection and routing of queries.

Taxonomic SimilarityOne possible generic function to determine the semantic similar-
ity of conceptsC' in a concept hierarchy — or taxonomy<y has been presented by
Rada et al. in [10]:

eﬁh_e—ﬁh

6_al BRI .—Bh |f C C:
Simtawonomic(claCQ) — { eBhfe—Bh > 1 7"é 29 (2)

1, otherwise

«a > 0andg > 0 are parameters scaling the contribution of shortest path |éragtd

depthh in the concept hierarchy, respectively. The shortest path length is a metric for
measuring the conceptual distance:pfindc,. The intuition behind using the depth of

the direct common subsumer in the calculation is that concepts at upper layers of the
concept hierarchy are more general and are semantically less similar than concepts at
lower levels. This measure can be easily used analogously for rel@tcmmparisons
through<g.

SWRC Concept SimilaritiFor our specific scenario with the SWRC ontology as domain
ontology, we have further background knowledge that allows us to define a simpler, but
also more appropriate similarity function. There are many subconcepts of publications:

articles, books, and technical reports to just name a few. We know that if the type of a
publication is not known, it is often provided as Misc (e.g. in Citeseer). We therefore
use the following function:

1, if C1 = Cg,
S(c1,c2) =< 0.75, if (c; = MiscV ca = MiSC) A c1 # o 3)
0, otherwise

Furthermore, we analyze the graph structure of the metadata, specifically we check
how publication instances are structurally linked with person instances, e.g. authors.
Thus we can compare two publications on the basis of the similarity of the sets of
authors using the function fd8et Similarity which is useful for example to detect
duplicates or to recommend publications that are similar based on co-authorship:

Set Similarity Often it is necessary to compare not only two entities but two sets of
entities. As the individual entities have various and very different features, it is difficult

to create a vector representing whole sets of individuals. Therefore we use a technique
known from statistics as multidimensional scaling [11]. We describe each entity through
a vector representing the similarity to any other entity contained in the two sets. This
can easily be done, as we rely on other measures which already did the calculation
of similarity values[0..1] between single entities. For both sets a representative vector
can now be created by calculating an average vector over all individuals. Finally we
determine the cosine between the two set vectors through the scalar product as the

similarity value.
ZeEE € . ZfGF f
|E| ||

with entity settl = {ej, eq,...}, e = (sim(e, e1), sim(e, ea),...sim(e, f1),...);
F andf are defined analogously.

simget(E, F) = 4)

Context Layer On the context layer, we exploit information about the usage of the
bibliographic metadata. The usage information includes recently relevant results (i.e.
publications that have for example been stored by the user into his local knowledge
base), and queries the user has performed. As the recently relevant results are bibli-
ographic metadata themselves, they can be directly compared. For the recent queries,
the situation is similar: A query can be represented as an underspecified publication
with the attribute-value pairs that have been specified in the query (As known from
Query-by-Example With the similarity function one can then determine, how closely

a publication matches a query, instead of only considering exact matches. The context
layer is of big value for the recommender functionality.

Amalgamation Function To combine the local similarities to the global similarity
Sim, we use a weighted average by assigning weight® all involved local similari-
ties:

A(simy, ..., sim,) = ===

The weighted average allows a very flexible definition of what similar means in a
certain context. For example, to detect duplicate publications, the similarity based on
the title has a high weighted, and the global similarity needs to be close to 1. For the
recommendation of potentially relevant publications on the other hand, one might set
the weights to consider similarity based on the co-authorship or the topic classification.
Additionally, one certainly does not want to recommend duplicate publications.

5 Related Work and Conclusion

5.1 Related Work

Similarity measures for ontological structures have been widely researched, e.g. in cog-
nitive science, databases, software engineering and Al. Though this research covers
many areas and application possibilities, most applications have restricted their atten-
tion to the determination of the similarity of the lexicon, concepts, and relations within
one ontology.

The nearest to our comparison between two ontologies come [12] and [13]. In [12]
the attention is restricted to the conceptual comparison level. In contrast to our work the
new conceptis described in terms of the existing ontology. Furthermore, he does not dis-
tinguish relations into taxonomic relations and other ones, thus ignoring the semantics
of inheritance. [13] computes description compatibility in order to answer queries that
are formulated with a conceptual structure that is different from the one of the informa-
tion system. In contrast to our approach their measures depend to a very large extent on
a shared ontology that mediates between locally extended ontologies. Their algorithm
also seems less suited to evaluate similarities of sets of lexical entries, taxonomies, and
other relations.

MAFRA[14] describes a framework for mapping ontologies. Detecting similarities
among entities constitutes one module in the mapping framework. In this sense, our
framework can be seen as a complementary to MAFRA.

Research in the area of database schema integration has been carried out since the
beginning of the 1980s. Schema comparison analyzes and compares schema in order
to determine correspondences and comes therefore near to our approach. The most rel-
evant to our framework is the classification of schema matching approaches given in
[15]. The authors distinguish three levels of abstraction. The highest level differs be-
tween schemata- and instance-based information. The second level distinguishes the
similarity among elements and among structures. On the third level the calculation can
be based on linguistic or information about a model’s constraints. On the other hand our
approach uses a conceptual decomposition: if the similarity of entities can be discovered
on the data representation level (e.g. two strings are similar), then it can be expanded
to the semantic level (e.g. if these strings are label for two concepts, then it can be an
evidence that the concepts are similar) and finally this information can be propagated
on the level of the usage of these concepts (e.qg. if they are used similarly, then there is
more evidence for their similarity). In that context our framework is more “compact”
and goal-oriented, whereas all methods mentioned in [15] can be found in our frame-
work. Moreover, we use background information about the given domain and not only

“auxiliary” linguistic information (like synonyms, hypernyms) in all layers. Further, we
base our framework on a formal ontology model, that enables us to define all methods
formally. Finally, none of the related approaches, as known to the authors, had the in-
tention to define a framework which will drive the comparison between ontologies, e.g.
none of them consider the context layer as a source for discovering similarities.

5.2 Conclusion

In this paper we present a general framework for calculating similarity among ontolo-
gies for various application fields. In order to define a general framework we base our
work on an abstract ontology model that allows to adhere to various existing and evolv-
ing ontology standards. The main characteristics of the framework is its layered struc-
ture: we have defined three levels on which the similarity between two entities can be
measured: data layer, ontology layer, and context layer, that cope with the data repre-
sentation, ontology meaning and the usage of these entities, respectively. In that way,
different layers consider different aspects of the nature of entities which are combined
in the final judging about their similarity. Moreover, in each of the layers correspond-
ing background information (like the list of synonyms of a term) is used in order to
define the similarity more efficiently (precisely). Our intention was not only to develop

a collection of existing methods for measuring similarity, but rather to define a frame-
work that will enable their efficient systematization regarding the task of comparing
ontologies. The framework is complete in the sense of covering the similarity between
all elements defined in the abstract ontology model. We developed several new meth-
ods in order to achieve such a completeness. Moreover, the framework provides some
inter-/intralayer relations between methods, that enables more efficient applications. In
a case study regarding searching for bibliographic metadata in a Peer-to-Peer network
we showed the advantages of using our approach in knowledge management applic-
tions. Currently, we are evaluating our framework in several new application areas. The
future work will be oriented to the more formal treatment of the context layer which
will enable the reasoning about the similarity of the contexts as well.

5.3 Acknowledgements

Research reported in this paper has been partially financed by the EU in the IST projects
SWAP (IST-2001-34103), SEKT (IST-2003-506826), and Dot.Kom (IST-2001-34038),
and the BMBF project SemiPort (08105939). Many thanks also to our colleagues for
the fruitful discussions, especially Philipp Cimiano and Thomas Gabel, who helped to
create the first draft.

References

1. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for Knowledge Sharing.
In Guarino, N., Poli, R., eds.: Formal Ontology in Conceptual Analysis and Knowledge
Representation, Deventer, The Netherlands, Kluwer Academic Publishers (1993)

10.

11.
12.

13.

14.

15.

. Stumme, G., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D.,

Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Sure, Y., Volz, R.,
Zacharias, V.: The Karlsruhe view on ontologies. Technical report, University of Karlsruhe,
Institute AIFB (2003)

. Richter, M.M.: Classification and learning of similarity measures. Technical Report SR-92-

18 (1992)

. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proceedings of the Eu-

ropean Conference on Knowledge Acquisition and Management (EKAW), Springer LNCS
(2002)

. Hefke, M.: A framework for the successful introduction of km using cbr and semantic web

technologies. In: Proceedings of the 4th International Conference on Knowledge Manage-
ment (I-KNOW’04), Graz, Austria (2004) 731-739

. N. Stojanovic, L.S., Gonzalez, J.: More efficient searching in a knowledge portal - an ap-

proach based on the analysis of users queries. In: PAKM 2002, Springer Verlag (2002)

. Handschuh, S., Staab, S., Maedche, A.: CREAM - creating relational metadata with a

component-based. In: Proceedings of the First International Conference on Knowledge Cap-
ture K-CAP 2001. (2001)

. Haase, P., Siebes, R., Harmelen, F.: Peer selection in peer-to-peer networks with semantic

topologies. In: International Conference on Semantics of a Networked World: Semantics for
Grid Databases, 2004, Paris. (2004)

. Levenshtein, I.V.: Binary codes capable of correcting deletions, insertions, and reversals.

Cybernetics and Control Theory (1966)

Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on
semantic nets. In: IEEE Transactions on Systems, Man and Cybernetics. (1989) 17-30
Cox, T., Cox, M.: Multidimensional Scaling. Chapman and Hall (1994)

Bisson, M.: Learning in FOL with a similarity measure. In: Proceedings of the Tenth Na-
tional Conference on Atrtificial Intelligence. (1992) 8287

Weinstein, P., Birmingham, W.P.: Comparing concepts in differentiated ontologies. In: Pro-
ceedings of the Twelfth Workshop on Knowledge Acquistion, Modeling and Management
(KAW’99), Banff, Alberta, Canada (1999)

Maedche, A., Motik, B., Silva, N., Volz, R.: Mafra - a mapping framework for distributed
ontologies. In: Proceedings of the EKAW 2002. (2002)

Rahm, E., Bernstein, P.: survey of approaches to automatic schema matching. VLDB Journal
10(2001) 334350

Building an Ontology of Competencies'

Vlad Posea!, Mounira Harzallah?

! University Politehnica of Bucharest
VI adposea@ahoo. com
22, rue de la Houssiniére BP 92208 44322 Nantes Cedex 03
nmouni r a. har zal | ah@ ut - nant es. uni v-nantes. fr

Abstract. A competence ontology seems necessary to share the human capital
across organization units or corporations. This paper presents a method for
building an ontology of competencies. This method uses a model for compe-
tence representation, ontology reasoning and semantic distances. It allows to
define the similarity of competencies in order to share them and to simplify
their management. A brief synthesis on ontology characteristics and building
are presented on this paper. Then, a method for building a competence ontology
is proposed, its application is illustrated by a case study.

1 Introduction

Competence management is becoming more than ever a key success factor in
many organizations to make a better appraisal of human capital [1], [2]. How-
ever, competence management is complex, considering the numerous abilities and
individuals to manage in a company. In addition, it includes several heavy proc-
esses, as for instance: the identification of domain required competencies, the
evaluation of individuals for their acquired competencies, the study of acquired
and required competency adequacy. These processes are usually realised by sev-
eral organisation unit mangers. Each one defines competence lists with his
method and gives them his proper semantic. The same case for a corporate net-
work, each company defines its list of competencies in a proper way. In this
situation, the share of competencies is difficult. The interoperability of these
different lists can be possible using an ontology-based approach. A competence
ontology offers multiple functionalities like the unification of competence mean-
ing, the share of competence list across business units or organisations, the inte-
gration of different competence lists.

The difficulty in building the competence ontology is that a competence exists only by
its direct link with one or more concepts of a domain. In the competence ontology
there is also the need to find similarities between concepts in order to find those are

! IThis work is partially supported by the Commission of the European Communities
under the Sixth Framework Programme (INTEROP Network of Excellence, Con-
tract N° 508011, <http://www.interop-noe.org>).

close enough for their competencies to be close too. This allows then to define the
competence similarity.

To develop a competence ontology, our approach is based on the ontology of the
domain. Once this ontology is built, each organisation unit defines its competencies
according to it (Fig. 1). Then, competencies have the same semantic in all organisation
units, they can be shared.

Domain Ontology

Competencies of OU1 "_‘;I Competencies of OU2 I_‘_';I Competencies of OU

Fig. 1. Interoperability of competencies of OUs based on the domain ontology

This paper is focused on the definition of a domain ontology for the comptence
definition. After a brief state of the art about ontology and competence modelling, a
competence ontology buiding method is proposed. Then, a case study illustrates the
application of this method on the computer sciences domain.

2 Ontology, Reasoning and Semantic distance

We have studied the possibility to use an ontology in order to represent competencies
and their relationships. We were interested in the definition of the concept of ontol-
ogy, their usage, what they can offer us. We were also interested in the existing meth-
odologies for building an ontology.

The best known definition of the concept of ontology is Gruber’s “an ontology is an
explicit specification of a shared conceptualization”[3]. This is also the definition that
unites the most important ideas that can be found in other definitions [4], [5], [6], [7]-

Ontology has the following characteristics: it describes a domain, it is made of con-
cepts and relationships between them, it is build for a specific purpose, it represents
the point of view of a community and it is usually formal.

The advantages of an ontology are, among others, to share common understanding
of the structure of information among people or software agents, to enable reuse of
domain knowledge, to analyze domain knowledge [7].

There are many methods to build an ontology. They include especially the follow-
ing steps: the definition of the goals of the ontology, the knowledge acquisition it
building, the informal specification of it, its formalization, its implementation and the
evaluation and validation of the results.

About reasoning on ontology, two methods are distinguished: internal reasoning
and external reasoning. Internal reasoning concerns automatic validation (detection of
inconsistencies) of concepts and automatic classification of concepts based on theirs

characteristics. The external reasoning involves obtaining results by reasoning using
the ontology. In this domains, there are used also the measures of semantic similarity.

Several semantic distances were used in ontology to measure the similarity between
concepts [8], [9], [10], [11], [12]. They are based on measuring the number of arcs
between concepts in the ontology graph. Some of them are taking also into considera-
tion the type of relations between concepts, the distances to the closest common an-
cestor or the number of relations attached to a concept.

3 Competence Modelling

A competence is a way to put in practice some knowledge, know-how and also
attitudes (i.e., resources of the competence) inside a specific context. For exam-
ple, the competence “To be competent in the improvement project in a company”
can demand the following resources: “To know the characteristics of an im-
provement project”, “To know the objectives of an improvement project”, “To
know how to define improving solutions for an improvement project”, “To know
how to define a planning of an improvement project”, “To know how to solve a
problem”, “To know how to lead a meeting”.

We have considered the competence concept through the CRAI model (Com-
petency, Resource, Aspect and Individual) (Fig. 2) [13], [14]. This model repre-
sents the essential characteristics of this concept:

1. A competence concerns an aspect of the domain studied;

2. A competence is a set of resources (knowledge, know-how and behavior);

3. A resource is related to an aspect;

In the CRAI model, two entities are specific to the competence domain: Compe-
tency (for instance, “to be competent for machine X”) and C-Resource for com-
petence resources (for instance, “to know how to remove components on machine
X). C-resource can be understood as basic knowledge, or know-how or behavior
concerning a specific enterprise aspect and that can be used for precisely identi-
fying and understanding what a competency is. Another entity, Individual, repre-
sents the personnel set of the enterprise. The entity Aspect represents the con-
textual information, i.e., the enterprise components and feature comprising sev-
eral additional concepts, especially business processes, organizational aspects,
economic aspects, information aspects, etc., as developed in the enterprise mod-
eling field. In the CRAI model, it is possible to link a resource to an occurrence
of the Competency entity by means of one of the specific relationships named To-
Know, To-Know-how, and To-Behave.

Individual |- Acquired G-Resource |4 Aspect Decomposed-In

1,n

On

= _

\ I
Competency I
On I .

-1

Fig. 2. The Entity-Relationship schema of the model CRAI

4 Competence ontology building

We have established the importance of competence management and also the role
of the ontology in the process of sharing and reusing knowledge.

To build a competence ontology, we have to define the ontology’s concepts
and relationships. The concepts of this ontology (the competencies) can be de-
scribed only through the concepts that are referring and through the resources
that are linked to these concepts. The relationships between competencies are
different than the relationships between concepts of a domain (is-a, part-of) but
they still however depend on them.

For these reasons, in order to build a competence ontology, we consider that we
have to base it on a domain ontology.

4.1 Domain ontology

The domain ontology that is required for building a competence ontology is a
little different that a usual domain ontology. The main difference is that this on-
tology needs to have some resources defined for the concepts of the domain. This
characteristic is not usually needed but because a competence is defined by its set
of resources we have to add that data in the domain ontology.

The domain ontology is also composed by concepts and relationships. The re-
lationships that we considered are “is-a” and “part-of. The concepts of the do-
main ontology are the elements of the domain. These elements have as attributes
the competency resources that are attached to them. For example, the concept

Unix can have attached a resource (“know-how”) called “To know how to install
Unix”, and Oracle has resources like “To know the components of Oracle”
(“knowledge”) and “To know how to start the database server” (“know-how”).
We have also considered the fact that all the resources attached to a concept can-
not be defined manually because there is a large quantity of resources and also a
very large quantity of concepts. That is why a method of automatically deducting
the missing resources is proposed. This method is based on the concepts of the
domain ontology, on the relationships between them and on a measure of seman-
tic relatedness between these concepts

The idea of this method is that a concept is likely to “have” the resources at-
tached to its very close neighbors. To find out which are its close neighbors,
similarity between concepts is measured using a measure based on Sussna’s
measure of semantic distance [10]. The difference between our formula and
Sussna’s is that our measure doesn’t need to be symmetrical. The measure does
not need to be symmetrical because for example if we have the concepts
“Operating System” and “Unix” than “having the resource “to know how to in-
stall an operating system” almost surely can be inherited by Unix but not the
other way around. This also means that the relations in the domain ontology are
not symmetrical. So if we consider the types of relations “is-a” and “part-of” then
we have four different relations: “Father-Son”, “Son-Father”, “Whole-Part”,
“Part-Whole”.

The Sussna’s measure implies establishing a coefficient for every relationship.
That is why it is very important to define relationships used and to observe that
they aren’t symmetrical.

Our measure of the similarity between two concepts cl and c2 is:
w(c, =, ¢,)

dist ((c¢,,c,) = 7

max ,— min ,

where w(c, -, ¢,)=max ,————— nr(cl) is the number of con-
cepts to which cl is related, maxr aﬁd(rcﬂi)nr are coefficients that depend of the
type of relationships between c1 and c2 and d is the height of the tree.

So, the particularities of the ontology concepts, the relationships between them
are defined.

4.2 The Competence Ontology

The competence ontology is composed, like the domain ontology, by concepts
and relations between them. The concepts of this ontology are the competencies.
The competence is linked directly to a concept of the domain ontology (as in the
CRAI model) and is composed by resources that are directly linked to the con-
cept of the domain ontology or by resources that are close to this concept. The
distance between concepts is measured the same way as in the previous section.

The relationships of the competence ontology are based on the sets of re-
sources of each competence, and especially on the inclusion of these sets. To
express these relationships, axioms are defined as follows:

Col, Co2 are competencies and R11, ..., RIN are resources of Col and R21,
..., R2M are resources of C2. Then E(Col)={ R11, ..., RIN } and E(Co02)={R21,
..., R2ZM }. E(Coi) is the set of resources that belongs to the competence Coi.

Axiom 1: if E(Col) c E(C02) = Co2 demands Col

This means that if Co2 is acquired than Col must be already acquired too or if
we must acquire Co2 than we must before acquire Col. If Col is acquired only
the difference between Col and Co2 must still be acquired.

Axiom 2: If E(Co3)z E(Col) A E(Co3)z E(Co2) A E(Co3) < (E(Col) U
E(Co02)) = Col and Co2 demand Co3 (composed demand).

This means that a competence can be demanded by two other competencies
even if it is not individually demanded by any of the other two.

Axiom 3: if E(Col) < E(Co2) A E(Co02) < E(Col) = Co2 is identical
with Col

This axiom helps identify the competencies that have different names but the
same definition.

Axiom 4: E(Col) NE(Co2) = U= Co2 and Co2 are disjoined

This axiom tells us when two competencies are independent.

These rules are 100% certain. Other rules and relations can be obtained my
measuring the similarity between the sets of resources. By applying these axioms
to the identified competencies the relations between them are defined.

5 Case study

To experiment our method for building a competence ontology, an application
was developed in cooperation with Cap Gemini Ernst &Young (Nantes/France).
The needs of Cap Gemini were to obtain a tool that could help them to measure
differences of competencies between jobs, between employees and between tech-
nologies in order to propose development strategies on training, station change or
reorganization for the enterprise that they were advising. A particular need was,
for example, to change the IT structure of a big enterprise without affecting the
personnel. In order to do that, they had to train the personnel in the new tech-
nologies. By defining the competencies acquired by the employees for the old
technology and the competencies required for the new one and by finding the
relations between them they could find out easier the training requirements.

In order to do that a tool for the building of the competence ontology was de-
veloped. This tool is a plug-in for the Stanford’s Protégé software. This plug-in
requires an ontology of a domain to be built in Protégé [15]. To some of concepts
of this ontology knowledge and know-how facts must be attached.

The software ontology that was built is based on documents from Cap Gemini,
on other ontologies like CALO [16], and on classifications on the web (especially
download sites like download.com, tucows.com, softpedia.com). The ontology
was built having as top concepts “System” with the sons “Operating System”
“Database System” and “Office System” and “Software program”. Between these
concepts there are the relations previously defined (“Father-Son”, “Son-Father”,

“Whole-Part”, “Part-Whole”). The instances of these concepts are, among others,
the operating systems (Unix, Windows) and the database systems (Oracle, MS
Sql).

To these concepts and to these instances there are attached resources (know-
how and knowledge).

The plug-in allows to identify other resources (knowledge and know-how) be-
sides the ones already defined, based on the semantic distance that is already
defined. Fig. 3 shows an example of how to obtain the resources of the concept
Calc supposing that just two resources were attached directly to it: R1 (to know
how to use tables) and R2 (to know the Calc components). The distance between
Calc and its neighbors is measured. A threshold is chosen and the resources of all
the concepts closer than this threshold are gathered in the set of resources of
Calc. The following resources are added: R3 (to know how to use formulas in
spreadsheet applications), R4 (to know how to use the Open Office interface) and
R6 (to know the Excel commands).

System of
To be competent in applications
Calc ={R1, R2, R3, R4, R6} A
Office
System
Is a Is a

Open
Office

Part of
|

Access

Spreadsheet

Fig. 3. Excerpt from a competence ontology of computer sciences

The resources identified at this step need to be validated by an expert because
at this level many error sources appear. The error sources are given by the diffi-
culty of deciding the granularity of the domain ontology and by the fact that we
apply the same way to measure the distance on two resources that are attached to
the same concept without taking in consideration their particularity.

The following step defines the competence as set of resources attached to a
concept. For example: the competence “to be competent in Calc” has the set of
resources belonging to Calc: {R1, R2, R3, R4, R6}. The similarity measure can
show that just the similarities between Calc and Open Office, Calc and Excel,
Calc and Spreadsheet are over the defined threshold. In this case the “to be com-
petent in Calc” competence gathers the resources from Open Office, Excel and

Spreadsheet and not from MS Office, for example. That’s how the competence

“to be competent in Calc” is defined.

