
Information Management & Computer Security
Distributed component software security issues on deploying a secure electronic marketplace
Stefanos Gritzalis, John Iliadis, Spyros Oikonomopoulos,

Article information:
To cite this document:
Stefanos Gritzalis, John Iliadis, Spyros Oikonomopoulos, (2000) "Distributed component software security issues on
deploying a secure electronic marketplace", Information Management & Computer Security, Vol. 8 Issue: 1, pp.5-13, https://
doi.org/10.1108/09685220010312290
Permanent link to this document:
https://doi.org/10.1108/09685220010312290

Downloaded on: 15 May 2018, At: 02:15 (PT)
References: this document contains references to 25 other documents.
To copy this document: permissions@emeraldinsight.com
The fulltext of this document has been downloaded 1226 times since 2006*

Users who downloaded this article also downloaded:
(2000),"Awareness and challenges of Internet security", Information Management & Computer Security, Vol. 8 Iss 3 pp.
131-143 https://doi.org/10.1108/09685220010372564
(1995),"Information security and the Internet", Information Management & Computer Security, Vol. 3 Iss 4 pp. 15-19 https://doi.org/10.1108/09685229510123629

Access to this document was granted through an Emerald subscription provided by emerald-srm:463687 []

For Authors
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service
information about how to choose which publication to write for and submission guidelines are available for all. Please
visit www.emeraldinsight.com/authors for more information.

About Emerald www.emeraldinsight.com
Emerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of
more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online
products and additional customer resources and services.

Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication
Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.

*Related content and download information correct at time of download.

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

https://doi.org/10.1108/09685220010312290
https://doi.org/10.1108/09685220010312290
https://doi.org/10.1108/09685220010312290

Distributed component software security issues on
deploying a secure electronic marketplace

Stefanos Gritzalis
Department of Informatics, Technological Educational Institute (TEI) of Athens,
Athens, Greece
John Iliadis
Department of Information & Communication Systems, University of the Aegean
Research Unit, Athens, Greece
Spyros Oikonomopoulos
Department of Informatics, Athens University of Economics and Business
(AUEB), Athens, Greece

1. Introduction

Distributed component software (DCS) is the

extension of client/server architectures with

object oriented technology in mind. In the

classical client/server model a client

machine uses the computing power of a

server by calling procedures located in the

latter (Remote Procedure Call). The server,

who typically has access to a database

system, returns data to the client who, rarely

after performing some extra operations on

them, displays them to the end user

(Staamann, 1997). Several problems arise

though, when the load on the server becomes

heavier. Increased local (around the server)

network traffic and slow processing are some

of the obvious consequences in such a case.

To address these problems the idea of

distributed object calls surfaced. In this

model the client calls functions of objects,

located on remote machines, as if they were

in his own process space. The underlying

infrastructure takes care of network-location

transparency and load balancing (forwarding

object reference requests to machines with

less load). The general model found in all

three architectures presented in this paper is

schematically described in Figure 1.

As seen in Figure 1, the client application

calls a method of an object residing in a

server component. The call is made as if the

object were in the caller's process space.

What actually happens, though, is that the

call is forwarded to a surrogate `̀ stub'' of the

called object, whose responsibility is to

forward requests on the server side, through

the underlying object broker infrastructure.

The stub `̀ marshals'' the method parameters

and passes them to the object broker, which

passes the request to a skeleton object on the

server. The server `̀ unmarshals'' the

parameters, performs all necessary up-calls

to the actual object implementation, and

passes back the return parameters to the

client in an identical manner.

Electronic commerce transactions, on the

other hand, involve the establishment of a

number of client-server-like constructs in

order to be completed. With the expansion of

e-cheque and e-cash systems, and the

participation of Registration and

Certification Authorities (Gollmann, 1999)

for the implementation of digital signatures,

the required number of these constructs in

order to complete a transaction will

significantly grow.

For business to customer communication

the most prevalent scheme seems to be

through the customer's Web browser. On the

server side though, authenticating

customers, performing financial

transactions, initiating order completion and

carrying out other e-commerce related tasks,

requires the use of object services on several

remote machines. For business to business

transactions, applications will heavily use

remote object services directly, be it within

the client organisation itself or on the

provider organisation machines. Note that

`̀ client'' and `̀ provider'' are roles that both

organisations interchange during an

electronic transaction.

Vendors like Sun, Microsoft, IBM and

independent organisations present extensive

examples for this type of constructs and how

their own distributed component

architectures provide the infrastructure that

is necessary to implement such applications.

Each of these infrastructures implements a

different security scheme.

This paper addresses the security issues

involved in distributed component

architectures. In section 2 we provide a brief

overview of the threats that a DCS system

faces. In section 3 we comment on the

CORBA specification and in particular the

security mechanisms it specifies, in order to

confront the threats presented in section 2. In

section 4 we describe the DCOM model for

The current issue and full text archive of this journal is available at

http://www.emerald-library.com

[5]

Information Management &
Computer Security
8/1 [2000] 5±13

MCB University Press
[ISSN 0968-5227]

Keywords
Distributed data processing,
Electronic funds transfer,
Computer software, Security,
Computer architectures

Abstract
A secure electronic marketplace
involves a significant number of
real-time transactions between
remote systems, either for com-
mercial or for authentication pur-
poses. The underlying
infrastructure of choice to support
these transactions seems to be a
distributed component architec-
ture. Distributed component soft-
ware (DCS) is the natural
convergence of client/server net-
work computing and object or-
iented technology in a mix
providing reusability, scaleability
and maintainability for software
constructs. In DCS a client ac-
quires references to objects pro-
vided by components located to
remote machines and invokes
methods of them as if they were
located in its native environment.
One implementation also provides
the ability to pass objects by
value, an approach recently ex-
amined also by others. The three
major models in the distributed
component software industry are
OMG's CORBA, Sun's Enterprise
Java Beans, and Microsoft's
DCOM. Besides these, we will
discuss the progress for intero-
perable DCS systems performed in
TINA, an open architecture for
telecommunications services
based on CORBA distributed com-
ponents. In this paper the security
models of each architecture are
described and their efficiency and
flexibility are evaluated in a com-
parative manner. Finally, upcom-
ing extensions are discussed.

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

implementing DCS and we discuss the

security scheme this model incorporates. In

section 5 we present the Enterprise Java

Beans distributed component architecture

and we discuss the security infrastructure it

relies on, in order to confront with the

threats that DCS faces. In section 6 we

provide a comparative evaluation of the

aforementioned schemes for implementing

DCS. Finally, in section 7 we present our

conclusions.

2. Threats in distributed
component software

The threats that distributed component

software systems have to deal with, include

the following (Spinellis et al., 1999):
. unauthorised disclosure of information;
. violation of data or code integrity;
. denial of service;
. repudiation of user's actions;
. malicious code, achieving user's

annoyance;
. traffic analysis.

Distributed systems have characteristics that

render more difficult the successful

addressing of the aforementioned threats.

Specifically, DCS systems are dynamic; their

internal structure as well as the software

components they comprise of, may change

without altering the system itself or the

capabilities and interfaces it provides. This

renders the task of providing a uniform

security infrastructure more difficult. In

addition, DCS systems can be quite

heterogeneous from a security point of view.

They comprise of multiple, usually different

security policy domains, the interoperability

of which is hard to achieve. Moreover, the

security mechanisms applied in DCS systems

are layered. Special care has to be taken

when designing layered security

mechanisms as the potential for violating

them by taking advantage of loose points in

their boundaries is high (Gollmann, 1999).

Finally, the administration of DCS security

mechanisms is rather a difficult task because

a uniform administration interface is not

always possible to design and implement.

3. CORBA

CORBA (OMG, 1999), (CORBA, 1998a) is the

specification of a framework that allows the

interaction between users and objects in a

transparent way, independent of the

underlying operating systems and hardware.