Fig. 4 shows the competence “To be competent in Unix” as it is obtained in

the plug-in.

The competence has attached resources that were directly attached to the con-
cept “Unix” and also other resources that were obtained using the similarity
measure like “To know Operating Systems” and “To know how to use the Unix

Terminal”.

Project Edit Window Help
hEg o= B

B

(T Classes | S[1Sits | TFomms | T Instances |[1]/ Classes & Instances | Plugin Competences

|

Classes Y : Display Slot : Ta he competentin Unix _ {type=Competence, name=Etre competent en Unix) C X
[THING A e « | | ame Know-how Slot VEC+ -
A
E%ﬂﬂj”’”gs | [To be competent n Unix || 210 knowe how to stop Unix
i [pirect instances VCB &Xx o know how to hackup Unix

(E) know-haw (41)
(@) knowladge (90)
@ (ClLewel
@ (C) Data Storage
@ (C) Software
@ competence know-how

@ Competence (80)

r

(761 |
(C) competence knawledge (16|

Ta be competent in Management tools
Ta he competent in MS SOL Server

Ta be competent in Network Configuration
To he competent in Presentationtools

Ta be competent in Security tools

Ta he competentin Systems

To be competent in Sytem Exploitation

Ta he competentin Technologies

To be competent in Terminals

Ta be competent in Unix

To be competent in V1

To be competent in Yeh Browser

To he competent in Weh Development

Ta be competent in Windows

To he competent in Active Directory

Ta be competent in Administration Software
Ta he competent in Backup

To be competent in Compilers

Ta he competent in Conference Programs
To be competent in Data Storage

Ta be competent in Database Management
To be competent in Database Server

Ta be competent in Development Software
To he competent in distance Administration
Ta be competent in DNS Server

To he competent in Drivers

Ta be competent in E-mail

Ta he competent in E-mail client

To be competent in Education Software

Ta he competent in Encoding

To be competent in Enterprise Manager

To he competent in Environment Software
To be competent in Exploitation Tools

Ta be competent in File Management

To he competent in File Transfer

Ta be competent in Finance Tools

To he competent in Firewall

Ta be competent in Help Builders

To e competent in Logging

To be competent in Logging Tools

Ta he competent in LogMiner

To be competent in Messenger Client

Ta be competent in Multimedia Development
To he competent in Network Exploitation
Ta he competent in Network Surveillance
To he competent in Office Systems

Ta be competent in Office Toals

To he competent in Oracle

Tobe in

.

[

Competence Demanded

NG =

Knowledge Slot

VC+ -

To Know Unix

To Know Operating Systems:
To Know System

To Know SGBD

To Know Systeme Office

to know how to program in Unix

to know how to restore Unix

to know how to start Unix

10 know how to configure Unix

to know how to administer the users Unix
o know how to connect Terminal Unix

‘to know how to lance a command Terminal Unix
10 know how to create a textin Vi

to know how to move texts in V1

to know how to delete texts in VI

to know how to copy texts in V1

to know how to find texts in V1

to know how to replace texts in V1

to know how to insert texts in V1

@Tu be competent in VI (type=Competence, name=Etre competent en VI) D@

Cx

Name

Know-haw Slat VC+ -

|TU he competentin Y

Competence Demanded

VEE S

KE To be competent in Uinix Terminal

Knowledge Slat

it e

to know 1

toknow Editors

to know Operating Systems
o Terminals

[2]

1o know how to create texts in V1

to know how to move texts in W1

1o know how to delete texts in W1

10 know how to copy texts in V1

0 know how to find texts in V1

to know how to replace texts in V1

0 know how to insert texts Vi

1o know how to install VI

to know how to stop Unix

{0 know how to hackup Unix

to know how to program Unix

to know how te restore Unix

to know how to start Unix

to know how te configure Unix

10 know how to administer users in Unix
10 know how to connect Terminal Unix

Fig. 4. Defining competencies as set of resources in the Protégé plug-in

The last step is to identify relationships between competencies based on theirs sets
of resources according to the axioms defined in section 4. For example, a relation
obtained from the first axiom is displayed in Fig. 5. This example shows that to be
competent in mail tools you have to be competent in mail clients and in mail servers.
This relation is obtained by comparing the sets of resources attached to these compe-

tences and obtaining that the set of resources belonging to “To be competent in e-mail
client” and “To be competent in e-mail server” are included in the set of resources of
“To be competent in e-mail tools”.

E:ET:I be competent in E-mail server (type... E|E|g|
Cx

FY

Name Know-how Slot Vv C + -

|TD he competent in E-mail server |

CompetenceDema % T + -

<i> To be competent in E-mail client
@ To be competent in E-mail tools

(KX

Fig. 5. Relation between competencies

6 Conclusion

In the context of building a system for improving the competence and knowledge
management, we are interested in a method for a unified competence representing.
Ontology is considered to be appropriate for defining competencies, identifying new
competencies rules between them, and allowing their share.

The proposed method is based on the domain ontology. Comptencies are defined as
sets of resources attached to ontology concepts. This idea is based on the relationships
existing in the CRAI model.

In order to experiment this method, an ontology of computer science domain is de-
veloped and also a plug-in for Protégé that identified the competencies of the domain
and some relationships between them.

The improvements that can be brought to this method are the finding of a better
measure of the semantic distance. This better measure must include more types of
relationships between concepts. It also must consider the particularities of a resource
like the difficulty of acquisition. These improvements will make easier the expert’s
task of validating the resources that were automatically identified.

This project will be integrated with another project that will discover by inferences
other rules and relations between the competencies. The inferences will be made on
the competencies defined in this part of the project. The project obtained by the inte-
gration of these two parts will be an important part of the system for the management
of competencies and knowledge developed in the Inf3C project.

References

1. Dubois D., Competency-based performance improvement: a strategy for organizations.
Ambherst: HRD Press Inc. International society for Performance Improvement, Washington,
(1993).

2. Prahalad C.K. and G. Hamel, Competing for the future, Boston: Harvard Business School

Press, (1994).

. Gruber, T. R. A Translation Approach to Portable Ontology Specifications (1993).

. Sowa J.F. http://www.jfsowa.com/ontology/, (2001).

5. Guarino, N. and Giaretta, P. 1995. Ontologies and Knowledge Bases: Towards a Termino-
logical Clarification. In N. Mars (ed.) Towards Very Large Knowledge Bases: Knowledge
Building and Knowledge Sharing, IOS Press, Amsterdam: 25-32. (1995)

6. Uschold, M. “Building Ontologies: Towards A Unified Methodology”, Proc. Expert Sys-
tems 96, Cambridge, December 16-18th, (1996).

7. Noy N., D. McGuinness - Ontology Development 101: A Guide to Creating Your
First Ontology http://protege.stanford.edu/publications/ontology develop-
ment/ontology101-noy-mcguinness.html, (2004).

8. Rada R., H. Milj, E. Bicknell and M. Blettner. Development and application of a metric on
semantic nets. [IEEE Transactions on Systems, Man, and Cybernetics, (1989).

9. Hirst G., and D. St-Onge. Lexical chains as représentations of context for the detection and
correction of malapropisms. In Christiane Fellbaum, editor, WordNet: An Electronic Lexical
Database, chapter 13, pages 305 - 332. The MIT Press, Cambridge, MA, (1998).

10. Sussna M. J. Text Retrieval Using Inference in Semantic, Metanetworks. PhD thesis, Uni-
versity of California, San Diego, (1997).

11. Wu Z. and M. Palmer. Verb semantics and lexical selection. In Proceedings of the 32nd
Annual Meeting of the Association for Computational Linguistics, pages 133-138, Las
Cruces, New Mexico, June (1994).

12. Zargayouna H., S. Salotti. Mesure de similarit¢é dans une ontologie pour l'indexation
sémantique de documents XML dans Actes de la conférence Ingénierie des Connaissances,
1C'2004, Mai (2004).

13. Harzallah M. and F. Vernadat, IT-Based competency modeling and management: from
theory to practice in enterprise engineering and operations, Computers in Industry, 48 (2):

157-179, (2002).

14. Harzallah, M. and Berio, G. Competency Modeling and management: A case
study, The 6th international conference on Enterprise Information Systems
(ICEIS’04), University of Portucalense, pp. 350-358, Porto, April 13-16, (2004).

15. Protégé web site — http://protege.stanford.edu, (2004).

16. CALO Computer Ontology Texas University -
http://www.cs.utexas.edu/users/mfkb/RKF/tree/specs/ontologies/Computer-onto.html
(2003)

I

http://www.jfsowa.com/ontology/
http://protege.stanford.edu/publications/ontology development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/publications/ontology development/ontology101-noy-mcguinness.html
http://protege.stanford.edu/
http://www.cs.utexas.edu/users/mfkb/RKF/tree/specs/ontologies/Computer-onto.html

Achieving Enterprise Application Interoperability:
Design Patterns and Directives

Yannis Charalabidis', David Chen?

1Singular Software SA, 23rd KM Athens-Lamia Road, Ag. Stefanos, 14565, Greece,

yannisx@singular.gr

2University Bordeaux 1, 351 Cours de la liberation, 33405 Talence cedex, FRANCE

chen@lap.u-bordeauxl.fr

Abstract. The paper elaborates on the various approaches to achieve Enterprise
Application Interoperability (EAlo), where Enterprise Applications such as SCM,
ERP and CRM systems are concerned. These approaches have been formulated
within the INTEROP Network of Excellence, along the evolutions in the areas of
Enterprise Modelling, Ontologies and Model-Driven Architecture. After looking at
the general causes and remedies for the present interoperability lack, a detailed
analysis of the various processes, standards, and solutions has been performed leading
to the formulation of an Enterprise Application Interoperability Maturity Matrix
(EAIoMM). Within this modeling context, levels of interoperability of existing
applications are clearly defined, while certain solutions, practices or directions lead to
state changes within the maturity matrix. In parallel, interoperability-oriented high
level design directives are providing the means for guiding the development of new,
more interoperable Enterprise Applications.

1. Introduction

This work is partly carried out within the frame of WP6 (Design Principles for Interoperability) under the
umbrella of INTEROP Network of Excellence (NoE)!. INTEROP NoE aims at integrating expertise in
relevant domains for the sustainable structuring of European Research on Interoperability of Enterprise
Applications [1]. Research in the interoperability domain in Europe is badly structured, fragmented and
sometimes overlapping. There is no global vision on the consistency due to the sporadic co-ordination
between research centres, laboratories, industries or other bodies. This situation is not only true for
research, but also in the training and education areas. Consequently, the primary goal of INTEROP is the
emergence of a lasting European research community on interoperability of enterprise software
applications. The overall NoE activities are structured in 4 areas: (i) Integrating Activities (IA), (ii) Joint
Research Activities (JRA), (iii) Spreading Excellence Activities (SEA), and (iv) Management Activities
(MA). For each activity area, several workpackages are defined and launched. The work presented in this
paper fits within the frame of Joint Research Activities (JRA) and is carried out by Workpackage 6 -
Design Principles and Patterns for Interoperability.

L INTEROP (Interoperability Research for Networked Enterprises Applications and Software) NoE is partly financed
by E.C. under FP6 framework, Contract n® IST-508011

mailto:yannisx@singular.gr

INTEROP WP6 research activity focuses on the design stage of the system lifecycle. It is concerned with
the development of principles and patterns that one can use at design stage to make appropriate design
decisions so that the applications so designed are more easily interoperable than if these
principles/patterns were not used. A design principle is a rule to follow to orient design decision-making.
A pattern is a proven solution to a problem in a context. When following some principles to design; one
finds that one repeats the same structures over and over again. These repeating structures of design are
known as design patterns.

There are basically two complementary approaches to deal with interoperability problems: (a) Develop
reference architectures, models, methodologies, tools to help establishing interoperability between
existing heterogeneous enterprise applications (b) Build interoperability capability inside applications at
the design stage. Most of the on-going research focuses at the first approach, (see also IST Integrated
Project ATHENA [2]). The present paper is analysing given solutions and results of the first approach in
order to build structures and knowledge within the second approach. Problem statement considers that
existing software and applications were not designed to interoperate. However, hypothesis can be
formulated that the interoperability of enterprise applications can be designed-in. It has been considered
that some existing applications are more interoperable than others and these applications may have
common features. Consequently, this research activity aims to identify generic features, define generic
principles and patterns for designing interoperable applications, as design principles and patterns are
independent of technologies and methodologies so applying across industry.

The objective of the paper is to address the use of some patterns for developing better interoperable
enterprise applications. The paper will discuss certain patterns which appear in various levels of the
modeling representations, both in the problem and in the solution space, formulating an initial, structured
set of concepts: interoperability types and levels, models for representing given solutions, as well as
ontologies for patterns and principles for achieving interoperability. After having given the basic
concepts in section 2, section 3 will present the context, problem and patterns to use in the context to
solve various problem situations. Section 4 concludes the paper outlining strengths of the proposed
approach, open issues and future work.

2. Concepts and definitions

Enterprise applications and relevant business ICT systems are highly complex and difficult to analyse,
due to their ever-extending functionality, covering more and more business processes. In parallel,
systems and enterprises interoperability is also affected by numerous factors and becomes extremely
demanding to measure if not in a structured way. In order to provide a proper ontological framework for
analyzing and categorizing systems according to their interoperability level, in extending recent research
on the ontological representation of interoperability issues [5], the following definitions are made:

The Enterprise Applications Interoperability Maturity Matrix (EAlo-MM) is a set of levels L = (L4,
L,, L;, L4, Ls), where each level corresponds to a different interoperability level for a set of Enterprise
Applications. Initially five levels are defined, as following:

e Level 1: Foreign (no interoperability)

e Level 2 : Known

e Level 3 : Connected

e Level 4 : Collaborating

e Level 5 : Integrated (adequate interoperability, for Enterprise Applications)

It has to be noted that the absolute number of Levels may be extended, in order to increase the granularity
of the matrix.

Enterprise A g =
Applications g z S £ =
Interoperability g 2 E S “5
Maturity i = g 2 g
Matrix e
Level 1 Level 2 Level 3 Level 4 Level 5
(0-2) (3-4) (5-6) (7-8) 1)
Processes & Business
Al. Business model exists *
A2. Processes match * *
A3. Applications match * * * *
Applications
A4. Data formats match *
AS5. A2A control established
A6. Ul matches *
Platforms
A’7. Input/output exists *
AS8. Connectivity exists
A9. Overall architecture sound
Non-functional aspects
A10. Performance adequate
All. Documentation adequate *
A12. Security adequate *
® = o o5 Y 5> Ry
g Z 5 5 5 B
5 g €3S | 228 | £8% | 2&8¢
° 3 o 5 =8 @ =g =9 3
c = G e & 28 g8 9 a8Q
== K = . = % o
& >&| E2¢| 555 | &2¢8
3 88| STE| 258 s
EXAMPLES = =8 223 g2 o 2 %5
g 52| %5 | 82| QES
2. ERC - =28 QE >
S = 5 = =% oz li=y
= e g ® wn s = v e
1zl c 8 = A ©» @
| g 8 S Q | & &
2 = s R K:

Figure 1 : EAlo-MM Levels and attributes with examples

The categorization of a specific system in a specific EAlo-MM Level follows scoring in a vector of
Interoperability Attributes, that is a set of 12 attributes analysed as following:

Processes and Business (characteristics concerning the interoperability at process and business
level, such as the process matching between the analysed enterprises)

Applications (characteristics concerning information, control and user interface)

Platforms (attributes concerning connectivity, openness and input/output features)
Non-functional Aspects (such as security, performance or documentation)

The categorization of a system according to the EAlo-MM is based on the number of the 12 attributes
that are valid or not, thus allowing for different configurations belonging to the same level. As shown in
Figure 1, scoring in the various attributes with yes/no creates a set of attributes that corresponds to a
specific Level, also indicating a possible instantiation of example configurations for each level.

Extending the definitions concerning the interoperability status of enterprise applications, the following
structures are defined:

A Situation (or state) of a system, concerning its interoperability level, is a specific vector S,=(A}, A, ...
, Ap»), that is denoting the exact attributes that are present or not within the analysed system.

A Direction (or state transition) is the change needed so that a system moves from a Situation to another:
D, depicts the change from Situation S, to Situation S,.

__. Enterprise Application
-~ Interoperability Model

_ Situation 1

_ Situation 2

Figure 2 : Situations and Directions of interoperable enterprise systems

The change from a Situation to another can usually be achieved by one ore more Paths, that is specific
directives or principles aiming at changing certain attributes of the systems.

This notation allows the proper definition of patterns and principles for both the interoperability problem
solving approaches presented in Chapter 1:

e The various “retrofit” solutions, patterns and principles, aiming at increasing the interoperability
level of existing systems are represented as Directions or Paths between certain, defined Situations.

e Patterns and principles aiming at the design of new, interoperable systems are represented as
Directions or Paths leading directly to a specific Interoperability Level or Situation.

Figure 3, that is based on the Levels and specific Situations of Figure 1, illustrates the following case:

e Two specific situations and have been identified, pertaining to Levels 2 and 3 (Known and
Connected), both with specific vectors S1 and S2, respectively. S1 corresponds to a set of enterprise
applications with a typical data-centric, batch process, ASCII input/output interconnection. S2
corresponds to a daemon-controlled, ASCII input/output interconnection that is well documented and
provides adequate performance.

e The change from S1 to S2 (Direction D12) can be achieved by following more than one specific
methodological patterns, that is Paths P121, P122, P123. In the example these Paths correlate to
Process-driven, Data-driven or Connectivity-driven approaches for enhancing interoperability of the
system towards Situation S2.

Level : Known
$(0,0,1,1,0,0,1,0,0,0,0,0)

_..— Direction D,
(from known to connected)

Path P,,,
(connectivity)

(match data)

Path ;;23 Level : Connected

(match processes) $(0,0,1,1,1,0,1,1,0,1,1,0)

Figure 3 : Situations, Directions and Paths in enterprise application interoperability

3. Directions and Paths for Interoperability

Both within INTEROP Network of Excellence, as well as from current State-of-the-Art in Enterprise
Applications interoperability research [2,3,4,5], various approaches have been collected and analysed,
towards specifying their exact positioning in the interoperability problem or solution ontologies.
Following the concepts of Chapter 2, a set of Situations have been constructed that relate to real-life
systems configurations. Figure 4 depicts the EAlo-MM levels and stores relevant Situations both for
Systems as well as for Enterprises — the latter having a different attribute set that is outside the scope of
the present paper.

= I Interoperability Models
|} Directions
=l 1) Situations
=] |Z) Enkerprises
|—) Lewvel_1 - Foreign
I Lewvel _Z - Known
I Level_3 - Connected
I Level_4 - Collaborating
|) Level 5 - Integrated
=l 1) Swskems
I Lewvel_1 - Foreign
=) Level_2 - Known

51 - ASCII Input Qutput, batch, human operated interconnection
= 1) Level_3 - Connected
I 52 - Controlled, 85I Inpuk Cutput, documented, operational
| Level_4 - Collaborating
|1 Level 5 - Integrated

Figure 4 : EAIo-MM Levels and Situations for Systems and Enterprises

In a similar way, a variety of approaches have been analysed, belonging to different systems states or
information technology methodologies and techniques.

This Directions ontology (that is storing various approaches categorized as Solutions, Practices, Patterns
and Principles going from specific to generic), is constructed with the following containers:

A. Directions affecting Interoperability between Enterprises

These directions are typically related to making the enterprises themselves more interoperable, through
motivating, organizing and guiding their collaboration. Studied approaches include Enterprise Modelling
(EM) methodologies and tools, aiming at representing and integrating organizational structures or
processes, yielding the following examples [3],[4]:

e Holonic Representation of Organisations

e Supply Chain ICT Maturity Matrix (SCIMM)
e M2EE Architecture Description Framework

e MACCIS Architecture Description Framework
e ArchiMate Methodology / Tool

e IEM Methodology / MO’GO Tool

It has to be noted that various approaches have also been presented during the last years for increasing
interoperability between enterprises with the use of interoperability-aware modeling methodologies, such
as the following:

e UEML, Unified Enterprise Modeling Language [11]
e GRAI Enterprise Modeling Methodology [12]

B. Directions affecting Interoperability between Systems

These directions govern the state change of a system between an interoperability Situation Sn to a
Situation Sj. The applied, specific examples, or Solutions, are as following:

e Data-oriented approaches, such as the Services-to-Businesses approach for public administration

e Connectivity-oriented approaches for integrating information flows between ERP and CRM
applications, [6]

e Internet-oriented approaches, such as interconnecting ERP systems over the Internet through
using B2B/XML standardized data flow, [8]

e Application of M2EE architecture description framework [9]
e Application of TEMoD architecture integration framework [10]

e Process-oriented approaches, such as the alignment of business processes between
heterogeneous enterprise applications

Extracted from approaches as the above or transferred from existing practice, various directives can be
classified as Practices or Patterns, helpful at the development of new Enterprise Applications and
interoperable systems including:

e Architecture-related practices (such system coupling / decoupling modes, system granularity,
system connectivity standards)

e Modelling-related practices (model abstraction layers, model transformations and patterns, etc.)

¢ Ontology-related practices and patterns (data dictionaries, ontological schemas, etc)

e Software engineering practices leading to increased interoperability (encapsulation rules, object
coupling, etc)

As illustrated in Figure 5, both the enterprise-oriented and the systems-oriented Solutions, Practices,
Patterns and Principles co-exist in the common tree of Directions, leading from a Situation to another.

=l) Directions
[= |2 Enterprises Interoperability
=l IZ) Enterprise Modelling
) GRAI Enterprise Maodelling Methodology:
) Holonic Representation of Crganisations
(1 Supply Chain ICT Matuarity Matrix (SCIMM)
=1 |Z) Enterprise Modeling - Documentation
[MZEE Architecture Descripkion Framewark,
) MACCIS Architecture Description Framewark
=l | Enterprise Modeling - Inkegration
1 ArchiMate Methadalogy - Toal
) Mio2E0 Tool - IEM Methodology
= I 3vwskems Interoperability
=l |Z) Enterprise Applications
) Patterns
= |Z) Practices
=l) Architecture
) Encapsulation of functionality according to domain
) Loose coupling of systems - subsystemns
) Modelling
] Ontologies
) Principles
= |2 Solutions
) Data-Driven Inkegration
=l 1) Inkernet-Based Integration
) Internet-B28 approach For A24 interconnection. InterEnteprise
) Internet-®ML approach for ERP-CRM systems
() Process-Driven Inkegration
=1 I Public Administration Applications
) Data-Driven Inkegration

Figure 5 : Classification of Directions regarding enterprises and systems interoperability

4. Conclusions & Discussion

The present work has introduced an ontology framework for connecting the interoperability levels of a
system or an enterprise with the performed or needed actions that increase the interoperability between
enterprises or enterprise applications. This extendible framework is capable of capturing the internal
characteristics of each interoperability situation that an enterprise may adhere to at a certain time point,
together with the directions that may be followed in order to achieve a better level. Also, design

directives for the development of new enterprise applications are mapped, so that decisions can be made
for their adoption.

The initial population of the above modeling structure showed the difficulty in collecting, analyzing and
finally extracting the needed core descriptions from various existing approaches, due to the complexity of
the provided solutions and the convolution of various patterns in each real-life scenario. Future relevant
research topics include:

e The mostly accurate definition of Interoperability Attributes of existing and new systems, that will
lead to the more analytical structure of Levels and Situations of the Enterprise Applications
Interoperability Maturity Matrix (EAlo-MM).

e The application of a novel approach for analyzing interoperability solutions and patterns, so that
directives and principles are more easily de-convoluted, categorized and presented.

5. References

[1] INTEROP (2004), Interoperability Research for Networked Enterprises Applications and Software,
IST Network of Excellence, www.interop-noe.org

[2] ATHENA (2004), Advanced Technologies for interoperability of Heterogeneous Enterprise Networks
and their Applications, IST Integrated Project, www.athena-ip.org

[3] Interoperability Development for Enterprise Application and Software (IDEAS, IST project) (2002).
http://www.ideas-roadmap.net

[4] INTEROP Network of Excellence, Deliverable 6.1: “Good Practices And Solutions For
Interoperability”, ed. Chen David, 2004, www.interop-noe.org

[5] INTEROP Network of Excellence, Deliverable 6.2 : “Design Principles / Patterns for Interopera-
bility”, 2004, ed. Chen David, www.interop-noe.org

[6] Charalabidis Y., Pantelopoulos S., Koussos Y.: “Enabling Interoperability of Transactional
Enterprise Applications”, Workshop on Interoperability of Enterprise Systems, 18th European
Conference on Object-Oriented Programming (ECOOP), Oslo, 1418 June 2004

[7] Osterwalder, C. Parent, Y. Pigneur: “Setting up an ontology of business models”, Workshop on
Enterprise Modeling and Ontologies for Interoperability, 16th International Conference on Advanced
Information Systems Engineering (CAISE), Riga, 2004

[8] Charalabidis Y., Karakoidas V., Theotokis S., Spinelis S.: “Enabling B2B Transactions over the
Internet through Application Interconnection: The PRAXIS Project”, e-Challenges Conference, European
Commission, Vienna, 27 - 29 October 2004

[9] Aagedal J. @., Berre A.-J., Bjanger B. W., Neple T., Roark C. B., “ODP-based Improvements of
C4ISR-AF”, Proceedings of the 1999 Command and Control Research and Technology Symposium,
1999.

[10] Di Leva, D. Occhetti, C. Reyneri: “The PRADIGMA Project: and Ontology-based Approach for
Cooperative Work in Medical Domain”, Workshop on Enterprise Modeling and Ontologies for
Interoperability, 16th International Conference on Advanced Information Systems Engineering (CAISE),
Riga, 2004

[11] M. Petit, P. Heymans: “Perspectives on the scope and definition process of the Unified Enterprise
Modeling Language”, Workshop on Enterprise Modeling and Ontologies for Interoperability, 16th
International Conference on Advanced Information Systems Engineering (CAISE), Riga, 2004

[12] GRAI Enterprise Modeling Methodology (2004), Graisoft company, www.graisoft.com

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

Defining M odel Transformations for Business Process Models Graphically”

Marion Murzek!, Gerhard Kramler?
“Women's Postgraduate College for Internet Technologies (WIT),
“Business Informatics Group (BIG),
Institute for Software Technology and Interactive Systems
Vienna University of Technology, Austria
E-Mail: murzek@wit.tuwien.ac.at, kramler@hbig.tuwien.ac.at

Abstract

Because of today’ s diversity of models and heterogeneous modelling languages in the
area of business modelling there is a need to automate model transformations on the
level of business process models. To define such transformation processesin asimple
way, a graphical modelling approach is required. In previous works a textual model
transformation tool, the BMT (BOC Model Transformer) has been introduced. It
enables the transformation of business process models which are instances of
different meta models. A rule file which contains XML-coded instructions controls
the transformation process. To simplify the requirements for creating such arule file
this paper introduces a graphical approach for modelling transformation processes.
For this purpose a meta model for the transformation language of the BMT is
introduced. Furthermore transformation processes which represent model instances of
this meta model areillustrated and discussed.

1. Introduction

Organisations require business process management tools that support model transformation
between different business process meta-models, because of the following business
requirements:

Model exchange: Multinational organisations use different modelling methods for modelling
their business processes. They need to exchange their models in order to provide transparency
of their organisational structures.

Method change: Due to organisational needs companies change or update their modelling
method. After updating, they want to automatically transfer their whole stock of models from
the old method into the new one.

Model deployment: A current request on model transformations in the area of business
modelling is to derive basic IT infrastructure models from already existing business process
models.

The BOC Model Transformer (BMT) has been designed to support these kinds of model
transformations [5, 8]. It is atransformation tool which supports the idea of Enterprise Model
Integration (EMI) [6] and of Model Driven Architecture (MDA) [9]. The BMT transforms
business process models based on meta model X (for example event driven process chains)
into business process models based on meta model Y (for example UML action diagrams).

" “This research has been partly funded by the Austrian Federal Ministry for Education,
Science, and Culture, and the European Social Fund (ESF) under grant 31.963/46-
V11/9/2002.”

mailto:murzek@wit.tuwien.ac.at
mailto:kramler@big.tuwien.ac.at

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

The transformation uses an XML-based rule file, which contains the description of the
transformation process and the transformation rules.

The utilisation of the BMT in a number of projects has shown that for most users it is too
complicated to define the whole transformation process textually. Basically, knowledge of
XML and the structure of model representation in the meta modelling tool are needed.
Additionally the usage of the rule file elements must be studied intensively to write efficient
and executable rulefiles.

A graphical transformation language could reduce the requirements for constructing rule files
for the BMT. Therefore this work proposes to graphically model the transformation process
based on a meta model. For the implementation of the meta model we use the Business
Process Management Tool ADONIS®[3].

The remainder of the paper focuses on the meta model and the graphical representation.
Chapter 2 gives overview of the implementation process, the meta model and examples for
graphica model transformations. Chapter 3 related work. The paper concludes with a
summary and a position statement.

2. Graphically Modelling a Transformation Process

The goal of offering a possibility to graphically model transformation processes based on the
BMT isrealized in three steps, as shown in Fig. 1.

The first step is to create a meta model for transformation processes by abstracting away the
XML-specifics out of the syntax of the rules file. The next step is to define the meta model in
an appropriate way using the metamodel-enabled tool ADONIS®. Based on the meta model,
the tool provides the user a graphical possibility to model the transformation process. The last
challenge is to generate the rules file automatically out of ADONIS® file format.

Meta model

R L S . T Output Rule
@ - : i file ® fle
format generate format

Rule
file
format

L
abstract

Define transformation
process

Fig. 1: Three stepsto enable the graphical creation of rulefiles

2.1 Characteristics and Features of theBMT

To get familiar with the BMT and its mode of operation this section gives a short description
of the architecture and main elements.

The BMT consists of a transformation engine and a transformation language. The language is
used for describing the transformation process in a rules file. During the transformation
process the transformation engine reads the rules file and executes the instructions step by
step. The main instructions which are available to construct rule files are: navigations,
definitions, functions, rules and conditions.

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

Navigations are used to match model fragments in the source context. Definitions are
comparable with variables. The values assigned to definitions can either be fixed values or
source values selected by functions. Beside selecting values, functions are also used to
manipulate values. Therefore functions can be subdivided in two groups, manipulation
functions and selection functions.

To generate the target models and model fragments rules are used. Rules are able to create
model fragments in the target context, e.g. models, classes, relations, attributes etc.
Depending on how a model fragment is transformed we distinguish copy-rules and create-
rules. Conditions are used to decide if rules should be executed or not, e.g. depending on a
comparison of two attribute values.

For further details regarding to the BMT and itsrulesfile refer to [5] and [8].

2.2 MetaModel for Transformation Processes of BMT

The meta model shown in figure 2 describes the main classes of a transformation process and
their relationships. The meta model itself is an instance of the meta®-model of ADONIS® [3].
Consequently all three participating meta models — source-, target- and transformation meta
model — are instances from the same meta’-model.

Successor
H

+

Transformation Process Definitior) consists of » Transformation Flow Objects

* *
*
< reffer to

Subtransform Rule Navigate Control Object Variable assignment

4 | | T |

simple Rule complex Rule Start End Split Join Decision

* *

invoke parameter

——

——
- < based on
Expression < Uses
*
* *
has operands *

) Lﬁ

Function Literal Variable

Fig. 2: Part of the meta model for transformation processes

In the following the entities are described in detail, including the most important of their
attributes.

The Transformation Process Definition describes the process itself. It provides header-
information for the transformation process, e.g. the name of the process, description, author
etc. A process definition consists of Transformation Flow Objects.

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

The flow object Subtransform represents the invocation of a transformation sub process.
Beside its attribute name, it also has arelation “ refer to” which points to the sub process. It is
used to structure the whol e transformation processin logical parts.

The class Navigate provides the possibility to explicitly model navigations within the source
context. The attribute OfType specifies the types of elements to be matched in the source
context.

The class Rule is designed to create the destination output. It is used to copy existing model
elements or create new ones in the target context. The abstract class Rule generalises the
classes simple Rule and complex Rule. The attribute type specifies which kind of ruleit is, for
example model-, instance-, relation-, attribute rule etc. Each rule has parameters specifying
further details of the target element to be created. Options are to either take values of the
concerning source element or provide literal values for the target element. A complex Ruleis
characterised by its additional relation “invoke parameter”, which is used to generate
parameter values via functions.

Start, end, split, join and decision describe the control objects. Together with the relation
“ successor” these objects describe the control flow of the transformation process.

The abstract class Expression describes the computation of a certain value. It generalises the
classes Function, Literal and Variable. The relation “ has operands’ expresses that a function
could use further expressions to evaluate the result value.

2.3 Graphical Representation

Given the different meta classes, relations and their attributes we now have to find an
adequate graphical representation for these concepts.

The main problems of a graphical representation of transformation processes are:
. Simplée/intuitive representation of non-trivial transformations [1].
. The balanced proportion of graphical elements and text.

. The elements should be self-explanatory. This means the concepts represented should
be more concise and intuitive in graphical form compared to the textual one [10].

« Not too many different models and model elements should be provided.

The most difficult issue in graphically representing transformation processes is the first one —
how to represent non-trivial transformations.

In the following two examples of models instantiated from our meta model are provided.
These two examples show graphical representations of parts of transformation processes
addressing the problems stated above.

First the problem is described. Then the graphical representation and its description is
provided. Finally the XML-code representation of the solution is presented.

2.3.1 Example 1: Replacement of Srings

The first case deals with a problem which often occurs in the case of business model
transformations, replacement of substrings. The problem isto create new models, one for each
model of type “BusinessProcessModel” and replace al U, A and O by Ue, Ae and Oe in the
model name. Fig. 3 illustrates the solution of this problem.

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

Navigate (SCOPE)
Name =, Modeltype*
OfType =, BusinessProcessM odel“

Parameters:
name=, NameOfModel“

5 type: get-attribute-value
VariableAssignment value Get-attribute-value || parameters
<NameOfModel> <modelname> Attribute-name =, modelname"
value -> viarelation
Parameters: i i
. VariableAssignment
name=, BP-Library" <BP-Library>
value =, ADONISStandardM ethod*

First-operand Decision _Second-operand Get-variable-value
 matches’ " <NameOfModel>

no

Parameters:
name=, NameOfModel*

Parameters:
name=, NameOfModel“
value > viarelation

Type = create-mode! yes -) Type = replace-strings

Parameters: VariableAssignment Parameters:

type -> from source <NameOfModel> String =

Name= value »get-variable-value(NameOfModel)“
. get-variable-valug(NameOfModel)* RULE y Substrings & replacestring = table

xgj:’y"[ygg I Create-model
applicationlibrary = Replace-in-strings sustring gﬁplme- Operand
get-variable-value(BP-Library)* 9
Without-source=, no* v v} Ue And

Further A Ae And
Transformations
(o] Oe

Fig. 3: Creation of models and replacing letters in the model name — graphically

The rectangle containing all of the other elements represents the navigation to each model of
type “BusinessProcessModel” within the source context. This implies that during the whole
process fragment - contained in this rectangle - the source relation are models of the type
mentioned above. Navigations are comparable with “foreach”-loops used in programming
languages. That means for each model of type “BusinessProcessModel” in the source context
the process inside the rectangle is executed. Therefore the visualization as rectangle has been
chosen.

Within the navigation element, first of all two variables are created and values are assigned.
The variable-assignment for “NameOfModel” uses a function to get the value out of the
source-model-attribute “modelname”. To the second variable “BP-Library” the literal
“ADONISStandardM ethod” is assigned.

The next step is a decision whether or not the name of the model contains A, O or U. The
comparison is visualized with two related objects, a literal which contains a regular
expression and a function which gets the value out of the variable “NameOfModel”. If the
name does not contain any of these letters then the model will be created. Otherwise a
variable assignment which uses the function “replace-in-strings’ precedes the creation of the
model.

The multipart object “replace-in-strings’ illustrates that the string-replacement has to be done
more than once, for each substring which is stated in the table. This kind of representation has
been a solution of the problem “how to represent a complex function intuitively”. In
preceding graphical drafts many single functions have been used to express this circumstance.
This has shown that a consolidation of equal functionsis necessary.

The object “create-model” indicates that atarget model will be created. Two of the parameters
(librarytype and Without-source) of the object “create-model” are filled with literals, two
(type and version) are taken out of source and two (name and applicationlibrary) use the
expression “get-variable-value’ to get the assigned values.

Fig. 4 shows the same transformation process written in XML statements. Due to shortage of
space, only one of the three I F-statements, implementing the string-replacement is stated.

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,

2 December 2004
<MODELTY PE name=, BusinessProcessM odel“ > <RULESCONTAINER name="replace-in-strings"'>
<NAMEVALUEMAP> <IF>
<ELEM name=, NameOfModel"> <COMPARE>
<select-value> <LEFT-VALUE>
<PARAM name="attribute">model name</PARAM> <str-find>
</select-value> <param name="string">
</ELEM> <get-map-vaue>NameOfM odel </get-map-value>
<ELEM name=, BP-Library">ADONI SStandardMethod</ELEM> </param>
</INAMEVALUEMAP> <param name="substring">U</param>
<IF> </str-find>
<COMPARE> </LEFT-VALUE>
<LEFT-VALUE> <CONDITION>equals</CONDITION>
<get-map-value>NameOf M odel </get-map-val ue> <RIGHT-VALUE>-1</RIGHT-VALUE>
</LEFT-VALUE> </COMPARE>
<CONDITION>matches</CONDITION> <THEN/>
<RIGHT-VALUE>\[MAOU]*$</RIGHT-VALUE> <ELSE>
</COMPARE> <NAMEVALUEMAP>
<THEN/> <ELEM name="string2replace">
<ELSE> <str-replace>
<CALL name="replace-in-strings'/> <param name="string">
</ELSE> <get-map-val ue>NameOfM odel </get-map-val ue>
<NIF> </param>
<RULE type="create-model"> <param name="substring">U</param>
<PARAM name="M odeltype">Ownerpool</PARAM> <param name="replacestring">Ue</param>
<PARAM name="Modelapplib"> </str-replace>
<get-map-value>BP-Library</get-map-val ue> </ELEM>
</PARAM> </NAMEVALUEMAP>
<PARAM name="Modellibtype">bp</PARAM> </ELSE>
<PARAM name="Modelname"> </lF>
<get-map-val ue>NameOfM odel </get-map-val ue> <IF>
</PARAM> ... repeat for each string to replace
</RULE> </IF>
</RULESCONTAINER>
</MODELTY PE>

Fig. 4: Creation of models and replacing letters in the model name — textually

2.3.2 Example 2: Getting Attribute Values from Related Objects

The second example again demonstrates the use of navigations (see Fig. 5). The goa is to
create a copy of all connectors (= relation between two model instances) of type “ successor”
in the destination context. For each successor pointing away from an “XOR”-instance the
value of the attribute “transitioncondition” is filled with the value of the attribute
“description” of the instance the successor points to.

__

avigate (SCOPE)
ame =, Modeltype*
OfType =, EPC-processmodel*

zz

Preceding Transformations

i i
i |
i |
i 1
i i
i Navigate (SCOPE) i
| Name =, Connector* 3
i OfType =, successor 3
i |
i ' i
i Navigate (SCOPE) RULE Par ameter s taken from E
H Name =, child-node" create-connector the source — connector. 1
i Element-name=, FROM*“ l i
i type: get-attribute-value . i
i Parameters: Get-attribute-valud, | First-operand, / Decision Second-operand @ :
| Attribute-name =, class" <class> »equals’ :
H i
H es :
i Navigate (SCOPE) Y i
! Name =, follow-connector* 1
i Direction =, outgoing* no i
i |
! 1
: Navigate (SCOPE) 4 Type = copy-attribute :
! Name = ,, child-node* RULE Parameters: !
H Element-name=, ATTRIBUTE" copy-attribute To =, transitioncondition* i
i Attribute-name=, name* Type=,STRING" E
| Attribute-value="description* Value > viarelation :
H 1
H 1
H Select-value < 1
i <description> value v i
i L—* i
[Further 1
: Transformations i
H :
i |
i |

Fig. 5: Creating connectors with attribute values from related instances

The outermost rectangle illustrates the navigation to each model of type “ EPC-processmodel”
within the source context. The rectangle within shows the navigation to each connector of

6

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

type “successor” within a model of type “EPC-processmodel”. Then a connector is created
(RULE create-connector) in the target context. The parameter values for the creation of the
new connector are taken from the source connector.

The following decision compares the literal “XOR” with the name of the instance from which
the connector is pointing away. This value received by navigating to the FROM-Element of
the connector itself and selecting the value of the class-attribute.

If the value does equal “XOR” the attribute “transitioncondition” is created within the target
connector. In doing so the value is evaluated as follows: First navigate to the instance where
the connector is pointing to. Then navigate to the attribute “description” of this instance and
select the value, visualized with the function “ select-value”.

The same transformation process written in XML statements can be found in [5].

2.3.3 Graphical vs. Textual Representation

In the graphical representation the complexity is reduced by visualizing the language elements
by the means of different colours and shapes. The visualization of navigations as rectangles
makes sure that the user always knows in which part of the source context he or she is
actually operating. Compared to the textual representation the graphical representation
highlights the process flow, which is delimited by the elements Sart and End. Furthermore
the readability of the graphical representation is supported by summarizing repeating
instructions, for example the “replace-in-strings” function in Fig. 3. People who are not
familiar with the syntax of XML will develop transformation processes faster in the graphical

way.

2.5 Related Work

Krzysztof Czarnecki and Simon Helsen identified design features to categorize Model
transformation approaches [2]. According to these features the BMT could be categorized as
Hybrid Model-to-Model Approach.

One of the graphical representations of transformations which has been tested was the
Bidirectiona Object oriented Transformation Language (BOTL) [7]. It is a Graph-
Transformation-Based approach which is aready implemented in a tool caled BOTL. It
offers the possibility to specify rules graphically. The rules are structured in LHS/RHS in
form of two graphs. The information in which order the rules are executed can not be
influenced, it is left to the implementation itself. This is one of the main differences to the
BMT which isfocusing on modelling the transformation process itself.

A Pattern-Based approach for graphically representing transformations is MOLA (MOdel
transformation LAnguage) [4]. It represents the transformations as structured flowcharts with
pattern-based rules. They combine rule patterns with a graphical loop concept. The
visualization of loopsin MOLA isvery similar to the concept of navigationsin the BMT. But
the representation of the contained elements differs completely.

The focus of the most graphical representations of model transformations lies on visualizing
the source-element and the resulting target-element which represents a rule. The graphical
language in this paper highlights the transformation process itself and how the rules are
applied. The similar structure of graphical transformation processes and the underlying
source- and target models make it easier for experienced business process modellers to create
model transformations this way.

Position Paper for Workshop “Enterprise Modelling and Ontology: Ingredients for interoperability” at PAKM 2004, Vienna,
2 December 2004

4. Summary and Statement

To cope with the complexity of the requirements for transforming business process models
we introduced the graphical approach to model transformation processes with the BMT.

The advantages of the graphical representation are that no knowledge of XML is required.
The graphical representation is concise and intuitive for both kind of users, developers and
business experts. The user is able to control the transformation process by arranging the
transformation elements due to his or her requirements.

This graphical modelling approach involves the vision of MDA [9] in two ways. First with the
BMT, which is a model transformer for business models and secondly with the idea of
creating a model of the transformation process and transform it into XML-code for the
transformation tool.

Next steps are to evaluate the graphical modelling language of the BMT in practical use and
transforming the output file of ADONIS® into an according rule file to automate the graphical
transformation.

5. Acknowledgment

We would like to thank BOC Information Technologies Consulting GmbH for providing the
BMT! and the Business Process Modelling Tool ADONIS® in which the meta model has been
configured.

References

[1] Bettin, J.: Ideas for a Concrete Visual Syntax for Model-to-Model Transformations. OOPSLA’ 03,
Workshop on Generative Techniques in the Context of Model-Driven Architecture.

[2] Czarnecki, K.; Helsen, S.: Classification of Modd Transformation Approaches.

OOPSLA’ 03, Workshop on Generative Techniques in the Context of Model-Driven Architecture.

[3] Junginger, S.; Kihn, H.; Strobl, R.; Karagiannis, D.: Ein Geschéftsprozessmanagement-Werkzeug
der néchsten Generation — ADONIS: Konzeption und Anwendungen, Wien im April 2000. An
abridged version of this BPM S-report was published in WIRTSCHAFTSINFORMATIK 42 (2000) 5,
S. 392-401 (in German).

[4] Kanins, A.; Barzdins, J.; Celms, E.: Basics of Model Transformation Language MOLA. ECOOP
2004, Workshop on Model Driven Development.

[5] Kihn, H.; Murzek, M.; Bayer, F.: Horizontal Business Process Model Interoperability using Model
Transformation. Workshop INTEREST at ECOOP 2004, Oslo, June 2004.

[6] Kuhn, H.; Bayer, F.; Junginger, S.; Karagiannis, D.: Enterprise Model Integration. In: Bauknecht,
K.; Tjoa, A M.; Quirchmayr, G. (Hrsg.): Proceedings of the 4th International Conference EC-Web
2003 - Dexa 2003, Prague, Czech Republic, September 2003, LNCS 2738, Springer-Verlag, pp. 379-
392.

[7] Marschall, F.; Braun, P.: Model Transformations for the MDA with BOTL. In Rensink, A., ed.:
CTIT Technical Report TR-CTIT-03-27, Enschede, The Netherlands, University of Twente (2003)
25-36

[8] Murzek, M.: Methodentibergreifende Model lItransformationen am Beispiel von ADONIS. Diploma
Thesis, University of Vienna, April 2004 (in German).

[9] Object Management Group: MDA Guide, Version 1.0.1, 12. Juni 2003.
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf, access 12 April 2004.

[10] Sendall, S.; Kozaczynski, W.: Model Transformation —the Heart and Soul of Model-Driven
Software Development. Software, |IEEE , Volume 20, Sept.-Oct. 2003, Pages: 42 - 45

! The BOC Model Transformer (BMT) was designed and implemented by one of the authors during her
employment at BOC Information Systems GmbH.

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

INTEGRATION APPROACHES FOR
METAMODELLING PLATFORMS

Harald Kihn Franz Bayer
BOC Information Systems GmbH BOC Information Systems GmbH
Platform Development Service Development
Rabensteig 2 Rabensteig 2
A-1010 Vienna A-1010 Vienna
Austria Austria
Tel.: ++43-1-513 27 36 10 Tel.: ++43-1-513 27 36 10
Fax: ++43-1-513 27 36 28 Fax: ++43-1-513 27 36 28
E-Mail: harald.kuehn@boc-eu.com E-Mail: franz.bayer@boc-eu.com
ABSTRACT

Metamodelling approaches are an active research field since the past 15 years and
have found serious application areas in the software and information technology
industries. Since metamodelling platforms gain widespread industrial and
research usage, the integration and interoperability of metamodelling platformsis
moving into focus of applied research and product-quality implementations. This
paper presents various metamodelling platform integration approaches, namely
the organizational integration, the transformation-based integration, the online
integration and the repository integration, and evaluates the advantages and
disadvantages of each approach.

1. INTRODUCTION

Metamodelling approaches are an active research field since the past 15 years and have found
serious application areas in the software and information technology industries [12]. Typical
domains of application are Enterprise Model Integration (EMI) [15] in the context of
Enterprise Application Integration (EAI) [17], Model Integrated Computing (MIC) [16],
domain specific modelling languages such as the Unified Modelling Language (UML) [20]
based on Meta Object Facility (MOF) [22] and model-driven devel opment approaches such as
Model Driven Architecture (MDA) [23]. Additionally, metamodelling approaches serve as
valuable base technology to merge different modelling approaches into a problem specific
modelling language, e.g. to mix UML and the Business Process Execution Language (BPEL)
[6] to gain a process-oriented software configuration language.

Metamodelling platforms are modelling environments allowing the problem-specific
definition of method elements such as metamodels, the definition of mechanisms working on
models and their underlying metamodels, and the definition of procedure models describing
the processes applying the metamodels and the corresponding mechanisms. Their major
functional and non-functional requirements are multi-product ability, web-enablement, multi-
client ability, adaptability, and scalability [12].

Since widespread industrial and research usage of metamodelling platforms such as ADONIS
[1, 11], MetaEdit+ [13] or METIS [18], the integration and interoperability of metamodelling
platforms is moving into focus of applied research and product-quality implementations [19].
Based on our experiences in applying metamodelling technology in business and technical
domains, various integration approaches for metamodelling platforms will be presented.

The remainder of the paper is structured as follows: chapter 2 introduces a generic
architecture of metamodelling platforms. Based on this architecture, chapter 3 presents and
evaluates four metamodelling platform integration approaches. Chapter 4 discusses related
work and chapter 5 concludes with a summary and an outlook to future developments.

December 2, 2004 1

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

2.METAMODELLING PLATFORM ARCHITECTURE

Metamodelling platforms should be realised based on a component-based, distributable, and
scalable architecture. Figure 1 presents a generic architecture of functiona aspects of
metamodelling platforms [12]. Additional architectural aspects in the context of
metamodelling platforms such as multi-tier architectures and repository architectures can be
foundin[14, p. 181 ff].

Method Workbench

Model
Editor

Semantic
Schema Editor

Procedure Model
Editor

Mechanism
Editor

Metamodel
Editor

Java ¥ Access Services > XML

IDL <> | > XMl

Metamodel Mechanism Procedure Model Semantic

Base Base Base Schemas
C++ <+—>| Model E

Base
RO Meta? Model [«

- T >

-

Proprietary
Formats

Persistency Services

x X
v ¥

Figure 1: Generic Metamodelling Platform Architecture

Repository

An important element of generic metamodelling architectures is the meta-metamodel (meta’
model) [8]. The meta® model defines general concepts available for method definition and
method usage such as "metamodel”, "model type", "class', "relation”, "attribute" etc.
Semantic schemas are tightly coupled with the meta® model. They describe the semantics of
each method element defined by using the meta® model. Semantic schemas can be described
by using approaches such as ontology [10], semantic engines ("mechanisms") etc.

The metamodel base contains metamodels of concrete modelling languages. Metamodel
editors are used for the definition and maintenance of metamodels. The metamodel base is
based on the meta® model. The metamodel base forms the foundation of the model base, in
which all models are stored. Models can be created, changed and visualized by using
appropriate editors.

All mechanisms and algorithms used for evaluating and using models are stored in the
mechanism base. Mechanism editors are used for definition and maintenance of mechanisms.
The mechanism base is based on the meta? model.

Procedure models describe the application of metamodels and mechanisms. They are stored in
the procedure model base. Procedure model editors are used for definition and maintenance
of procedure models. The procedure model base is based on the meta® model.

Persistency services support the durable storage of the various bases. These services abstract
from concrete storage techniques and permit filing of modelling information in heterogeneous
databases, file systems, web services etc.

Access services serve two main tasks: on the one hand they enable the open, bi-directional
exchange of all metamodelling information with other systems using APl or file based.
interfaces. On the other hand they cover all aspects concerning security such as access rights,
authorization, en-/decryption etc.

December 2, 2004 2

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

3. INTEGRATION APPROACHES

Figure 2 provides an overview of the presented metamodelling platform integration
approaches. All approaches can be applied both on the metamodel level and on the model
level.

Organisational Integration

@ (cf. section 3.1) @

Transformation-based Integration

Result Types (cf. section 3.2) Result Types
I * ! @) +
] File / API h
Access Services Access Services
Online Integration
(cf. section 3.3)

Metamodelling Metamodelling
Platform A Platform B
Repository Integration
. . (cf. section 3.4) .)
Persistency Services Persistency Services

Figure 2: Overview of Integration Approaches

3.1 Organizational Integration

Organizational integration will be applied, if no technical interfaces are available, but two
metamodelling platforms should be used integrated. Organizational integration is based on
organizationa steps, describing who has to do what and when. Typical tasks in the context of
organizational integration are manual exchange of metamodel and model information and
cross checks to ensure consistency of integrated information. For this, often documents are
used, which were generated by each platform for mutual information exchange.

An aid often used in practice is shown in figure 3. There, the metamodelling platforms itself
are not integrated, but the result types generated by each platform. Prerequisites of this
solution are (a) the possibility of generating documents in formats such as HTML or XML,
(b) the generation of stable and durable file names and (c) the possibility to enter links to
external documentsin at least one metamodelling platform.

Solution A Solution B
@ 4: Reference @ @ 4: Reference @
_ -

Result Types Result Types Result Types Result Types

from Platform A from Platform B from Platform A\ /' from Platform B
3: Generation 1: Generation 1/ 3: Generation 2: Reference 1/ 3: Generation
2: Reference
Access Services Access Services Access Services Access Services
—1 PlatformA [—— — PlatformB [—— —1 PlatformA —— — PlatformB [——

Persistency Services Persistency Services Persistency Services Persistency Services

Figure 3: Organizational Integration

In solution A platform B knows how to generate stable and durable file names, e.g. using
global unique identifiers (GUID). Platform A is not able to do so (step 1). The generated
documents, i.e. result types, are referenced from platform A using the stable file names (step
2). The result types generated by platform A (step 3) are integrated by the stable file
references with result types from platform B (step 4).

In solution B both metamodelling platforms can generate stable and durable result type file
names. Following an iterative process, documents are generated with both platforms (step 1),
the generated documents are referenced by the other platform (step 2) and the resulting cross

December 2, 2004 3

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

references are generated again (step 3). The result of repeated steps 1 to 3 are completely and
bidirectional integrated result type documents from both platforms (step 4).

3.2 Transformation-based Integration

The transformation-based integration approach transforms one or more method elements
from platform A to platform B. Basically, two kinds of technica transformation interfaces
exist: file-based interfaces and API-based interfaces.

Currently, file-based interfaces are the most common. The information to be transformed is
written in afile, which is then imported into the target platform. A well-known example for
file-based model transformation is the XMI format used for XML-based exchange of UML
models [21].

Using API-based interfaces, the information to be transformed is directly transferred from
platform A to platform B via programmatic interfaces. Among other things, in the API
approach the dependency to platform suppliers has to be taken into account. If a supplier
changes his AP, this can have negative influence on an existing integration, potentially
resulting in a non-operational integration.

In both kinds of interfaces, structural and content transformation can be distinguished. The
structural transformation transforms the structure of a method element from platform A to
platform B. At simplest case in both platforms the same method definition exist resulting in
1:1 transportation of the corresponding method elements. If the method definitions differ, also
the method structure has to be transformed. The content transformation focuses on the
properties (attributes) of the structural elements.

A weak spot of the transformation-based integration is the redundancy of information. If
information from metamodelling platform A will be transformed to platform B, in both
platforms the transformed information will be changed separately and the transformation will
be repeated, normally the changes in platform B will be lost. Approaches for consolidation of
redundant information exist e.g. in reverse engineering and round-trip-engineering. An active
research field in solving the problem of lost information in the context of model
transformation isthe MDA [9, 23, 24].

3.3. Online Integration

Applying online integration, interdependent information of method elements should be set
into relation spanning each platform. In contrast to transformation-based integration, no
import/export of method information from platform A to platform B will be done, but a
platform-spanning online-linking of information. The information stored in each platform
should be as digunctive as possible, to minimize the problem of redundant information (see
section 3.2). The information linking follows the hyperlink concept from section 3.1. In
comparison to the hyperlink concept known from the Internet, where links are pure pointers
which can break if the referenced target will be renamed, online integration uses "stable
links". In this approach, the global unique identifier of the referenced information is used,
which will be kept unchanged during lifetime of the information.

Furthermore, the online integration can be distinguished into unidirectional and bidirectional.
In unidirectional online integration, one metamodelling platform is the leading platform from
which links to method information in the target platform are set. Link information are only
stored in the leading platform and can only be activated in the leading platform (see figure 5,
left). In bidirectional online integration, links are stored in both participating platforms. This
gives the advantage, that in both platforms the links can be queried, evaluated, and used (see
figure 5, right).

December 2, 2004 4

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

Unidirectional Online Integration Bidirectional Online Integration

e.g. Business Process e.g. Strategy
Management Tool Management Tool

Platform A Platform B

e.g. Business Process
Management Tool

Platform B

Platform C Platform D Platform E Platform C |« » PlatformA |« » Platform D

A

e.g. Workflow
e.g. Strategy e.g. Workflow e.g. CASE Tool e.g. Infrastructure Management Tool
Management Tool ~ Management Tool Management Tool

e.g. CASE Tool

Platform E

e.g. Infrastructure
Management-Tool

Figure 5: Online Integration

For technical implementation, programmatic interfaces such as COM or middle ware
technology can be used. In normal case, the platforms participating in online integration are
installed on a single workstation to enable the necessary programmeatic access. In some cases,
e.g. in distributed work groups, it can be necessary to integrate the metamodelling platforms
in a distributed environment. In this case, the platforms have to support APIs based on
Remote Method Invocation (RMI) or Web Services [2]. This can raise the integration and
implementation effort considerably. Therefore, a careful cost-benefit-analysis should be
executed.

3.4 Repository Integration

In repository integration the exchange of integration-relevant information does not happen via
the access service as in the before mentioned approaches but via the persistency service. The
idea of this integration approach is the uniform usage of a repository by different platforms.
This way, the drawbacks of redundant storage of method information or the information loss
in transformation-based approaches should be avoided.

Generaly, two kinds of repository integration can be distinguished. Using a virtual
repository, the original repositories of each metamodelling platform will be kept. Each
platform accesses with its persistency service not directly its own repository, but uses for
repository access the virtual repository (see figure 6, left). The virtual repository acts as a
proxy delegating requests to each responsible repository and return the corresponding results
to the correct platform. If a common repository is used, the "local repositories’ of each
platform are obsolete. Each platform sends its repository requests only to the common
repository (seefigure 6, right).

Virtual Repository Common Repository

Platform A Platform B Platform A Platform B

L
: I
Platform A Pla':form By

Figure 6: Repository Integration

In comparison to the other integration approaches, in practice repository integration is the

approach less used. This has severa reasons:

e Until now, no international standard and no industry standard for definition and operation
of a uniform repository is established. There are several proprietary solutions such as the

Virtual Repository

December 2, 2004 5

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical

Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

Universal Repository of UNISY S [28] or the Microsoft Repository [3], but none of them
has gained supplier-spanning dissemination. As a possible starting point for virtual
repositories we see the OMG activities around MOF [22].

The creation of a common repository depends on a number of non-trivial problems and
conceptually demanding issues. Some selected aspects are the mapping and integration of
different instances of method elements in a common schema, the potentially necessary
transformation between different modelling languages, and the definition of operational
semantics for the method element instances, which are not certain at repository
implementation time.

A main reason for not using a common repository from a business perspective is the loss
of influence and the limited autonomy of a metamodelling platform supplier. The
repository is the core of a metamodelling platform and one of the centra competitive

advantages of each supplier isthe functionality of its repository.

3.5 Evaluation of Integration Approaches
Figure 7 provides a comparison of the metamodelling platform integration approaches. For
each approach the advantages and disadvantages are presented and the typical application

scenarios described.

Integration Approach Advantage Disadvantage Application Scenario
Organizationa Integration "Linking" of result types | ¢ Manual effort for e If no other integration
generated from different transformation/ approach isavailable.

platforms. integration. e If only low demand for

transformation/
integration.

Transformation-based
Integration

Avoidance of double
work.

Can often be realized by
platform user itself.

Often available only
unidirectional.
Normally no "delta
transformation".

If strong intersections of
method elements.

If sequential procedure
model, unless
(bidirectional) "delta
transformation” is
available.

If different method
USers.

Online Integration

Integration of method
element instances via
linking.

Normally tool support to
detect inconsistencies.

Can often be realized
only by supplier.

Often there are certain
redundanciesin
integrated method
elements.

Normally, platforms
haveto beinstalled on a
single workstation.

If method element
information are largely
digunctive.

Especialy for iterative
procedure model.

Repository Integration

Strong avoidance of
redundancies.
Normally strong
interrel ationships of
platforms.

Israrely available (often
only if platforms come
from single supplier).
Can often berealized
only by supplier.

Useful for sequential as
well asfor iterative
procedure model.

4. RELATED WORK

Figure 7: Evaluation of Integration Approaches

ADONIS is a meta business process management tool [1, 11]. It offers a three-step modelling
hierarchy with a rich meta? model. Meta models can be customized as instances of the meta’
model. Mechanisms such as "simulation” or "analysis" are defined on the meta® level and can
be redefined on the metamodel level. The scripting language AdoScript provides mechanisms

to define specific behaviour and functionalities.

December 2, 2004

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

MetaEdit+ offers also a three-step modelling hierarchy [13]. The meta® model forms the
"GOPRR" model, offering the basic concepts "Graph”, "Object”, "Property”, "Relationship"
and "Role". A diagram editor, object and graph browsers and property dialogs support the
definition of a new modelling language without hand coding. Furthermore MetaEdit+
includes XML import and export, an APl for data and control access and a generic code
generator.

OMG's Meta Object Facility (MOF) [22], the open source Eclipse Modelling Framework
(EMF) [26] and the Graphical Editor Framework (GEF) [25] are no metaCASE tools
themselves. With the MOF the OMG created a meta® model standard, which provides a basis
for defining modelling frameworks. Interoperability issues concerning the meta model and the
model domain are addressed by the ongoing standardisation of MOF
Query/Views/Transformations (QVT) [24] which will provide mechanisms for mappings
between models and meta models.

The eXecutable Metamodelling Facility (XMF) is a metamodelling tool supporting model
transformation [7]. The centra part of the XMF is the XCore which is comparable to the
MOF model. To support mappings between models two further languages are defined: XMap
which is a unidirectional pattern based mapping language and X Sync which is a bidirectional
synchronisation language.

Additional related work can be found e.g. in[5], [8], [18], [21], and [27].

5. CONCLUSION

Metamodelling platforms are getting more and more base technology [12] and models are

getting "first class citizens' [4]. Additionally, domain specific languages, model

transformation approaches, and lifecycle management within large model bases are active
research issues. The integration of metamodelling platforms becomes an important aspect in
managing corporations knowledge assets. This paper presented four metamodelling platform

Integration approaches and described their advantages and disadvantages.

In the near future, we see three important trends in the area of metamodelling platforms:

e Metamodelling gets commodity: metamodelling provides suitable concepts for flexible
modelling platform solutions. Furthermore, metamodelling concepts diffused more and
more in other domains such as MOF, into language design such as the language definition
of UML 2.0 or in Software Engineering e.g. in product family-based approaches. We
expect, metamodelling will also attract more attention in domains such as Workflow
Management, IT Architecture Management and Knowledge Management. Saying this,
challenging interoperability issues will have to be solved.

e Integration of business-oriented and IT-oriented methodologies. we see strong demands
integrating approaches such as Strategy Management, Process Management and IT
Management into single, integrated methods. A promising approach is MOF and MDA.
Nevertheless, their focus is currently focused on systems development. Upper-level
models such as business specifications and computation independent models (CIM) are
not well represented until now. Here, research need in areas such as low-loss
transformations and treatment of heterogeneous semantics is expected.

e Method Integration and Knowledge Management: our society is seen as a "knowledge
society”. Methods represent experts knowledge, they represent the know how to do and
process things in a certain way. As a future research domain we see the investigation of
interdependencies of Knowledge Management and Method Engineering and
corresponding issues in integrating both.

REFERENCES

1. ADONIS Homepage. http://www.boc-eu.com
2. Alonso, G.; Casati, F.; Kuno, H.; Machirgju, V.: Web Services. Springer-Verlag, 2004.

December 2, 2004 7

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

3. Bernstein, P. A.; Bergstraesser, T.; Carlson, J.; Pal, S.; Sanders, P.; Shutt, D.: Microsoft
Repository Version 2 and the Open Information Model. In: Information Systems, Vol. 24, Nr.
2, 1999, S. 71-98. http://www.research.microsoft.com/~philbe/Info Sys on MS Repository for
Web.pdf, access 30 September 2004.

4. Bézevin, J.: From Object Composition to Model Transformation with the MDA. In:
Proceedings of TOOLS USA, Volume IEEE TOOLS-39, Santa Barbara, California, USA,
2001.

5. Blanc, X.; Gervais, M.; Sriplakich, P.. Model Bus. Towards the Interoperability of
Modelling Tools. Proceedings of Model Driven Architecture: Foundations and Applications,
Uwe ARmann (Ed.), Linkoeping, Sweden, June 2004.

6. BPEL4AWS (Business Process Execution Language for Web Services) Version 1.1 May, 5
2003. http://www-106.ibm.com/devel operworks/library/ws-bpel/, access 30 September 2004.
7. Clark, T.; Evans, A.; Sammut, P.; Willans, J.: Applied Metamodelling — A Foundation for
Language Driven Development. Xactium, 2004.

8. Electronic Industries Association - CDIF Technica Commitee: CDIF CASE Data
Interchange Format - Overview. EIA-1S-106, 1994.

9. Gardner, T.; Griffin, C.; Koehler, J.; Hauser, R.: A review of OMG MOF 2.0 Query /
Views / Transformations Submissions and Recommendations Towards the Final Standard.
OMG, IBM, July 2003.

10. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge sharing.
In: Guarino, N.; Poli, R. (Hrsg.): Proceedings of the International Workshop of Formal
Ontology, Padova, Italien, August 1993.

11. Junginger, S.; Kuhn, H.; Strobl, R.; Karagiannis, D.: Ein Geschaftsprozessmanagement-
Werkzeug der néchsten Generation - ADONIS: Konzeption und Anwendungen. In:
WIRTSCHAFTSINFORMATIK 42 (2000) 5, pp. 392-401.

12. Karagiannis, D.; Kihn, H.: Metamodelling Platforms. Invited Paper. In: Bauknecht, K.;
Min Tjoa, A.; Quirchmayer, G. (Eds.): Proceedings of the Third International Conference EC-
Web 2002 — Dexa 2002, Aix-en-Provence, France, September 2-6, 2002, LNCS 2455,
Springer-Verlag, Berlin, Heidelberg, p. 182.

13. Kelly, S.; Lyytinen, K.; Rossi, M.: MetaEdit+ - A Fully Configurable Multi-User and
Multi-Tool CASE and CAME Environment. In: Constantopoulos, P.; Mylopoulos, J.;
Vassilioy, Y. (Eds.): Advanced Information System Engineering, 8th International
Conference, CAiSE'96, Heraklion, Crete, Greece, May 20-24, 1996, Proceedings. Springer-
Verlag, LNCS 1080, Berlin et al., 1996, pp. 1-21.

14. Kihn, H.: Methodenintegration im Business Engineering. PhD Thesis, University of
Vienna, Austria, April 2004.

15. Kuhn, H.; Bayer, F.; Junginger, S.; Karagiannis, D.: Enterprise Model Integration. In:
Bauknecht, K.; Tjoa, A M.; Quirchmayr, G. (Eds.): Proceedings of the 4th International
Conference EC-Web 2003 - Dexa 2003, Prague, Czech Republic, September 2003, LNCS
2738, Springer-Verlag, pp. 379-392.

16. Ledeczi, A.; Maroti, M.; Bakay, A.; Karsai, G.; Garrett, J.; Thomason, C.; Nordstrom, G.;
Sprinkle, J.; Volgyesi, P.: The Generic Modeling Environment. In: Proceedings of the
Workshop on Intelligent Signal Processing, Budapest, Ungarn, May 2001.
http://www.isis.vanderbilt.edu/publications/archive/Ledeczi_ A_5 17 2001 The Generi.pdf,
access 30 September 2004.

17. Linthicum, D. S.: Enterprise Application Integration. Addison-Wesley, 2000.

18. METIS Homepage. www.computas.com, access 30 September 2004.

19. NoE INTERORP, Interoperability Research for Networked Enterprises Applications and
Software, ST Network of Excellence, www.interop-noe.org, 2004.

December 2, 2004 8

Workshop "Ontology and Enterprise Modelling: Ingredients for Interoperability” at 5" International Conference on Practical
Aspects of Knowledge Management (PAKM'2004), Vienna, Austria, December 02, 2004

20. Object Management Group: OMG Unified Modeling Language Specification, Version
1.4, September 2001. http://www.omg.org/cgi-bin/doc?formal/01-09-67.pdf, access 30
September 2004.

21. Object Management Group: OMG XML Metadata Interchange (XMI) Specification,
Version 1.2, Januar 2002. http://www.omg.org/cgi-bin/doc?formal/02-01-01.pdf, access 30
September 2004.

22. Object Management Group: Meta Object Facility (MOF) Specification, Version 1.4, April
2002. http://www.omg.org/cgi-bin/doc?formal/02-04-03.pdf, access 30 September 2004.

23. Object Management Group: MDA Guide, Version 1.0.1, 12. June 2003.
http://www.omg.org/cgi-bin/apps/doc?omg/03-06-01.pdf, access 30 September 2004.

24. Object Management Group: Revised submission for MOF 2.0 Query/Views/
Transformations RFP, OMG Specification/2003-08-18, August 2003,
http://www.omg.org/docs/ad/03-08-08.pdf, access 30 September 2004.

25. The Graphical Editing Framework (GMF). http://www.eclipse.org/gef/

26. The Eclipse Modeling Framework (EMF). http://www.eclipse.org/emf/

27. UEML - Unified Enterprise Modelling Language, http://www.ueml.org, access 30
September 2004.

28. UNISYS: Universa Repository - Technical Overview. Version 3.0, 8807 6971-001.
Unisys Corporation, 1998.

December 2, 2004 9

Extracting Ontologies for the Semantic Web from
HTML Forms

Irina Astrova!, Bela Stantic?

! Tallinn University of Technology, Ehitajate tee 5,

19086 Tallinn, Estonia
irina.astroval@cellnetwork.com

2 Griffith University, PMB 50 Gold Coast Mail Center,

QLD 9726 Brisbane, Australia
b.stantic@griffith.edu.au

Abstract. We propose a novel approach to reverse engineering of relational da-
tabases to ontologies. Our approach is based on the idea that semantics of a re-
lational database can be inferred, without an explicit analysis of relational
schema, tuples, and user queries. Rather, these semantics can be extracted by
analyzing HTML forms — popular user-friendly interface to access relational da-
tabases on the current Web. The semantics are supplemented with the relational
schema and user “head knowledge” to build an ontology. Our approach can be
applied to migrating the current Web, which is usually based on relational data-
bases, to the ontology-based Semantic Web.

1 Introduction

The Semantic Web [1] is an extension of the current Web on which information is
given a well-defined meaning better enabling machines and humans to work in coop-
eration. Ontologies are the key to this cooperation, as they determine the common
vocabulary software agents will need to communicate with each other and users will
need to communicate with the software agents.

The Semantic Web is fueled by a hope that it will solve many problems [2, 3] of
the current Web; e.g.:

— The Web content is not machine-understandable, as Web pages are usually repre-
sented by HTML. This language describes how information looks like and not what
it is

— A large number of Web pages (which are usually referred to as the Deep or Hidden
Web [2]) are not included in search engine indexes, as these pages are generated
dynamically from relational databases, by sending user queries through HTML
forms. The Deep Web is estimated to be around 500 times the size of the Surface
Web, which consists of static Web pages.

The Semantic Web is a solution for many problems of the current Web. But it is the
solution that presupposes machine understandability of the Web content. That is, Web

pages will be annotated with ontologies that provide semantics of the Web content.
The Semantic Web will create an environment, where software agents roaming from
page to page can readily carry out sophisticated tasks for users [1]. Thus, the users
will find that the Semantic Web more useful and more powerful than the current Web.

With all these advantages, what keeps the Semantic Web from being brought to re-
ality!? One reason is that manual semantic annotation [4] is time-consuming, subjec-
tive and error-prone. It is even impossible on the Web scale — the current Web con-
tains more than 1.5 billion pages.

If we could automatically (or at least semi-automatically) extract semantics of rela-
tional databases from Web pages and reconstitute them as ontologies annotating those
pages, we would be able to migrate from the current Web to the Semantic Web. Re-
verse engineering of relational databases to ontologies is the key to this migration.

However, because of the novelty of that area, there are few approaches that con-
sider ontologies as the target for reverse engineering; e.g. [3, 5, 6, 7]. These ap-
proaches usually analyze a relational schema, tuples, and user queries to build an
ontology, thus being limited in terms of:

— Requiring more input information than it is possible to provide in practice, as the
complete information about a relational database is usually unavailable; and

— Making unrealistic assumptions about the input. E.g. the relational database is in
third normal form (3NF).

As an attempt to overcome these limitations, we propose a novel approach to reverse
engineering of relational databases to ontologies.

2 Our Approach

Our approach is based on the idea that semantics of a relational database can be in-
ferred, without an explicit analysis of relational schema, tuples, and user queries.
Rather, these semantics can be extracted by analyzing HTML forms and search re-
sults>. The semantics are supplemented with the relational schema and user “head
knowledge” to build an ontology.

Our approach uses Web pages as the main input and goes through three basic steps:
(1) analyzing HTML forms and search results to extract a form model schema; (2)
transforming the form model schema into an ontology; and (3) creating ontological
instances from data in the search results.

To illustrate these steps, Fig. 1 shows a Web page. This results from the search for
a used vehicle on http://www.bobhowardhonda.com.

! The Semantic Web does not exist except in isolated environments, mostly in research labs.
2 Since HTML forms present only a sketch of (part of) the relational database [2], our approach
also analyzes information contained in the search results.

BE EEEEE IEEEY NEEN -
Bob Howard Honda

Oklahoma's Largest Dealer®

Search Results
o wmarched for @ precesmed sehicle.
by Yo S
Listing l—_;| Pabes [any =]
Fre-cemad [2ns = | ome | [
setal: [Ery = ! foe earh

ehicle Detail

=) Printable page

Search New 2002 Ford Mustang Price: $9,088
Search Used
Quick Quote Price: $9,988
MADA Guides HMileage: 19,037
. Body Style: Coupe
Specials Body Type: CAR
; Transmission: Manual
Finance Engine: 3.8L & oyl Fuel Injection
M Exterior: RED
Service & Parts Model Code:
; Stack Number: 41060354
ial
Specials VIN: LFAFPA0432FLI2613
Newspaper Ad www.BobHoward Auto.com
Hours & Map R ——
About Us . o
&ir Conditioning Drivar Side Air Bag
Privacy Policy Passanger Side Alr Bag AMIFM Caszette
Security Fastures Alurninum Whesls
Budkcet Seats Compact Disc Player
Cloth Inktarior Cruize Contral
Intermitbznt Wipers Manual Transmizsion
Dowar Brakas Powar Staaring
Baower Windows Tilt Stearing Whesl

Figure 1. Web page

2.1 Extracting Form Model Schema

A form model schema [8] was originally proposed to extract an entity-relationship
schema from database forms. Basically, it consists of:

— Form field: This is an aggregation of name and entry associated to it>. A name is
pre-displayed and serves as a clue to what is to be entered by the user or displayed
by the system. An entry is the actual data; it roughly corresponds to an attribute in
the relational database. We use the term of linked attribute for such an entry to dis-
tinguish it from other entries, which are computed or simply unlinked with the rela-
tional database

— Structural unit: This is a logical group of closely related form fields (e.g. a table in
the Web page). It roughly corresponds to a relation in the relational database

— Relationship: This is a connection between structural units that relates one struc-
tural unit to another (or back to itself). There are two kinds of relationship: associa-
tion and inheritance

3 However, we can also identify a form field, where there is no name for the entry; e.g. the
photo, year, make, and model in Fig. 1.

— Constraint: This is a rule that defines what data is valid for a given form field. A
cardinality constraint specifies for an association relationship the number of in-
stances that a structural unit can participate in

— Underlying source: This is a structure of the relational database (i.e. a relational
schema), which defines relations and attributes along with their data types

— Form type: This is a collection of empty form fields

— Form template: This is a particular representation of form type. Each form template
has a layout (i.e. its graphical representation) and a title, which identifies the Web
page and provides its general description

— Form instance: This is an occurrence of form type, when its template is filled in
with the actual data. Fig. 1 is an instance of the form type.

In reverse engineering of relational databases to ontologies, the first step is analyzing
HTML forms and search results to extract a form model schema. This schema ex-
presses semantics of a relational database behind the HTML forms.

2.1.1 Analysis of HTML Form and Search Result Structure

Basically, this means identifying constructs in the form model schema and giving
them names using table understanding techniques [9].

Identifying form instances: Web pages typically consist of multiple frames. This
complicates the process of extracting the form model schema. Further complications
arise when Web pages contain advertisements and navigational menus, which can be
viewed as “noisy” data [2]. Thus, given a Web page, the first task is to identify a form
instance or data-rich section. We can do this in two ways. First, we can use the DSE
(Data-rich Section Extraction) algorithm [2]. Second, we can search through all the
frames in the page to find the largest one. This approach typically implies that frames
occupying larger display areas will be more interesting to users [10]. E.g. from Fig. 1
we would identify that Vehicle Detail represents all data that are the subjects of
interest to users.

Identifying structural units: We can take two basic approaches to this. First, we
can examine HTML code for structural tags such as <table>, and <ol1>* [9].
E.g. from Fig. 1 we would identify two structural units. One contains information
about a used vehicle (Year, Make, Model, Price, Mileage, ..., and VIN); while
another structural unit lists the vehicle features (Air Conditioning, Passen-—
ger Side Air Bag, ..., and Tilt Steering Wheel). This approach as-
sumes that HTML code is well designed, correct and stable. However, Web pages
typically change their layout more than twice a year [11]. Different HTML code can
result in the same layout of Web pages. This is usually because of errors in HTML
code and common misuse of the structural tags [10]. Second, we can use machine
learning techniques [12].

Identifying linked attributes: We can take two basic approaches to this. First, we
can examine HTML code for structural tags such as <thead> and <th> [9]. This
approach typically is viable only if the linked attributes are separated with the struc-

4 It is necessary to examine the tags and , because structural units are sometimes
represented by lists and not by tables (e.g. the features in Fig. 1).

tural tags; it does not work for merged data. E.g. the year, make, and model in Fig. 1
are all merged data, meaning that they are encoded into a single text string: “2002
Ford Mustang”. Second, we can use visual cues [2, 10]. This approach typically
implies that there will be some separators (e.g. blank areas) that help split the merged
data. E.g. the year, make, and model in Fig. 1 are separated with a space.

Identifying relationships: Related structural units will appear at the same form in-
stance. E.g. from Fig. 1 we would identify an association relationship between Vehi—
cle and Feature: a used vehicle Has a feature.

Naming structural units: Structural units are usually given names of the corre-
sponding relations in the relational database. But it is generally less confusing to users
if the names are more meaningful. Notice the adaptation of the name Feature to the
features in Fig. 1. This can better convey the meaning of the structural unit than the
original relation name Detail would.

Naming linked attributes: There are three basic approaches to this. One is to give
the linked attributes names of the corresponding attributes in the relational database. A
difficulty is that the relational schema can be unknown [9], while “the original attrib-
ute names are usually not encoded in Web pages” [2]. E.g. the photo, year, make, and
model in Fig. 1 are given no names at all. Another approach is to give the linked at-
tributes field names. This approach typically assumes that Web pages are user-friendly
and thus, field names are more explicit and meaningful than the original attribute
names. E.g. there is a possibility that the mileage in Fig. 1 actually were named m in
the relational database. However, it is difficult to expect that users to deduce the
meaning of that attribute from the name m. Yet another approach is to give the linked
attributes data type names [2]. E.g. a linked attribute represented by the image in Fig.
1 might be named image.

Naming relationships: Relationships are usually given names that are either names
of the corresponding relations (for many-to-many relationships) or foreign key names
(for one-to-one or one-to-many relationships). Again, users can give more meaningful
names to the relationships.

The end result for the first step of reverse engineering is shown in Fig. 2.

Form model schema

Ontology

—— Structural units
Structural-Units ::= {
Feature (
—— Linked attributes
airConditioning : BIT,
passengerSideAirBag : BIT,

tiltSteeringWheel : BIT)
Vehicle (

—— Linked attributes
year : INTEGER,

make : VARCHAR,

model : VARCHAR,

price : FLOAT,

mileage : FLOAT,

vin : VARCHAR) }
—- Relationships

// Classes

Feature::0bject [

// Attributes

airConditioning =>> Boolean,
passengerSideAirBag =>> Boolean,

tiltSteeringWheel =>> Boolean].
Vehicle::0Object [

// Attributes

year =>> Integer,

make =>> String,

model =>> String,

price =>> Float,

mileage =>> Float,

vin =>> String,
// Relationships

Relationships ::= {

Has (Vehicle, Feature)} feature =>> Feature].
—— Constraints // Axioms
NotNull (Vehicle, mileage) NotNull (Vehicle, mileage).

Forall C,A NotNull(C, A) <-
Forall IC Exists IA,IC:C And
IC[A ->> IA].

—— Underlying source // Instances
Underlying-Source ::= { aFeature:Feature [
Detail (// Attributes
—— Attributes airConditioning, // true value
airConditioning : BIT, passengerSideAirBag,
PassengerSideAirBag : BIT, ..
. tiltSteeringWheel].
tiltSteeringWheel : BIT) aVehicle:Vehicle|
Vehicle (// Attributes
—— Attributes year ->> 2002,
year : INTEGER, make ->> “Ford”,
make : VARCHAR, model ->> “Mustang”,
model : VARCHAR, price ->> 9988,
price : FLOAT, mileage ->> 19037,

mileage : FLOAT, =
. // Relationships
vin : VARCHAR) } feature ->> aFeature].

Figure 2. Summary of reverse engineering

2.1.2 Data Analysis

In addition to the structure of HTML forms and search results, data in the search
results are analyzed to identify constraints. A data analysis includes a strategy of
learning by examples borrowed from machine learning techniques [13, 14]. In particu-
lar, it is performed as a sequence of learning tasks from the relational database. Each
task is defined by: (1) task relevant data (e.g. the data in the search results), (2) prob-
lem background knowledge (e.g. the application domain knowledge), and (3) expected
representation of results of learning tasks (e.g. the first order predicate logic) [8]. The
results of learning tasks are related to a current state of the relational database. Thus,
they are generalized into knowledge about all states through an induction process.
This process combines the semantics extracted from the search results with the appli-
cation domain knowledge, which is provided by users (i.e. the user “head knowl-
edge”). Such knowledge controls the learning tasks to come to the best inductive con-
clusion, the conclusion that will be consistent with all states of the relational database.

E.g. from Fig. 1 we would identify a constraint NotNull on the linked attribute
mileage. This contains non-null values for any used vehicle.

2.2 Schema Transformation

The second step of reverse engineering is transforming the form model schema into an
ontology (i.e. “schema transformation”). Basically, this means mapping constructs in
the form model schema to constructs in the ontology using mapping rules [15]. The
ontology is formulated in F-Logic (Frame Logic) [16]. This language provides classes,
attributes with domain and range definitions, inheritance hierarchies of classes and

attributes, and axioms that can be used to further characterize relationships between
ontological instances.

As an example, consider the form model schema in Fig. 2. Here schema transfor-
mation is straightforward. First, we create a class for each structural unit in the form
model schema. E.g. we create two classes: Vehicle and Feature. Second, within
each class, we create an attribute for each linked attribute in the structural unit. E.g.
for Vehicle, we add attributes year, make, model, price, mileage, ..., and
vin. Third, if an association between the structural units is binary, we create an at-
tribute to represent that association. Otherwise, we create a class for the association.
E.g. for Vehicle, we add an attribute feature; this associates Vehicle with
Feature. Fourth, we create an axiom for each constraint in the form model schema.
E.g. we add an axiom NotNull to the ontology. The end result for the second step of
reverse engineering is shown in Fig. 2.

2.3 Data Migration

The third step of reverse engineering is creating ontological instances from data in the
search results (i.e. “data migration”). Basically, this means assigning values to the
appropriate attributes in the ontology using table understanding techniques [9].

As an example, consider again the Web page in Fig. 1. Here data migration is easy
for the attributes year, make, model, price, mileage, ..., and vin. However,
we meet with a difficulty when trying to find values for airConditioning, pas—
sengerSideAirBag, ..., and tiltSteeringWheel. We overcome this diffi-
culty by representing the features in Fig. 1 through Boolean attributes and assigning
them true values. A used vehicle can have many other features (e.g. Anti-Lock
Brakes, Automatic Transmission, Front Wheel Drive, etc.). How-
ever, these features are not displayed in Fig. 1, because the appropriate attributes in
the relational database will have false values for any tuple corresponding to Ford
Mustang. The end result for the third step of reverse engineering is shown in Fig. 2.

3 Conclusion

We have proposed a novel approach to reverse engineering of relational databases to
ontologies. Our approach has two important advantages. First, it requires only mini-
mal information about a relational database. Second, it makes no assumption about the
relational database. The relational database can be bad-designed, optimized and de-
normalized. Both advantages are derived from an analysis of HTML forms — popular
user-friendly interface to access relational databases on the current Web.

In the future, our approach will be applied to migrate from the current Web to the
Semantic Web. The main reason for this migration is to make the Web content ma-
chine-understandable.

Acknowledgement

This research is partly sponsored by ESF under the grant nr. 5766.

References

1. Berners-Lee, T.: XML 2000 — Semantic Web Talk, http://www.w3.0rg/2000/Talks/1206-
xml2k-tbl/slide10-0.html (2000)

2. Wang, J., Lochovsky, F.: Data Extraction and Label Assignment for Web Databases, In:
Proceedings of 12" International Conference on World Wide Web (WWW) (2003) 187-196

3. Stojanovic, L., Stojanovic, N., Volz, R.: Migrating Data-intensive Web Sites into the Seman-
tic Web, In: Proceedings of the 17" ACM Symposium on Applied Computing (SAC) (2002)
1100-1107

4. Erdmann, M., Maedche, A., Schnurr, H., Staab, S.: From Manual to Semi-automatic Se-
mantic Annotation: About Ontology-based Text Annotation Tools, Linkoping Electronic
Articles in Computer and Information Science Journal (ETAI), Vol. 6, No. 2 (2001)

5. Astrova, I1.: Reverse Engineering of Relational Databases to Ontologies, In: Proceedings of
the 1" European Semantic Web Symposium (ESWS), LNCS Vol. 3053 (2004) 327-341

6. Kashyap, V.: Design and Creation of Ontologies for Environmental Information Retrieval,
In: Proceedings of the 12 Workshop on Knowledge Acquisition, Modeling and Manage-
ment (KAW) (1999)

7. Dogan, G., Islamaj, R.: Importing Relational Databases into the Semantic Web,
http://www.mindswap.org/webai/2002/fall/Importing_20Relational_20Databases_20into_20
the_20Semantic_20Web.html (2002)

8. Mfourga, N.: Extracting Entity-Relationship Schemas from Relational Databases: A Form-
Driven Approach, In: Proceedings of the 4™ Working Conference on Reverse Engineering
(WCRE) (1997) 184-193

9. Embley, D.: Toward Semantic Understanding — An Approach Based on Information Extrac-
tion, In: Proceedings of the 15" Australasian Database Conference (ADC) (2004) 3—12

10. Yang, Y., Zhang, H.: HTML Page Analysis Based on Visual Cues, In: Proceedings of the
6™ International Conference on Document Analysis and Recognition (ICDAR) (2001) 859—
864

11. Knoblock, C., Kambhampati, S.: Information Integration on the Web,
http://rakaposhi.eas.asu.edu/aaai-i3-tut-all.pdf (2002)

12. Wang, J., Hu, J.: A Machine Learning Based Approach for Table Detection on the Web, In:
Proceedings of the 11" International Conference on World Wide Web (WWW) (2002) 242—
250

13. Paredis, J.: Learning the Behavior of Dynamical Systems from Examples, In: Proceedings
of the 6 International Workshop on Machine Learning (ICML) (1989) 137-140

14. Michalski, R.: A Theory and Methodology of Inductive Learning, In: Machine Learning:
An Intelligence Approach, Vol. 1 (1983) 83-134

15. Astrova, I., Stantic, B.: Reverse Engineering of Relational Databases to Ontologies: An
Approach Based on an Analysis of HTML Forms, In: Proceedings of the Workshop W6 on
Knowledge Discovery and Ontologies (KDO), 15™ European Conference on Machine
Learning (ECML), 8" European Conference on Principles and Practice of Knowledge Dis-
covery in Databases (PKDD), eds. Buitelaar, P. et al. (2004) 73-78

16. Kifer, M., Lausen, G., Wu, J.: Logical Foundations of Object-oriented and Frame-Based
Languages, Journal ACM, No. 42 (1995) 741-843

Ranking Web Application Compositions Based
on Ontology

Tetsuya Osawa!, Naoki Fukuta?, Tadashi Iijima®, and Takahira Yamaguchi?

1 Graduate School of Science for Open and Environmental Systems, Keio University,
3-14-1 Hiyoshi Kohoku-ku Yokohama 223-8522, JAPAN,
tetsuyaQae.keio.ac. jp,

2 Department of Computer Science, Shizuoka University, 3-5-1 Johoku Hamamatsu
Shizuoka 432-8011, JAPAN,
fukuta@cs.inf.shizuoka.ac. jp,

3 Department of Administration Engineering, Faculty of Science and Technology,
Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, JAPAN,
{iijima,yamaguti}@ae.keio.ac.jp,

Abstract. Today, there are too many Web Applications on Internet and
it is difficult for a user to find appropriate applications. Furthermore, a
task demanded by a user is rather abstract compared to a Web applica-
tion and a user need to use two or more Web applications to demand a
task and do copy and paste to combine them. In this paper, we propose a
‘Web application composition method based on ontology. We have built a
system which creates application coordination paths for the target task
with the ontology, and composes Web applications automatically for a
user not to do copy and paste process. In the method, quality of the
composed service is important. The system supports a user by calculat-
ing scores of generated paths using evaluation function in order to select
the paths which are more useful for a user. In order to evaluate the va-
lidity of the proposed method and the system proposed in this paper, we
prepared ontology and wrapper of some existing Web applications that
cover two case studies we will present and conducted the experiment.

1 Introduction

A Web Application is an application program that has an HTML-based front-
end for users to utilize services provided by a remote HTTP server. Today,
there are too many Web Applications on Internet and it is difficult for users
to find appropriate applications. Furthermore, a task demanded by a user is
rather abstract compared to a Web application and users need to search two or
more appropriate Web applications to demand a task and do copy and paste
to combine applications. For example, a user wants to find a restaurant near a
hotel. For demanding this task, they basically query on ”Restaurant” in a search
engine. And they find that it is necessary to input ” Address” in order to search a
restaurant with the Web application. Next they must search a Web Application
to find the hotel address. Finally, in order to combine two Web applications, users

need to open these two Web pages, input the hotel name on first page, copy the
hotel address in part of a result, and paste this copy into the input-form on the
page of restaurant search service. Internet users cannot combine existing Web
applications into a single application. Considering the situation that many users
in a company want to demand a similar task, it drives up substantial costs for the
company. In this study, we aim to reduce such costs to support users’ ”search”
and ”copy and paste” activity by searching, coordinating and composing Web
applications automatically on users’ demands.

On the other hand, Web services have been proposed to be used as soft-
ware components that employ Internet technology effectively. Semantic Web
Services|[3], which prepare meta-data to services on the Web, are intended to
often used to implement their composition and cooperation. OWL-S[4] becomes
a standard of denoting services and their coordination.

In this paper, we propose a Web application composition method based on
ontology. This ontology is defined by OWL-S. We have built a system which
creates application coordinating paths for the target task with the ontology by
discovering and coordinating, and composes Web applications which have been
wrapped to transfer values. In the method, quality of the composed service is
important. The system supports users by calculating scores of generated paths
using evaluation function in order to select the paths which are more useful for
user. In order to evaluate the validity of the proposed method and the system
proposed in this paper, we prepared ontology and wrapper of some existing Web
applications that cover two case studies we will present. We show the possi-
bility that users easily look for and carry out much higher quality application
compositions by adding and rearranging the evaluation value into the system.

2 Decompose User Demand to Service and Compose
Web Application

We define three levels of granularity(Fig. 1): ”task level” that represents user’s
task, ”service level” for representing specifications of each service, and ”applica-
tion level” that represents real Web applications provided for end-users. Agent
automatically decomposes a task to appropriate services, and make mapping
among services and Web applications. We show a method to compose useful
service execution paths by coordinating Web applications and ranking the com-
posed paths.

2.1 Decomposition from the Task Level to Ontology Structure

A task demanded by a user is rather abstract compared to a single Web appli-
cation. Therefore, it is important to establish a technique to make unique and
direct mapping of the task level and the application level. This study seeks a
solution to this subject by preparing OWL-S based ontology that fills the gaps
between the task level and the application level.

% task level

& 55

service level

Web Web Web
applicatiopy \applicatiory ‘\qpplicatio

application level

Fig. 1. Three-level of granularity scale

Usually, a user’s task is constructed by multiple subtasks. For example, a task
”Search restaurant near a hotel” can be decomposed to several subtasks such
as :(1) finding address of the hotel, (2)searching restaurant with the address.
Information needed to decompose a task to respective subtasks is described in
ontology as the ProcessModel of OWL-S.

This study employs the ”Precondition” and ”Effect” of each part for the
component strategy of the OWL-S structure. The OWL-S structure is composed
by repeated decomposition of the task structure in terms of Preconditions and
Effects. After the OWL-S structure is determined, each structural component is
mapped onto the corresponding Web applications on the application level.

2.2 Ontology Construction

We prepared two types of ontology to describe the service level; service ontology
and object ontology. Each ontology is outlined below.

Service ontology We collected some existing Web applications which have ap-
propriate facilities for two case studies we will present. A Web application is
described as a model with an input and an output parameter. Fig 2 shows a
part of the constructed service ontology.

Object ontology The 1/0 parameter of each service should be identified to consti-
tute coordination path. The object ontology that deals with all I/O parameters
of the target services was constructed. All attributes that would appear in the
I/O parameters of Web applications were specified in the constructed object
ontology. The hierarchical structure of all the extracted attributes is based on
WordNet[6]. Fig 3 shows a part of the constructed object ontology.

2.3 Design of Service Cooperation System

The I/O parameters may be verified using the following two procedures: the
first is ”strict matching” (Fig 4). All attribute sets are mapped onto the same

Restaurant

Hotel Yahoo
Address
- -Ramen Ramen Ramen
ddress Search Restaurant
Service Soject
Ontolo: OIS

Fig. 2. Part of service ontology Fig. 3. Part of object ontology

nodes in the object ontology. In this case, the input attributes set of the service
performed earlier and belongs to the common set of two services. The second
is ”extended matching” (Fig 5). All attribute sets, wherein the input attribute
set of the service performed later is no subset of the output attribute set of the
service performed earlier. Thereby, a path wherein the output attributes of the
service performed earlier is included in the child node of the input attributes of
the service performed later. The extended matching verifies only the child nodes
of the input attributes of the services performed later; neither a child’s child
(grandchild) node nor a child of the parents (brother) node is included.

Object ontology Object ontology

[[

was 2T Tath Twa NIl Todl e
application lication/ ication1 application/ —

Fig. 4. Strict matching Fig. 5. Extended matching

2.4 Criteria of Evaluating Service Execution Paths

The system generates a lot of service execution paths along with increasing Web
applications. This means that the paths include a lot of meaningless composition
which is consisted only by matching input and output attribute. In this paper,
the system supports users by calculating scores of generated paths using evalu-
ation function in order to select the paths which are more beneficial for a user.
We set three criteria for making evaluation function to evaluate the composed
service execution paths.
+ Length of execution path
The number of web application in a execution path. The short length of a service
execution path was considered to be important because a long and complicated
service execution path may require time cost and deteriorate output information.
+ The kind of coordination

Whether existence of extended matching or not. There is a possibility if a service
execution path that allows extended verification may create a semantically wrong
path.

+ Information provided by the Web application
In this study, we give the evaluation value to all web application from a stand
point of abundance of information, response time.

Based on these criteria, we defined the evaluation function to assign the scores
to service execution paths.

3 Experimental Results of Service Composition

In this chapter, we describe the experiment conducted by using the system. First
we show the outline of the system. After that we also describe the application
coordination path in service level, an evaluation function, and experimental re-
sult in application level. The system creates application coordination paths and
composes Web applications according to a user’s requirement for a user not to do
copy and paste process. In that case, the experiment aims at verifying whether
the candidate of Web application coordination path can be created with based
on two ontology and evaluation function in service level, and also whether the
system create composed Web application according to candidate path in appli-
cation level. We collected 10 Web applications which cover two case studies, and
prepared two ontology and wrappers of each Web application. Case studies are
as follow. Case study #1: input attribute is ” Company name”, and output at-
tribute is ”Stock value in Yen”. It means the situation that a Japanese invester
wants to know stock quotes of some major US companies in Japanese Yen. Case
study #2: input attribute is ”Hotel name”, and output attribute is ”Restau-
rant”. It means that a person who goes on a business trip want to find good
restaurant near the hotel.

3.1 System Outline

In this section, we describe the process of composing Web application as a system
outline. System outline is Fig 6.

First, a user input I/O parameter into the system in order to demand their
task (Task level). The system creates the candidates of Web application coordi-
nation paths based on I/O parameter and ontology as described in 2.s, calculates
scores of all generated paths based on evaluation function, shows the ranked can-
didate paths to a user. Next, the user selects a candidate path in ranked paths
and input the value in input form (Service level). The system composes the
Wrapped Web application according to the coordination selected by the user,
and inputs the value to first Web application. So the value is changed by Web
applications by being passed between them, and finally the system shows the
worked value to the user as a result to demand task (Application level)

Task level

2 ShanaE bl <o pApplication levelg

(]

Cooge+ ¥ Coger

xperiment form Please Input CompanyName [RTTErS—
o

|::> PR

YahsoFnanco-YahooDellarYor

I S CIEEE
Input value output value

value -;7::1,..

Web We
application application

Fig. 6. System Outline

3.2 Generation Experiment of Service Execution Path

In this section, we verify the way in which an Web application coordination path
is generated dynamically by using service ontology and object ontology. First, we
define what is given by a user when carrying out a task (input attribute set), and
the target item for task achievement (output attribute set). Then, an application
coordination path is assembled dynamically, extending from the input attribute
set, until it outputs a set of target attribute. The deeper a search become, the
larger the search space grows and the harder it will be to process it using a
computer. In order to prevent this, a maximum search depth is restricted to 3.

3.3 Evaluation Function

In this section, we evaluate the qualities of all the execution paths which are
obtained in Section 3.2 by calculating scores of all generated paths. We define
the evaluation function based on the criteria shown in Section 2.4 to calculate
scores of generated paths. In this case study, we set these evaluation criteria of
a path; the length of generated path, the kind of coordination, abundance of in-
formation, and response time. Moreover, each evaluation criterion is weighed as
shown in Table 2. In this case study, the short length of a service execution path
was considered to the most important because a long and complicated service
execution path may require time cost and deteriorate output information. Next
importance weight is assigned to the abundance of the information which can be
treated by the constituted Web application. In coordination of the Web appli-
cation, it will be thought that in case to pass the information from the one Web

application to another, the cooperation will stop if constituted Web application
treat little amount of information. Moreover, nonexistence of extended matching
was assigned to high weight, for a service execution path that allows extended
verification may create a semantically wrong path.

Table 1. Weight of each evaluation criterion

Path lengthlAbundance of information|Response timeExtended matching|
1.0 0.8 | 0.6 0.7

IWeight,

In this experiment, the system calculates scores of generated application
coordination paths by using the following evaluation function.

Ix08+Rx06+FEx0.7 1
Lx1.0 (1)
Here, ”L”, 717, ”"R” denote the path length, the amount of information, and
the user evaluation of response time. "E” is 0.5 if the next service is extended
verification - otherwise it is 1.0. Table 3 shows the each Web applications’ eval-
uation value of abundance of information and evaluation of response time. The
value is based on a questionnaire completed by members of our laboratory.

V =

Table 2. Web application information

Service Name Information | Response | Explanation of Service
YahooFinance 0.90 0.87 Company name — Stock value in dollar
YahooDollarYen 0.73 0.87 Dollar — Yen
TabimadoAddress 0.83 0.83 Hotel name — Address
YahooTravel 0.70 0.80 Hotel name — Address
Aitel 0.63 0.60 Hotel name — Address
MapfanSearchStation 0.73 0.73 Address — Nearest station
Gurunabi 0.83 0.73 Address or Station — Restaurant
YahooRestaurant 0.90 0.90 Address — Restaurant
RamenBank 0.67 0.77 Address — Ramen Restaurant
RamenBaca 0.30 0.64 Address — Ramen Restaurant
MacDonald 0.70 0.70 Address — Fast food shop

3.4 Result of Each Case Study in Application Level

In this section, we verify whether the candidate paths coordinate correctly as a
composed application. We have already shown the result view of case study #1 in
Section 3.1, so we describe the result of each case study #2 in Fig 7. The result
verify that the system can creates and ranks application coordination paths
based on ontology and evaluation function, and it can compose Web applications
for transferring input value and outputting final result which a user searched to
demand a task.

| Select TabimadoAddress-YahooRestaurant
| Input “Inter Continental Hotel” I

SR T TR

G Temmom
Please Input HotelName Input Value = HotelName
TobimgoAddrosa—Yohootaurang 7 AR F R AT
Experiment form Hapootiavol Yahoofesrant
/ Aitel-YahooRestaurant— ‘\
= St \
TobimadoAddross-RamonBank- |
Hotel name ¥ 1
YohooTrovel-RamonBark- y
ontput
Restaurant v
& S ftsart

‘Ranked candidate patth Result at “YahooRestaurant” |“

Fig. 7. Result flow in #2

4 Conclusion and Future Work

In this paper, we proposed a Web application composition method based on
service ontology and object ontology. We described the outline of dynamic gen-
eration of application coordination paths using an automatic Web applications
composition system. The system also supports users by calculating scores of
generated paths using evaluation function in order to select the paths which are
more beneficial for users.

The experimental result in Section 3.2 shows that Web applications can be
coordinated and composed automatically. Furthermore, the result in Section
3.4 suggest the possibility that the composed application can be selected which
are more beneficial for user by making two type of simple ontology and using
evaluation function based on criteria shown in Section 2.5.

We are now registering wrapped Web applications into the system and con-
structing service ontology. As a future work, we will conduct more datail experi-
ment by using the system and refine the evaluation function reflecting user favor
and evaluation.

References

1. Kimihito Ito, and Yuzuru Tanaka: ” A visual environment for dynamic web applica-
tion composition”, ACM PressPages: pp.184-193, 2003

2. A. Ankolekar, F. Huch, and K. Sycara: “Concurrent Execution Semantics of
DAML-S with Subtypes”, In Proc. of 1st International Semantic Web Confer-
ence(ISWC2002), pp.318-332, 2002.

3. Sheila A. Mcllraith et al.,“Semantic Web Services”, IEEE Intelligent Systems,

Mar./Apr.2001, pp.46-53.

OWL-S 1.0: http://www.daml.org/services/

5. Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng: “Quality driven web services composition”, International World
Wide Web Conference, pp.411-421, 2003.

6. WordNet: http://www.cogsci.princeton.edu/ wn/

-

Applying MDA in Enterprise Application
Interoperability: The PRAXIS Project

Vassilios Karakoidas', Stephanos Androutsellis-Theotokis', Diomidis Spinellisl,
Yannis Charalabidis®

' Athens University of Economics and Business, 76 Patission Str., Athens, 10434,
Greece, {stheotok, bkarak, dds}@aueb.gr

2 Singular Software SA, 23" km Athens-Lamia Road, Ag. Stefanos, 14565, Greece,
yannisx(@singular.gr

Abstract: This paper elaborates on the application of the MDA approach for
achieve interoperability among existing Enterprise Applications, such as
Enterprise Resource Planning (ERP) and Customer Relationship Management
(CRM) systems, through utilizing XML/B2B interconnection standards,
developing components and modifying existing systems where necessary. We
present the PRAXIS project design as a specific case study of this approach,
describing the way in which interoperability-oriented high level model
mappings are providing the means for guiding the model-driven development of
interoperable Enterprise Applications. Specifically, we focus on the
transformation processes that drive the Computation Independent System model
into the Platform independent and finally the Platform Specific Model, including
our final design decisions for the PRAXIS system.

The problem of Interoperability

Since the 1960s, Enterprise Applications development suffered from a lack of
available technological solutions for organizing business processes [19]. To
deal with this issue, software engineers worked in the direction of developing
software in the areas of Relational Database Management Systems (RDBMS)
and Rapid Applications Development IDE (RAD). Researchers also
developed methodologies for formalizing the design of Information Systems
such as the Soft Systems Methodology (SSM) [21] [22] [23] etc. Recently,
IEEE provided a series of guidelines for efficient system design and
development [20].

During the last two decades, many sophisticated systems were also
developed to provide common ground for enterprise application development.
These Enterprise Resource Planning systems (ERP) are widely used
nowadays in the design of modern Information Systems (1S).

In the last few years, however, the focus has shifted from the development of
software systems to the integration between them, in other words dealing with
the problem of interoperability.

Interoperability is defined as [1]:

“... the ability of two or more systems or components to exchange information
and to use the information that has been exchanged”.

mailto:stheotok, bkarak, dds}@aueb.gr
mailto:yannisx@singular.gr

This is a particularly complicated task. Most systems developed and in use
today by organizations were deliberately alienated with each other, making it
very complex to find common ways to share business related information.

Driving Forces of Interoperability

While working on the PRAXIS system [2], we made some interesting
observations regarding the problem of interoperability between enterprise
applications.

Figure 1 shows an attempt to categorise the driving forces that affect
interoperability in Enterprise Applications development.

Technical
Standards

Technology Business
Trands Procesces

Business
Standards

Figure 1 — Driving Forces of Interoperability in Enterprise Applications

Technical Standards: Enterprise Applications are based upon modern or
legacy technical standards, such as XML [8], CORBA, and Java. In trying to
make a system interoperable, one has to consider a wide set of standards in
order to implement the solution.

Technology Trends: Technology trends pose serious restrictions to
interoperability. In fact, it is common practice that the implementation of an
interoperable system is attempted with the use of the most popular technology
instead of the most effective one. For example, the way in which XML [8] and
Web Services [13] affected Business 2 Business standards such as ebXML
[9] and UN/CEFACT [10]. Similarly, according to recent research papers,
ontologies are expected to be used as key technology for Enterprise Modeling
[18].

Business Standards: These are often used as the common language
between enterprise systems. Attempts to design an interoperable system
often depend on the usage of one or more business standard, for example,
EDI [11], ebXML [9], RosettaNet [12] etc.

Business Processes: It is a common case for enterprises to achieve a level
of interoperability in the business process level. In fact, in order to design
such a bridge, one must reengineer a set of common business processes
between the enterprises. In order to face interoperability issues, an enterprise
must perform some “light” Business Process Rengineering (BPR). EbXML [9]
is a widely accepted standard that is trying to solve this problem.

Considering the aforementioned facts, we attempted to find a formal and
concrete way to design the PRAXIS system.

Case Study: The PRAXIS Project

The main objective of the PRAXIS system [2], which is particularly targeted
towards SMEs, is to allow the interconnection of existing Enterprise
Applications, such as Enterprise Resource Planning and Customer
Relationship Management (CRM) systems, as well as their seamless
interconnection with corresponding software applications of the public sector
and financial institutions. This is achieved through the utilization of XML/B2B
interconnection standards to support interoperability, the development
components and the modification of existing systems where necessary.

The goal is to support a variety of transactions, ranging from invoicing and
sales cycle support to bank and tax payments.

It is expected that the SMEs which will adopt the PRAXIS system will
experience a significant reduction in the required time and the rate of errors
involved in carrying out the various transactions, which in turn will offer an
overall competitive advantage.

Using a Model-Driven Architecture approach

The Model Driven Architecture (MDA) concept aims to facilitate the design
and development of wide-scale enterprise applications in an evolvable and
flexible way, with particular emphasis on interoperability [3].

MDA defines an approach that separates the system functionality
specification from its implementation on a specific technology platform. In this
way, the system architecture can be language, vendor and middleware
neutral.

Through the MDA approach, systems are modeled at the following three
different levels of abstraction and platform/technology dependency:

e The Computation Independent (or business domain) Model (CIM) is
one in which the computational details are hidden or as yet
undetermined.

e The Platform Independent Model (PIM), expressed in UML [15],
describes computational components and their interactions in a

platform-independent manner. The PIM represents the logical view in
which the composition and behaviour of all components (but not their
implementation) are fully specified.

e The Platform Specific Model (PSM) is expressed in terms of the
software development platforms, software standards and network
protocols of the specification model of the target platform.

Since the PIM, by definition, does not contain technical details, it is envisaged
that the PIM will be mapped to one or more platform-specific models (PSM).
The PSM is a refinement of the PIM to target platforms such as Microsoft
NET (COM+), Enterprise JavaBeans (EJB) or the CORBA Component Model
(CCM). The PSM represents the source code or its UML representation.
There can be as many PSM as there are different implementations of a given
PIM.

System design and modeling

Our system was designed using three levels of abstraction as defined in the
MDA methodology.

Computation Independent Model Level

At the most abstract, Computation Independent System (CIS) Model level, the
proposed system would be described as shown in Figure 2.

‘ Enterprise A ‘ \

\\J\)A\
L I [Enterprise A Ermear rnierr| « Enterprise B
AW aY * " ’ kS
ATA) ZOoOM (f i !
L) Enterprise B out In - 4
I '.T.I CRWERS RMERF] ‘J)’
,-"’)__) /

/ _"/,/
Enterprise C / -

Figure 2 - The Computation Independent System Model for the PRAXIS system

This abstract model illustrates the interoperability requirements for different
software applications owned by the same or different enterprises that are
expected to interact with each other. The various transactions schematically
illustrated in Figure 2, entail a variety of interactions between the applications
and lay out a set of complex functional and non-functional requirements for
the system to be designed and implemented, which must be examined at the
lower modeling levels.

It should be noted that the CIM model is abstract enough to encompass any
system architecture, including both client-server and distributed approaches.
The use of MDA describes and represents interactions between entities, and
not the way in which they will be implemented. The choice of architecture and
components that will be utilized is up to the next model level.

Platform Independent Model Level

In refining the CIM model to produce the Platform Independent Model (PIM),
the top-level system architecture needs to be designed. In the PRAXIS
system design phase it was decided [2] to adopt a client-server architecture,
consisting of a central server performing communication, mediation and store-
and-forward activities, and a set of client applications that will run on the
connected enterprise sites.

The server, which does not appear in the CIS model, needs to be part of the
PIM model, in order to produce a valid system description that will be further
refined at the platform-specific level.

Figure 3 illustrates the PIM level model for (a subset of) the PRAXIS system
(simplified for clarity). The model is divided in two main modules, the server
and client.

Communication Client Communication Authenticati
Layer e ———— Interface Layer PA—— uthentication
I I 0 AR
	I	
N)2 N2 | l
Document Customer | | | = e—ememememe———d Server Controller
PRAXIS Member }J Data Storage
N
N N P4 s \ 7 s
N Ve N s
N 7 N 7
N 7 N\ 7/
N 7 AN 7
N N P 7 N . . P
N 7 N _l 7
PRAXIS pr=——————e e e e e ————-— PRAXIS
Client Server

Figure 3 - Platform Independent Model for the PRAXIS system

The PIM design is based on UML notation [15] and provides the bridge
between the abstraction and the realization.

Platform Specific Model Level

The transition from the PIM to the PSM model consists of defining specific
technologies and infrastructures for the various components of the system.
These mappings fill the gap between the abstract model and the Platform
Specific Model. The realization of our system is depicted in Figure 4.

1] El
“Fat” Client [— —
= Commercial application — = =
= PRAXIS Client — —
== |4 _ —
= JE| | I—=
XML documen { —

R

T

PRAXIS Server

' piemst * Registry & Repository
= Store-and-Forward
\ = Web front-end
=l Simple HTTP
“Thin” Client XML documents
= PRAXIS Client
n f— El}
No Client

= Web browser
Figure 4 — PRAXIS System Architecture

In the case of the PRAXIS project, the central choices were the following:

= The server was implemented on the .NET platform, using a mixture of C++
and C# code.

= Data is stored in an MS SQL Server Relational Database.

= The following three types of clients were implemented:

e A Fat (Thick) Client, based on an existing ERP system.

e A Thin Client, a typical win32 application that implements the basic
functionality of the system. This will be implemented in Visual Basic
.NET.

e A Web Client, a web application that provides limited access for
enterprises, which do not have an ERP system installed.

These three types of clients were provided in order to reach out for SMEs that
do not have the capability to support expensive ERP systems.

A more detailed architecture schema is provided in
Figure 5.

PRAXIS ARCHITECTURE
PRAXIS SERVER

PRAXIS WEB SITE
[www.praxisnet.gr)

MEMBERS AREA

PRAXIS REGISTRATION &
PROFILE ENGINE

Built on

PRAXIS TRANSACTIONAL
SERVER ENGINE

Praxis Repository

SOAP

PRAXIS CLIENT

Operating on |
MS.windows PRAXIS
""""" by UNIVERSAL PRAXIS
CLIENT THIN
s S T CLIENT CLIENT
........ : I AT
Built on : |
ERP Platform, | Internal Protocol |
Operating on . PRAXIS PRAXIS PRAXIS
MS-windows . “.| APl ICATION - APPLICATION - APPLICATION -
SPECIFIC SPECIFIC SPECIFIC
CONNECTOR - CONNECTOR 2 CONNECTOR s

BANK /

=57 =il GSIS SYSTEMS

Figure 5 — PRAXIS system architecture in detail

The communication is layered as illustrated in Figure 5. The base protocol is
based on SOAP. Other protocols that might be needed to achieve
interoperability between distinct systems are supported through layering them
on top of SOAP, making the necessary transformations where appropriate.

Direct CALL

PRAXIS Basic Protocol (SOAP)

Figure 6 — PRAXIS Protocol Layers

Conclusions and Future Work

This paper has presented the application of the MDA approach in the design
of a client-server application to support interoperability among enterprises. It
has illustrated the refinement steps that lead from the more abstract to the
technology-specific models, pointing out the specific patterns of the design.
We are convinced that these patterns can be extracted and later used as
common practice in similar situations. A direct extension of our work may
include the employment of Ontology-based approaches to be defined in order
to provide common knowledge [14] [16] [17] [18].

References

[1]

[2]

[3]

[4]
[3]

[6]
[7]
[8]

[9]

Institute of Electrical and Electronics Engineers. IEEE Standard
Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. New York, NY: 1990.

Yannis Charalambidis, Vassilios Karakoidas, Stephanos
Androutsellis-Theotokis and Diomidis Spinellis, Enabling BZ2B
Transactions over the Internet through Application Interconnection :
The PRAXIS project, e-Challenges 2004, Vienna, 27-29 October.
Joaquin Miller and Jinshu Mukerji, Model Driven Architecture, July
2001, Available online at http://www.omg.org/mda/

John Daniels, Modeling with a sense of purpose, |IEEE Software,
January / February 2002,

Alan Brown, An introduction to Model Driven Architecture Part | : MDA
and today’s systems, January 2004, Available online at http://www-
106.ibm.com/developerworks/rational/library/3000.html

B. Selic, The pragmatics of Model-Driven Development, |EEE
Software, Vol. 20, September 2003

D. Frankel, Model Driven Architecture : Applying MDA to Enterprise
Computing, Wiley Press, 2003

Tim Bray, Jean Paoli, C.M. Sperberg-McQueen, Eve Maler, and
Francois Yergeau. Extensible markup language (XML) 1.0. Technical
report, W3C, February 2004. Available online at
http://www.w3.0rg/TR/2004/REC-xml- 20040204

ebXML Requirements Team. ebXML requirements specification

http://www-106.ibm.com/developerworks/rational/library/3000.html
http://www-106.ibm.com/developerworks/rational/library/3000.html
http://www.w3.org/TR/2004/REC-xml- 20040204

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

v1.06. Technical report, ebXML, May 2001. Available online at
http://www.ebxml.org/specs/ebREQ.pdf

UN / CEFACT. United nations centre for trade facilitation and
electronic business. Available online at http://www.unece.org/cefact/
UN / EDIFACT: UN directories for electronic data interchange for
administration, commere and transport (UNECE). Available online at
http://www.unece.org/trade/untdid/texts/d100 d.html

RosettaNet. Rosetta Implementation Framework (RNIF): Core
specification Technical report, RosettaNet, March 2002.

Available online at http://www.rosettanet.org/

David Booth, Hugo Haas, Francis McCabe Eric Newcomer, lona
Michael Champion, Chris Ferris David Orchard, Web Services
Architecture, Technical Report, W3C, February 2004. Available online
at http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/

F. Vernadat, Enterprise Modeling: objectives, constructs and
ontologies, Workshop on Enterprise Modeling and Ontologies for
Interoperability, 16th International Conference on Advanced
Information Systems Engineering (CAISE), Riga, 2004

Berio, G., Petit , M., Enterprise Modelling and UML: (sometimes) a
conflict without a case. In Proc. Of Concurrent Engineering
Conference 03, July 26-30, Madeira Island, Portugal, 2003

Wand, Y,Ontology as a Foundation for Meta-Modelling and Method
Engineering. In Information and Software Technology, Vol. 38 (1996)
281-287

G. Guizzardi, G. Wagner, A Unified Foundational Ontology and some
Applications of it in Business Modeling, Workshop on Enterprise
Modeling and Ontologies for Interoperability, 16th International
Conference on Advanced Information Systems Engineering (CAISE),
Riga, 2004

M. Lenzerini, M. Missikoff: Ontologies for Interoperability, Workshop
on Enterprise Modeling and Ontologies for Interoperability, 16th
International Conference on Advanced Information Systems
Engineering (CAISE), Riga, 2004

Linthicum S.D., B2B Application Integration — e-Business-Enable Your
Enterprise, Addison-Wesley, 2001

IEEE Guide for Developing System Requirements Specifications Std
1233, IEEE Standards Software Engineering: Volume One Customer
and Terminology standards 1999 Edition,Available online at
http://www.standards.ieee.org/

Checkland, P, Towards a system-based methodology for real-world
problem-solving, Journal of Systems Engineering, Vol. 3, No. 2 -
reprinted in Systems Behaviour, Third Edition (1981), The Open
Systems Group, Open University Publishing, UK

Checkland, P. & Scholes, J.(1990) Soft Systems Methodology In
Action, John Wiley & Sons, Chichester UK

Checkland, P. Information, Systems and Information Systems: Making
Sense of the Field, John Wiley & Sons, Chichester UK.

http://www.ebxml.org/specs/ebREQ.pdf
http://www.unece.org/cefact/
http://www.unece.org/trade/untdid/texts/d100 d.html
http://www.rosettanet.org/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.standards.ieee.org/

Ontology based Framework for Adaptive Web
System

Daisuke Kanjo!, Yukiko Kawai', and Katsumi Tanaka?

! National Institute of Information and Communications Technology,
3-5 Hikaridai,Seika-cho,Soraku-gun,Kyoto,Japan,
{kanjo,yukiko}@nict.go. jp,

2 Kyoto University, Department of Social Informatics,
Graduate School of Informatics,

Yoshida Honmachi, Sakyo-ku, Kyoto, Japan,
tanaka@dl.kuis.kyoto-u.ac. jp

Abstract. We describe a framework for sharing and reusing user on-
tologies, which we call “Adaptation Anywhere & Anytime(A3)”. A user
ontology is defined as a representation of a user’s knowledge and interests
which can be used as a user’s profiles. The A3 enables a web system with
methods for sharing and reusing user ontologies. Individual web systems
can adapt their output to each user through such methods.

1 Introduction

Today, a vast amount of information is available from the web, but most of
this information is verbose and not interesting to the user. Thus, techniques for
an adaptation or personalization are becoming more important to locate and
present an appropriate information. For such adaptation or personalization, it
requires a user’s profile which represents a user’s preference, knowledge and so
on. To acquire a user’s profile, some systems explicitly require each user to in-
put her/his profiles, or complete a questionnaire regarding personal information.
However, users find it tedious to repeat such tasks for each of the many web-
sites they visit. Automatic acquisition of user profiles can solve this problem. In
addition, it is important to share and reuse a user’s profile. If a user is required
to input her/his profiles to individual system, she/he must perform a similar
procedure repeatedly. This makes a user boring. So sharing or reusing of user
profiles become more important.

To enable automatic acquisition of user profiles, and the sharing and reuse of
such user profiles by various web sites or web applications(in the following, we
describe both of these as web systems), we propose a framework called “Adap-
tation Anywhere & Anytime(A3)”. This framework provides web systems with
methods to acquire a user’s profile based on the interaction between a user and
a web system, and to locate appropriate contents using the acquired user profile.
A web system can easily adapt its output to a user using methods provided by
A3. Within the A3 framework, a user’s profile is represented by a user ontology,
which is a classified tree consisting of web resources and categories. A web re-
source is an item which has been presented to the user -for example, an item
of merchandise from an e-shopping site or news story from a news site. A user

Cat1:Book

=owl:Class rdfID="Cat2">
<owl: sUbClassOf rdf. resource="#Cat1"/>

=/owl Class>
<owl:Class rdfiD="5F">
=owl equivalentClass rdf resource="Cat2"/>
</owlClass>
<owl:Class rdfiD="Cat3">

Cal2:SF Cat3:Mystery
<0ul:SUDCIassOf rof resource="4Cat1"/>
<ol SubClassOf:>

<0l Restriction>
Cat? ‘ <owl:onProperty

Catd.
Asimov

Catd:
Clarke

Caté:

Asimov Christy rdfresource="#AUTHOR"/>

<owl hasvalue
rOf reSOUrCE="#ASIMOV'/>

<fowl Restrictions>
</owl:sUDClassOf>

=/owl Class>

Fig. 1. Example of user ontology

ontology is automatically constructed by adding a resource to the user ontology
whenever it is reasonable to presume that the user acquired knowledge about
the resource, for example, when the user has input data about the corresponding
item. Then, A3 categorizes it to a suitable category and reconstructs the user
ontology when necessary. The user is not required to perform any action. The
user ontologies thus created can be shared by web systems built on A3 frame-
work, which allows a web system to adapt its output according to a user ontology
created by other system.

Furthermore, for easy implement of an adaptive web system through the A3
framework, we provide web system builders with implementation methods us-
ing XSLT and its extension[4]. If a builder writes an XML document containing
resources which can be presented to a user and writes an XSLT stylesheet speci-
fying target resources by an XSLT and its extensions, A3 components can select
and sort resources according to each user’s preferences based on the user ontolo-
gies, and can transform these into an another document. The selected resources
will then appear in the transformed document. An original XSLT transforms all
resources matching a template represented by an element such as xsl:template.
In cotrast, with A3, when an XML document is transformed into a different doc-
ument, target resources can be selected and sorted based on the user preferences
represented by user ontologies.

2 User Ontology

Figurel shows an example of a user ontology. We defined a user ontology as
a classified tree which can represent a user’s knowledge, interests, and so on.
Each user has his or her own user ontology. It consists of two elements: a re-
source(shown as an ellipse in Figl) and its category(shown as a rectangle). Each
category has its own restriction, which is an attribute that any resource catego-
rized into the category must have. Furthermore, a category inherits restrictions
from higher categories.

A resource is an item included in content selected and presented to the user.
For example, it can be an item of marchandise from a ne-shopping site, or news
stories from a news sites. A user ontology is constructed by adding each resource
as an instance to the user ontology, when it can be reasonably presumed that the
user acquired some knowledge about the resource. When adding a resource, the
appropriate A3 component(the “UserOntology Manager”, described in Section
3.) searchs for a suitable category to which the resource can be assigned, and then
categorizes the resource accordingly. Then, the A3 framework reconstructs the
user ontology to ensure the restrictions of a upper-categories have precedence,
for example, by making a new category when necessary. A resource added to a
user ontology can be considered an instance, and a category can be considered
a class.

User ontologies are written using RDF/S[1,3] and OWL[5] (Fig.1, right),as
are resources and their attributes. RDF/S and OWL are common descriptions
proposed for use in a Semantic Web[2]. These descriptions enable the sharing
and reuse of user ontologies.

2.1 Semantics of a user ontology

In this section, we describe what kinds of information can be acquired from a
user ontology.

What the user knows: As explained above, a user ontology is constructed
by adding a resources whenever it can be reasonably presumed that the user
has acquired some knowledge about the resource. The existence of an in-
stance representing a resource r in a user ontology thus means that “the
user u has knowledge regarding the resource r” — that is, know(u, r) is
true3. When constructing a user ontology, the attributes of a resource are
used to assign the resource into a suitable category. This requires an assump-
tion that “the user u knows that the resource r has attributes a1, a2, ... ,
a,” — that is, know(user, has(r, al)), know(user, has(r, a2)), ...,
know(user, has(r, a,)) are true. Moreover, because each category inher-
its restrictions from the upper-categories, it is reasonable to consider that a
relation between resources is known.

What the user prefers: Generally, users have more knowledge about re-
sources they consider interesting than about resources in which they are not
interested. Consequently, a user will probably be more interested in a resource
categorized into a category containing many other resources than in one cate-
gorized into a sparsely populated category. The common attributes shared by
such interesting resources are also likely to be important to a user. Therefore,
a user will probably be interested in resources with many of these common
attributes.

w

Strictly speaking, this means“The system s believes that the user u has knowledge
regarding the resource r” — that is, bel(s, know(u, 7))

Web Sites/Applications

User Ontology

User Ontology

User Ontology Manager

Server

Interface
{browser)

= =
4 -5
(\E) User

PC, PDA, Cellular Phone, etc.

UJer

Fig. 2. Overview of A3 framework

When constructing a user ontology, a restriction of an upper category should
become a common attribute of resources in the user ontology whenever possi-
ble. Thus, the restrictions of upper-categories are more important than lower-
category restrictions.

3 A3 Framework

Figure2 shows an overview of the A3 framework. A user accesses web systems
through an interface on a device such as a PC, PDA, or cellular phone. The
framework consists of two main components: “User Ontology Server”, and “User
Ontology Manager”.

3.1 User Ontology Server

“User Ontology Server(UOS)” has two primary functions; the storage and de-
livery of user ontologies. When a user begins to use a web system, the UOS
specifies the user and sends a stored user ontology to the “User Ontology Man-
ager(described in the following)”. The user ontology is used as a user profile to
adapt the output to the user, and then is reconstructed by adding resources.
When the user finishes using the web system, the user ontology is returned to
the UOS for storage.

Each user ontology can be shared among the web systems built on the A3
framework and repeatedly used to adapt output for that user. And web systems
built on A3 can use user ontologies constructed by another web systems. This
sharing and reuse of user ontologies helps solve the problem where a system
cannot adapt its output until after it acquires appropriate user information(i.e.
the cold-start problem).

3.2 User Ontology Manager

“User Ontology Manager(UOM)” has two premary functions: user ontology con-
struction and resource selection using user ontologies. In the following, we con-
sider an example where an XSLT and its extensions are used to implement an
adaptive web system.

When a user begins to use a web system, an XML document and an XSLT
stylesheet is sent to the UOM from the web system. These documents are writ-
ten by the builder of the web system. Also, XML documents can be generated
dynamically from a database of the web system. The XML document contains
target resources — that is, items such as marchandise or news stories which the
web system wants to present to the user. The XSLT stylesheet also specifies
target resources and how the XML document should be transformed. While
transforming the XML document, the UOM selects resources appropriate to the
user’s interests or knowledge, and adds a new CGI function to add a resource.

The UOM can calculate weights for individual resources and rank them ac-
cordingly. Target resources are specified by the xsl:apply-template element

which has thea3:sort element as a child element. This is written as follows in
an XSLT stylesheet:

<xsl:apply-templates>
<a3:sort maxN="20" />
</xsl:apply-templates>

The weight of a resource in category C), is given by
Zzzl(%)k_l * Wk * Ay

where wy, is given by p/q. Here, p is the number of resources which satisfying
the restriction of C} in the user ontology, and ¢ is the number of resources in
the user ontology with the attributes Attrs(Attrs are attributes common to all
resources matching xsl-template element). di.,, is a numerical value from 0 to
1 determined by elapsed period since a resource was last categorized into Cj.
The highest ranked resources are then selected and presented as the result of an
XSLT transformation. Since resource selection is done at the UOM, builders of
web systems do not need to invent a ranking algorithm and implement it within
their systems. Note that this is just a example of the calculation and there are
many other conceivable ranking methods and algorithms.

A web system built on A3 must be able to determine when a resource is added
to a user ontology. Generally, this decision should be made through input from
the user. In popular web systems with an HTML format, the input element is
used to receive an input. If the builder of a web system specifies an input element
with an a3:add-resource element as shown below, the UOM adds the new
CGI function(‘ ‘example.cgi’’, in this example) to the document generated
by XSLT translation while the translation is occuring.

01: <a3:add_resource resource="example">

02: <form ... action="cgi-bin/example.cgi">

03: <div>attribute A: <input ... name="ATTR_A"></div>
04: <div>attribute B: <input ... name="ATTR_B"></div>

05: e

06: <input type="submit" ...>
07: .

08: <\form>

09: </a3:add_resource>
10: <a3:resource-template select="example">

11: <ATTR_A>_ATTR_A</ATTR_A>
12: <ATTR_B>_ATTR_B</ATTR_B>
13:

14: </a3:resource-template>

This CGI function, example.cgi, is executed and informs the UOM that a
resource should be added when the user inputs data using the input element
with the a3:add-resource element. The resource and its attributes are defined
by the a3:resource-template element. When it receives this information, the
UOM categorizes the resource into a suitable category and reconstructs the user
ontology if necessary.

Note that user ontologies are not provided to individual web systems. This
is to protect each user’s privacy. A user ontology is far reaching representation
of a user’s knowledge and interests, so allowing web systems freely access user
ontologies would enable a serious invasion of users privacy.

4 Discussion

The current A3 framework gives web systems a limited ability to adapt their
output for each user. Despite the current limitations of the A3 framework, we
can see certain benefits that arise from implementing a web system on A3.

One example of such an application is a web system which needs to be able
to select an appropriate resource from among many resources; for example, e-
shopping sites. Users who visit an e-shopping site want only information regard-
ing merchandise consistent with their preferences. Figure3 shows an example of
an XML document and XSLT stylesheet for a book recommendation on a book-
shopping site. These documents generate web pages(written by HTML) showing
books appropriate for the user’s preferences. In this way, users can easily get
information on books they will be interested in.

To create this book recommendation system, the builder would only have
to write these documents. In many cases, the XML document containing target
resources can automatically written from a database. This eliminates the need to
invent a book ranking algorithm, or implement an algorithm within the system.
In other wards, implementation of a system to recommend products becomes
very easy.

As an other example, we consider a news site. Most users do not want to
read the same news story several times. A user ontology can reveal to a news
site which news stories a user has already read so that these news stories are
not output to the same user again. When a user does want to reread a news
story, the news site can find the desired news story by retrieving it from the
news stories previously added to the user ontology as an instance.

4.1 Related work

Personis[7] is a system for creating user models(user profiles) and sharing them
among various systems. To construct a user model, though, Personis explicitly
requires users to answer questions.

User modeling is discussed in [6] and discussion about ontology mapping or
merging is discussed in [8]. These discussions focus on the construction of user
models, mapping one ontology onto another, or creating tools to construct user
models or ontologies. They do not consider the application of the constructed
ontologies.

5 Conclusion

We have proposed and developed the “Adaptation Anywhere & Anytime(A3)”
framework to enable sharing and reuse of user ontologies A user ontology is
defined as a representation of each user’s knowledge and interests. By enabling
the automatic construction and sharing of user ontologies among web systems, we
hope to relieve users of the tedious task such as one of repeatedly registering and
completing questionnares for each web system they use. And we have described
a simple method for web site implementation using XSLT. This method makes
it easy to create and implement an adaptive web system easy.

Future work remains to be done. The current algorithm for ranking items
is very simple and needs to be refined. In addition, the A3 framework does not
provide a rationale showing why a particular resource is selected. Generally, users
like to know why resources are preferentially selected, so we plan to incorporate
a means of providing such information.

References

1. Beckett,D.,RDF/XML Syntax Specfication, http://www.w3c.org/ TR /rdf-syntax-
grammar /

=Fml version="1.0"%= =7l wersion="1.0"7>
“wsl sty eshest version="1.0" =7ty eshact type= "texdioml"
smins sl = "hitp:iAveensmGorgH S90S UTransfor m s href="boak xsl 7=
“xslottput method="html "= “BODKS:
" " <BOOK:
“xsltemplate matoh="/BO0KS"> =AUTHOR=Asi mov</AUTHORS
<HTML= =TITLE=I, Robot=fTITLE=
sl applytemplatess /B OOk
=zisort maN="10" i =BOOK=
=#esl applytemplates= =AUTHOR=Clarke<fAUTHOR=
=TITLE> 2001: </TITLE=>
<HTML=
“pes| template> =/B00KS
“wsl template match="BO0K"= “BODKSS
<xsl waue-of sdect="TITLE">
<pesl template matoh="BO0K"
=fwsl:stylesheet=

a) XSLT Stylesheet by XML document

Fig. 3. Example of an XML document and XSLT stylesheet

. Berners-Lee,T.,Hendler,J.,Lassile,O., The Semantic Web,Scientific American,2001
. Brickley,D.,Guha,R.V., RDF Vocabulary Description Language 1.0:RDF Schema,
http://www.w3.org/ TR /rdf-schema/

. Clark,J., XSL Transformations(XSLT) Versionl.0, http://www.w3.org/TR/xslt,
1999

. Dean,M., Connolly,D., Harmelen,F., Hendler,J., Horrocks,I., McGuinness,D.,
Schneider,P., Stein,L., OWL Web Ontology Language 1.0 Reference,
http://w3.org/ TR /owl-ref/

. Dolog,P.,Nejdl,W., Challenges and Benefits of the Semantic Web for User Model-
ing, Adaptive Hypermedia and Adaptive Web-Based Systems,2003

. Kay,J.,Kummerfeld,B.,Lauder,P., Personis: A Server for User Models, In Proc. of
Adaptive Hypermedia and Adaptive Web-Based System AH2002, 2002

. Noy,N.F.,Musen,M.A., The PROMPT suite: interactive tools for ontology merging
and mapping. International Journal of Human-Computer Studies, 59(6),2003

Towards an Organizational Knowledge Representation
Framewor k

Rinaldo Pietrantonio34, Massimo Ruffolol.2

1ldtituto di Calcolo e Reti ad Alte Prestazioni del Consiglio Nazionale delle Ricerche—
ICAR-CNR, Universitadella Calabria, 87036 Rende (CS), Italy
ruffolo@car.cnr.it
2Exeurasr.l., Universita della Calabria, 87036 Rende (CS), Italy,
ruf fol o@xeura.it
3 Dipartimento di Ingegneria Economico-Gestionale, Universitadi Napoli "Federico 11"
Piazzale Tecchio, 80, 80131 Napoli, Italy
r.pietrantoni o@nina.it
4 CIES Centro di Ingegneria Economica e Sociale — Scuola Superiore Majise
Universita della Calabria, C.daVermicelli, 87036 Rende (CS), Italy
r.pietrantoni o@mjise.it

Abstract. Organizations are characterized by complex business processes in
which different kinds of knowledge are produced and used along a lifecycle.
This paper describes an ontology-based organizational knowledge representa
tion framework focused on the specification of so called core organizational
knowledge entities. The framework constitutes a theoretical support in knowl-
edge management systems and strategies analysis and design.

1 Introduction

In the last years the technological innovations and the social and economic transfor-
mations have deeply changed the global market and the enterprises structure all over
the world. Knowledge has become one of the most important economic resources
with respect to the competitive advantage acquisition turning the traditional enter-
prises into knowledge intensive organizations [1]. These are characterized by com-
plex managerial, operational and decisiona processes [2] involving a number of dif-
ferent forms and kinds of knowledge following a"Knowledge Life-Cycle".

In this scenario Knowledge Management (KM) can really increase the efficiency
and effectiveness of the organizational business processes and it can also contribute
into the creation of value and the growth of intellectual capital and all the intangible
assets within the enterprises. Therefore efficient KM Systems (KMS) and coherent
KM strategies are needed to support the organizations in managing knowledge creat-
ed, stored, distributed and applied within the business process; in particular specific
methods and instruments for organizational knowledge elicitation and representation
are required to design and implementation of KMS and KM strategies.

Nowadays a number of models, languages and tools coming from computer sci-
ence and information technology area [5] like ontology and workflow allow organi-
zational knowledge representation directed to build KM organizational and techno-
logical infrastructures.

This paper describes an Organizational Knowledge Representation Framework
(OKRF) organized as a two level family of ontologies: the first level ontologies for-
mally represent the Core Organizational Knowledge Entities (COKE) (i.e. human re-
sources, business processes, knowledge sources, knowledge objects, knowledge-
based services), the second level (top level) ontology represents the different topics
of the business activities and aims.

The framework provides a representation of the different knowledge forms and
kinds following an extension of the KLC model Fraunhofer IPK institute [3], [4] —
the representation aims at contributing as theoretical base in supporting the anaysis
and design of Knowledge Management Systems (KM S) and strategies.

The different forms and kinds of the organizational knowledge are presented in
section 2, the KLC phases are present in section 3. In section 4 the organizational
knowledge representation framework is shown.

2 Organizational Knowledge Formsand Kinds

Many different kinds of organizational knowledge are wide spread within the
enterprises under different forms and distributed in several sources (humans and
systems) inside and outside the organization. The most relevant distinctions about the
concept of "knowledge" are presented in the follows.

In an operational-based environment Ryle [5] distinguishes between:

¢ "know how", asthe practice knowledge, or knowledge used in a operational way.
This is task-specific and related (but not similar) to the individual ability in
applying tasks;

¢ "know that", asthe theoretical knowledge related to the deep (and hidden) causes
of the phenomena. The "know-how" is essentidly different from the theory
becauseit is expressed in aformal form using rules,

A generally accepted classification is due to Polanyi [15], [16] and extended by

Nonaka and Takeuchi [9], [10]:

¢ "implicit knowledge", the knowledge resulting from personal learning processes,
present within each organization in terms of its members persona knowing.
This is strictly related to the practice action and the use of brain and body
applying the tasks. This kind of knowledge is characterized by "individua"
("know-how" and "know-that") "social" aspects (relationships among people
inside and outside of the organization);

* "explicit knowledge', generally shared and publicly accessible within the
organization through forma storing and processing infrastructures. Explicit
knowledge can also be classified basing of the following forms: "structured”
(available in database), “ semi-structured” (available in intranet and internet web
sites: HTML pages, XML documents, etc.) and "unstructured" (available as
textual documents: project documents, procedures, white papers, etc.).

Inthe "Artificial Intelligence" field the traditional classes are:

e "detail knowledge", addressing some causal models and relationships based on
natural laws,

¢ "surface knowledge", concerning the practice rules that people can learn
applying his own task in an efficient way (human experts). The differences
between the "surface® and "detail" knowledge concern the knowledge
classification based on: "static knowledge", describing domain specific facts,
concepts, constraints, states, relationships without references to ongoing actions
or in progress processes, "dynamic knowledge", processes and procedures within
a specific domain and describing them in their own ongoing progress.

A further classification concerns where the knowledge is coming from: "internal

knowledge" belongs to the enterprise and/or its own members and system, whereas

the "external knowledge' is not present inside the enterprise while available by

externa systems and people or by Internet.

The traditional information systems are able to process only a small portion of the
whole organizational knowledge (i.e. explicit knowledge under structured form). In-
stead a KMS must be able to support the generation, discovery, capture, store, distri-
bution and application of awide variety of knowledge (i.e. explicit knowledge under
structured, semi-structured and unstructured forms and individual and social aspects
of implicit knowledge) through related knowledge-based services. Therefore a KMS
need knowledge representation capabilities that can be provided by ontology for-
malisms able to specify the different organizational knowledge forms and kinds and
to carry out the same knowledge-based services.

3 TheOrganizational Knowledge Life-Cycle

Within the business processes different forms and kinds of knowledge are generat-
ed, stored, distributed and applied along a life-cycle. A KMS has to provide suitable
knowledge-based services to support the KLC. The proposed organizational knowl-
edge representation framework aims at allowing to design KMS knowledge-based
services realizing the KLC phases. A so designed KMS improves the performances
of the business process and increases the value creation capability of enterprises.

For each phase of the KLC the framework provides a representation of managed
knowledge and point out which knowledge-based services are needed to the same
KLC phase realization.

Apply
Knowledge

Generate
Knowledge

Distribute
Knowledge

Store
Knowledge

Fig. 1. The Knowledge Life-Cycle

In the following the KLC phases (fig. 1), based on Fraunhofer’s IPK KLC model
[3], [4], are shown.

"Generate Knowledge', aiming at making available the (new) knowledge as gen-
erated in several ways at individual (training, learning by doing, problem solving,
etc.) and social (communities of practice, project team, etc) level. Just a part of it is
directly available under explicit form while the remaining implicit part requires prop-
er capturing methods (questionnaires, lessons learning writing, best practices writing,
etc.). When embedded under explicit form in huge amount of structured, semi-struc-
tured and unstructured data and information it can be made available through knowl-
edge discovery and classification methods. To realize this phase the KMS knowl-
edge-based services must be based on knowledge discovery, content management,
information retrieval, reasoning, etc.;

"Sore Knowledge", focuses on knowledge extraction and acquisition from al dif-
ferent sources distributed across the organization structures. Knowledge representa-
tion methods provided by the framework facilitate the storing of both declarative and
procedural knowledge into knowledge bases. In particular the structure of these is
provided by the top level ontology while knowledge sources description is provided
by the second level ontologies For each kind of knowledge the related sources are
specified. To realize this phase the KM S knowledge-based services must by based on
ontology and workflow management functionalities and on wrapping, crawling, data
warehousing techniques, etc.;

"Distribute Knowledge", concerning the knowledge distribution to organizational
knowledge workers. The framework represents individual and group profiles in term
of required knowledge to be shared within the organization among the several differ-
ent actors with respect their own specific competencies and needs. To realize this
phase the KM S knowledge-based services can be based on two main approaches: the
stock approach (adding to databases and distributing documents) and the flow ap-
proach (share and public knowledge by synchronic and asynchrony communication
system, chat, forum, blog, etc.);

"Apply Knowledge", concerning the use of the codified knowledge into the busi-
ness processes where required. To realize this phase the KMS knowledge-based ser-
vices can be based on business intelligence, decision support, customer relationship
management, etc.

The KLC phases involve the core organizational knowledge entities contained into
and described by the proposed organizational knowledge representation framework
presented in the next section.

4 The Organizational Knowledge Representation Framework

The proposed OKREF is organized as a two level family of ontologies (fig. 2). The
first level ontologies formally represent the COKE as the main elements characteriz-
ing the organization structure and playing a fundamental role in the KLC: human re-
sources, business processes, knowledge sources, knowledge objects, knowledge-
based services. The second level (top level) ontology represents the different topics
of the business activities and aims.

Topic Ontology

Second Level
Ontology

Business

Human
Resource
Ontology

Knowledge Based Services Ontology
r
Knowledge Object Ontology
Knowledge Source Ontology

Apply
Knowledge

Process
Ontology

First Level Ontologies

Generate
Knowledge

Business
Processes

KLCphases within a Knowledge
Intensive Organization

Distribute
Knowledge

Store
Knowledge

Fig. 2. The Organizational Knowledge Representation Framework

The Topic Ontology at the second level of the framework contains the concepts char-
acterizing the typical background of an organization. In particular it specify the ex-
plicit and implicit organizational declarative knowledge concerning the concepts
characterizing a specific organizational domain: e.g. an IT enterprise background is
founded on concepts coming from computer science field. As top level ontology it
provides the second level ones with concepts to formally annotate other COKE's
contents.
Thefirst level ontologies are the following:

Human Resource Ontology, represents individuals working in the organiza-
tion (knowledge workers) and social groups they are involved in. Each indi-
vidual profile is represented in term of implicit, explicit, individual and social
knowledge, organizational role, social group membership, required knowl-
edge-based services, etc. Each socia group (community of practice, project
team, organizational group, etc.) profile is represented in term of its members
profiles, the knowledge interest topics, the required knowledge-based ser-
vices, €tc.;

Business Processes Ontology, represents procedural knowledge related to the
managerial, operationa and decisional processes. Each of them is described in
terms of activities, sub-processes, transition states and conditions, involved
actors, treated topics, etc. This can be a simple representation of business pro-

cess or acomplex ontology where taxonomic and non-taxonomic relations be-
tween processes are represented using a workflow specification [17], [18];

« Knowledge Sources Ontology, describes the physical sources where knowl-
edge is accessible as people (implicit knowledge owners) or system contain-
ing explicit knowledge stored in structured, semi-structured or unstructured
machine-readable form (e.g. database management systems, web sites, docu-
ment management systems, legacy systems, etc.). Knowledge sources, inter-
na or external to the organization, are annotated by topic ontology concepts
to indicate where is located the knowledge needed into the business process-
€s

« Knowledge Objects Ontology, maps the structure of logical objects (e. g.
database schema, database tables, textual documents, web pages) containing
explicit knowledge under structured, semi-structured or unstructured form [9].
These are used in the business processes and handled by the KM S through the
knowledge-based services. Knowledge objects are physically contained in the
knowledge sources. Moreover each of them can be annotated using the topic
ontology concepts to facilitate the handling and the retrieval;

* Knowledge-Based Service Ontology, describes all specific KMS knowledge-
based services to generate, acquire, store, discover, share, apply the different
knowledge forms and kinds during the business process running.

All the ontologies of both levels are strictly connected by relations between their

own elements. An implementation of them based on the Ontology Web Language
(OWL) [19] and the BPMI workflow language [28] isin progress.

5 Conclusions

The presented organizational knowledge representation framework is proposed as
a theoretical base to support the analysis and design of KMS and KM strategies by
elicitation and formal representation of core organizational knowledge entities.

In particular the framework provided representation of the COKE helps in designing
and implementing KM S knowledge-based services that realize the KLC phases.

To carry out the KMS analysis, design and implementation with respect to a rea
enterprise a specific knowledge audit and assessment methodology is needed in order
to elicit all COKE to represent by the framework. A knowledge audit methodology
development isin progress.

References

1. Alvesson M.: Organizations as Rhetoric: Knowledge-Intensive Firms and the Struggle
with Ambiguity. In Journal of Management Studies, 30:997—1015, (1993)

2. Davenport T., Prusak L.: Working Knowledge. How Organization Manage what they
Know. Boston Harward Business School Press, (1998)

10.

11

12.

13.

14.

Birk A., Kroschel F.: A knowledge management lifecycle for experience packages on
software engineering technologies. Technical Report |ESE-Report No. 007.99/E, Fraun-
hofer Institute for Experimental Software Engineering, Kaiserslautern, Germany, (1999)
Heisig P.; MertinsK.; Vorbeck J.: Knowledge Management Concepts and Best Practices.
Springer-Verlag, Berlin, Heidelberg GmbH & Co. KG, (2003)

Ryle, G.: The concept of mind. London, Hutchinson & Company, (1949)

Merrill, M. D.. Second Generation Instructional Design. Available at:
http://www.id2.usu.edu/id2/index.htm. (2002)

Merrill, M. David: "Knowledge Objects’, CBT Solutions, March/April, pp. 1-11, (1998)
Alavi M., Leidner D. E.: Knowledge Management Systems: Issues, Challenges, and Ben-
efits. In Communications of the Assocation for Information Systems, 1, (1999)

Nonaka |.:A Dynamic Theory of Organizational Knowledge Cregation. In Organization
Science, 5, (1994)

Nonaka I., Takeuchi H.: The Knowledge-Creating Company. Oxford University Press,
(1995)

Tiwana A.: Knowledge Management Toolkit, The: Practical Techniques for Building a
Knowledge Management System, Prantice Hall, (1999)

van Elst L., Abecker A.: Domain Ontology Agents in Distributed Organizational Memo-
ries. In Working Notes of the Workshop on Knowledge Management and Organizational
Memories (IJCAI-2001), Seattle, (2001)

Staab S., O'Leary D. (eds.): Proceedings of 2000 AAAI Spring Symposium: Bringing
Knowledge to Business Processes. AAAI Press, (2000)

Papargirys A., Poulymenakou A., Samiotis K.: Knowledge Processes Embedded in Task
Structures: Implications for the Design of a Technical and Organizational Solution.
PAKM, (2002)

Polanyi M.: Tacit Knowledge. Chapter 7 in Knowledge in Organizations, Laurence
Prusak, Editor. Butterworth-Heinemann, Boston, (1997)

Polanyi M.: The Tacit Dimension, Routledge and Kegan Paul, (1966)

Arkin A.: Business Process Modeling L anguage, http://www.BPMI.org, (2004):

The Workflow Management Coalition. http://www.wfmc.org, (2004)

The Web Ontology Language OWL. http://www.w3.0rg/2004/OWL (2004)

Distributed autonomous Knowledge Acquisition and Dissemination
ontology based framework

Petros Belsis'*, Stefanos Gritzalis!

! Department of Information and Communication Systems Engineering University of the Aegean, Karlovasi, Samos,
Greece, {pbelsis, sgritz}@aegean.gr

Abstract In this paper, we present our arguments about security enhanced Knowledge Management
(KM) systems, which enable -transparent to the user - diffusion of knowledge, filtered through security
policy mechanisms. We provide identification and access to security related knowledge assets, based on
the use of software agents, which interact between several organizational domains and authorize access
to knowledge resources. The authorization process is based on an automated policy framework, which
handles negotiations between different organizational domains, and provides transparent access to
knowledge assets. Users benefit from the system by acquiring knowledge not only from their domain,
but by being able to query different organizations or different domains on grounds of a common for all
co-operating domains security policy framework. The role of ontologies is eminent in exploiting
heterogeneous knowledge sources.

1. Introduction.

Knowledge Management (KM) has become lately an emerging deployed discipline, that promises to
capitalize on organisation’s intellectual capital [7]. KM consists of processes and strategies for identifying,
capturing and leveraging knowledge [8]. Many organizations have benefited from deploying knowledge
management related activities. Organizations can benefit from harvesting knowledge from several
heterogeneous sources and assets, varying from old data repositories, till the knowledge that resides
inhuman assets of an organization, namely its employee’s experience [9].

Although KM has emerged for more than a decade, little work has been done relative to security issues and
protection of intellectual assets within an organization. We attempt to address the issues that arise
concerning information security and KM, and how a flexible mechanism that allows transparent to the user
access to knowledge resources can coexist with an automated security policy established framework.

KM technologies evolved for almost more than a decade. Both theoretical efforts as well as practical
applications have focused on exploiting tacit and explicit knowledge —according to Polanyi’s definition
[10] - that resides within the organizational borders. Though, the real challenge and boosting in knowledge
exploitation is inter-organizational knowledge exchange. Different organizations though, have different
security policies and different security restrictions to knowledge assets.

Our work focuses on establishing a security enhanced KM framework, which overcomes the limitations in
knowledge sharing and reuse, by making use of heterogeneous, distributed knowledge sources, and by
providing a transparent, automated access control mechanism based on the use of security policy
languages.

The rest of the paper is organized as follows: section 2 makes a brief introduction in security mechanisms
on distributed environments and presents the main concepts upon which the authorization process is based.
Section 3 presents the key-role of ontologies on discovering assets upon this framework, section 4 presents
an overall overview of the under development prototype, section 5 presents a comparison with related
work, while section 6 concludes the paper, providing at the same time directions for further work.

+ Corresponding author

mailto:pbelsis, sgritz}@aegean.gr

2. Managing security in distributed environments.

2.1 Key concepts

From the very early years of the emergence of distributed environments concepts, the necessity of
establishing security mechanisms emerged. In the early years of mainframes, the term computer security
was referring to operating system control mechanisms. The seminal work by Lampson [1] established the
ground rules for access control policy specification and implementation mechanism. The formulation of
access control in terms of client naming has its roots in existing role based access control architectures,
such as those described in [2]. These distributed access control mechanisms, provide with better flexibility
and easier enforcement of security controls.
We will refer in brief to a few terms relative to a few main concepts relative to the effective management of
distributed inter-organizational, large-scale systems [11]:

e Domains: group of objects to which a common policy applies.

¢ Roles which identify the rights, duties, functions and interactions, associated with a position such

as president, doctor or nurse in hospital, security administrator and so on. A role is the set of
authorization and obligation policies, which have a particular role position as a subject [3].

The advantage of using roles for specifying enterprise policies is that individuals can be assigned to roles or
withdrawn without having to respecify the policies applying to the role. Domains provide flexible means
for partitioning objects in a large system in terms of geographical boundaries, object types, or management
needs [4].
These concepts are very useful in order to manage effectively and securely large scale systems.
Furthermore, it is easy to represent organizational roles as objects, concluding to an object oriented
approach implementation of policies.
Policies can be expressed formally by adopting a policy specification language and can be expressed in the
appropriate formalism which can be encoded in machine interpretable form. Based to the aforementioned
concepts, domains represent organizations, roles represent organizational structure and rights can be
expressed as authorization policies.

2.2 System activities description

By incorporating the notions of domains, we imply that many objects or users may exhibit common
characteristics with respect to some criteria, so it is useful to specify policies that apply to a group of
objects rather than individual ones. Additively, We use the concept of a Role associated with a position so
that policies can be specified with respect to organizational positions and describe the duties and access
rights of the individuals assigned to the positions[11]. This means that the policies do not have to be
respecified when individuals are assigned to new positions. An administrator with the appropriate authority,
can edit, modify or delete policies (Fig 1), which are applied to objects [12].

Administrator

Figure 1 Policy rules application scheme

In our system we handle several KM related activities:
e Knowledge assets discovery, which is handled by security agents and is based on the use of an
appropriate ontology,
e Authorization process, which identifies according to the user that requests access to an asset if he
has the appropriate level of classification
o Negotiation, when it comes to inter-organizational knowledge transfer
A key concept to the process of identification of assets is the use of ontology, which is essential for the
management of heterogeneous knowledge sources.

3. Ontology exploitation

Ontology is “an explicit specification of conceptualization” [14]. It belongs to a family of concepts and
tools, such as metadata and meta-knowledge, used to achieve better content description in context.
Ontology provides a set of concepts and terms for describing some domain [16][15]. Domain ontologies as
defined by Guarino [15] “provide a vocabulary for describing a given domain”. Using domain ontology, we
can model entities in KM, their attributes, their role and relationships [13].

The realization of interoperable systems is weighty process, as a consequence of two main system
characteristic - distributed data sources and their heterogeneity [5]. Information systems heterogeneity may
be considered as structural (schematic heterogeneity), semantic (data heterogeneity), and syntactic
heterogeneity (database heterogeneity) [6]. Syntactic heterogeneity means that various database systems
use different query languages (SQL, OQL, etc). Structural heterogeneity means that different information
systems store their data in different structures. Semantic heterogeneity considers the content of an
information item and its meaning. Semantic conflicts among information systems occur whenever
information systems do not use the same interpretation of the information. Semantic heterogeneity of the
data sources causes serious problems. Ontologies seem a promising discipline towards the alleviation of
this problem. We attempt to overcome heterogeneity barriers by implementing an ontology based on the
RDF syntax [17]. For simplicity, we provide with a common for all domains ontology. Even though
ontology merging seems lately to be a very active and promising scientific area.

4. System Architecture

In this section, we discuss the implementation issues of our prototype, which is still under the construction
phase, though the main design concepts have been determined and are currently implemented. In our
system, two procedures are being handled, mainly performed through the use of software agents:
Knowledge assets discovery and authorization. As it concerns to knowledge discovery process, by querying
the RDF-based ontology we identify the URL (Unified Resource Locator) while on the several other
descriptive tags —such as the resource creator or a more detailed description of its content- provided on the
ontology files, the user is provided with a number of choices concerning the most suitable knowledge
assets. Upon request, the authorization process is activated, where the user by providing his id and
password for local authentication, an authentication agent, handles the authorization process according to

Organization 2

Figure 2 Inter-organizational knowledge exchange framework

the credentials provided for his role. In order for inter-organizational knowledge exchange (in our case
inter-domain) knowledge exchange, a negotiation procedure is undertaken, where a correlation between
different organization roles procedure is undertaken. The system is developed under the JADE [25] agent
platform, while the ontology being utilized was developed by using the XML-spy editor.

5. Related work

Recently, there is enough interest on grounds of providing large-scale distributed organizations with a
flexible, interoperable policy driven framework [19][4][3]. Knowledge Management is highly dependent on
intercommunicating organizational domains or cooperating organizations. Connectivity and communication
is a necessity for most of today’s computing environments, enabling them with access to vast amounts of
knowledge and on lesser time. Not all the access attempts are benign, as the number of security related
incidents and consequent financial losses continuously tend to increase in magnitude, as well as in
severance. (See for example the latest CSI/FBI Computer Crime and Security Survey [20]. The networked
world is dynamic and undergoes continuous change. Effective management becomes a real challenge as
well as a nightmare for security experts. Certain solutions have been proposed towards the facilitation of
effective management of distributed systems. KM systems provide several additive challenges against the
automated policy based management: they intend to provide with access to the maximum extent to the
available resources, while they have to preserve the basic attributes of information, namely confidentiality,
integrity, availability [21].

In [22][23] an autonomous system that attempts to provide the problem of making access control decisions
in distributed fashion is presented. This system attempts to provide access to devices and services in a
distributed environment without distinct organisational boundaries. In order to avoid overloading or failure
of centralised decision scheme, a decentralised approach is proposed, where trust decisions are controlled
on local node level. This system is characterised by acceptable degree of scalability, it proves out though to
be non-applicable to critical environments with high vulnerability where attack resistance remains vital and
prior to scalability issues. Such environments, like e-Government or health care medical environments,
demand high resistant metrics and proclaim penetration resistance as prior issue.

Levien [24] introduces the notion of group trust metrics. Advocado is a prototype implementing the notion
of trust metrics, still there is too much work to be done, but the main deficiency of this approach is the
extremely low scalability potential.

Our system, can apply the notion of inter-organizational exchange with scalable, effective, and reliant
procedures, without leaving any possibilities for misuse and without embedding risk in the authentication
and negotiation procedure as in most trust management systems.

6. Conclusions — Further work

This paper presented a conceptual description of a distributed, automated, security enhanced Knowledge
Management system. The architecture is agent-based, and handles heterogeneity of knowledge sources
located at different organizational domains through the use of appropriate domain ontologies. Agents,
developed in JADE agent development Kit, carry the necessary knowledge assets discovery functions and
perform the necessary authorization procedures, through the use of security policies.

In the recent future, we intend to expand the policy based framework in order to handle more complex
negotiation processes and we attempt to experiment with ontology integration, when different domains
make use of different ontologies as described in [18] and no general ontology scheme is pre-established, as
it stands for the current implementation of our system.

Acknowledgments

This work was co-funded by 75% from E.E. and 25% from the Greek Government under the framework of
the Education and Initial VVocational Training Program — Archimedes.

References

1. B. W. Lampson,”Protection", Fifth Princeton Symposium on Information Sciences and Systems, pp.437-443,
Princeton University, March 1971, Reprinted in Operating Systems Review, 8(1), pp.18-24, January 1974

2. Ravi S.Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman “Role based access control
models”, IEEE Computer 29(2), pp. 38-47, February 1996

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.
25.

Sloman M., “Policy driven management for distributed systems, “Journal of Network and Systems
Management, vol. 2, no. 4, pp. 333-360, Dec. 1994.

Lupu E., Sloman M. “Conflicts in Policy Based Distributed Systems Management”, IEEE Transactions on
Software Engineering vol. 25, No 6, 1999.

Genesereth M., et al., «Infomaster: An Information Integration System», ASIGMOD Conference, pp.539-542,
1997.

Stoimenov L., S. Dordevic-Kajan Framework for semantic GIS interoperability, Ser. Mathem. Informatics
Journal, 17 (2002).

Rus 1., Lindvall M. “Knowledge Management in Software Engineering, IEEE Software, vol. 3, pp.26-38,
2002.

McCampbell A., Mordhead Clare L., Howard Gitters S. “Knowledge management: the new challenge for the
21% century”, Journal of Knowledge Management, vol. 3, No 3, 1999, pp 172-179.

Bhatt G., (2002). “Management strategies for individual knowledge and organizational knowledge”, Journal
of Knowledge Management, vol. 6, number 1, 2002, pp. 31-39.

Polanyi (1966). “The Tacit Dimension”, Routledge & Kegan Paul, London.

Yialelis N., Sloman M. A Security Framework Supporting Domain-Based Access Control in Distributed
Systems, proceedings of SNDSS 96, IEEE.

Yialelis N., Lupu E., Sloman M. Role-Based Security for Distributed Object Systems, 1996, IEEE
Workshops on Enabling Technology.

Weinberger H., Te’eni D. Frank A. Ontologies of Organizational Memory as a basis of evaluation, The
knowledge engineering review, “Putting ontologies to view”, 2001.

Gruber, T.R. (1995), ‘“Toward Principles for the Design of Ontologies used for Knowledge Sharing’, Int. J. of
Human-Computer Studies, vol. 43, pp. 907-928.

Guarino N. (1997). ‘Understanding, Building and Using Ontologies’. Int. J. of Human-Computer Studies,
vol. 46, pp. 293-210.

Go’mez-Pe’rez, A. (1998), ‘Knowledge Sharing and Reuse’. in: The Handbook of Applied Expert Systems,
Liebowitz, J. (ed.) CRC Press, LLC Roca Raton, 10, pp. 1-36.

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein, J. Broekstra, M. Erdmann, |. Horrocks, The
semantic web: the roles of XML and RDF, IEEE Internet Comput. 4 (5) (2000) 63-74.

Pinto, H. S. 1999a. Towards Ontology Reuse. In AAAI99’s workshop on Ontology Management, WS-99-13,
67-73 AAAI Press.

Damianou N. (2002). “A Policy Framework for management of Distributed Systems”, Phd Thesis, Imperial
College, London.

CSI/FBI (2003), 2003 CSI/FBI Computer Crime and Security Survey, Computer Security Institute, USA.
ISO 17799, “Information Technology — Code of Practice for information security management”, 1ISO/IEC
17799

Seleznyov A., Hailes S. “An Access Control Model on Distributed Knowledge Manegement” AINA (2)
2004: 403-406

Seleznyov A., Mohamed A., Hailes S. “ADAM: An agent-based Middleware Architecture for Distributed
Access Control” Twenty-Second International Multi-Conference on Applied Informatics: Aurtificial
Intelligence and Applications, 2004.

Levien R. “Attack Resistant Trust Metrics” draft Phd Thesis University of Berkeley, 2003.
http://jade.tilab.com/

http://jade.tilab.com/

	Department Knowledge Engineering
	Proceedings
	Harald Kühn
	BOC Information Systems GmbH
	
	Program Committee
	Organization

	Preface
	Theme 1: Ontology Building
	Theme 2: Model Driven Development
	Theme 3: Web-based Systems
	Theme 4: Ontology-based Frameworks
	Preface
	PAKM_Paper-YC-DC.pdf
	Interoperability
	Processes & Business
	Applications
	Non-functional aspects
	The change from a Situation to another can usually be achieved by one ore more Paths, that is specific directives or principles aiming at changing certain attributes of the systems.
	B. Directions affecting Interoperability between Systems

	Defining Model Transformations for Business Process Models Graphically.pdf
	Abstract

	Kühn, Bayer (2004) - Integration Approaches for Metamodelling Platforms_8.pdf
	ABSTRACT

	PAKM_Workshop.pdf
	Applying MDA in Enterprise Application Interoperability: The PRAXIS Project
	The problem of Interoperability
	Driving Forces of Interoperability
	Case Study: The PRAXIS Project
	Using a Model-Driven Architecture approach
	System design and modeling
	Computation Independent Model Level
	Platform Independent Model Level
	Platform Specific Model Level

	Conclusions and Future Work
	References

	BelGritInterop.pdf
	1. Introduction.
	2. Managing security in distributed environments.
	2.1 Key concepts
	2.2 System activities description

	3. Ontology exploitation
	4. System Architecture
	5. Related work
	6. Conclusions – Further work
	References