The Object Request Broker (ORB) introduced

by CORBA is a `̀ software bus'' (Gollmann,

1999) that provides the ability for users and

objects to interact. Communication, naming

transaction, querying and security services

are among the ones that are provided

transparently by CORBA to DCS. CORBA

itself does not provide functionality; it

provides interfaces to be used by a variety of

programming languages and a variety of

environments. CORBA provides an

abstraction layer to the applications as far as

the network communication is concerned.

The communication protocols supported by

CORBA are the following:
. General Inter-ORB Protocol (GIOP);
. Internet Inter-ORB Protocol (IIOP)

(CORBA, 1998b); and
. Secure IOP (SECIOP) which is used in

combination with the previous two. It is

part of the CORBASEC specification

(CORBA, 1998c) and it is meant to provide

Figure 1
Distributed object method calls

[6]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

an integrated security specification and

well-defined interfaces for the CORBA

security services.

The common secure interoperability (CSI)

specification defines the standards for secure

interoperability when using the General

Inter-ORB Protocol or the Internet Inter-ORB

Protocol. It contains standard security

mechanisms, associated cryptographic

algorithms and details of the SECIOP

protocol messages when using these

mechanisms and algorithms. Finally it

defines the security functionality supported

when ORB interoperation takes place, using

these security mechanisms.

CORBA security
The ORB provides protection against

unauthorised access, masquerading,

bypassing of security controls, disclosure of

information, violation of information

integrity and facilities to allow for user

accountability. CORBA applications may be

security-aware or security-unaware. In the

first case, applications can co-operate with

the ORB in order to deploy an integrated

layer of security services; in this case,

applications can even control the way these

security services operate, and adjust the

parameters of their operation. In the second

case, security has to be put in place and

security parameters have to be adjusted

without the co-operation of the application

itself.

CORBA security depends on a distributed

trusted computing base (TCB) in order to

ensure that the security mechanisms will not

be tampered with and the security policy will

be enforced. However, one should take under

consideration that this distributed TCB

includes also the underlying hardware and

operating systems, involved in a DCS system.

This constitutes a fundamental problem,

since this TCB may not actually provide the

desired level of security.

The key security features included in the

CORBA specification include the following:

1 Identification and authentication of

principals.

2 Authorisation and access control.

Privilege attributes are given to

principals after the authentication

concludes and they include the identity of

the principal, roles assigned to the

principal, groups the principal belongs to,

a security clearance, objects and

operations that can be performed on these

objects (capabilities) as well as other

privileges defined by the applications.

3 CORBA supports privilege delegation in

order to allow an object in a chain of

objects act on behalf of the principal that

initiated the chain. It should be mentioned

that only security-aware CORBA

applications can specify delegation

options. Delegation (CORBA, 1998c) can be

simple, composite, combined and traced.

These different types of delegation offer a

fine control on the way the privileges are

being delegated and the level of auditing

that can be performed concerning this

delegation by the original holder of

privileges.

4 Security auditing, which is based on

system audit policies (logging security

events pertinent to system activity) and

application audit policies (events defined

by the security applications).

5 Integrity and confidentiality of

communication between objects. The

CORBA specification provides interfaces

that can handle a number of different

cryptographic components, used to

implement data integrity and

confidentiality mechanisms. These

cryptographic components are

transparent to the applications

themselves.

6 Non-repudiation. CORBA provides

interfaces for the implementation of non-

repudiation services. Non-repudiation of

origin and non-repudiation of receipt are

supported, however the successful

completion of a request to an object could

be repudiated because the generation of

evidence of the aforementioned

completion is not supported.

7 Security policy. Security policies are

enforced either by the ORB on object

invocation, or by the applications

themselves.

8 Security mechanisms independence. It is

possible to replace some security

mechanisms independently. Some of these

mechanisms are: authentication and

security association; access decision

policies; audit and non-repudiation.

Telecommunications information network
architecture (TINA)
Distributed component architectures are

expected to be used in a vast variety of

applications. A major effort to combine their

ease of deployment and flexibility with the

capacity of high speed networks is the

Telecommunications information network

architecture (TINA) (Staamann, 1997). TINA

is an effort to establish an open architecture

for telecommunication services based on

distributed components. TINA is expected to

play a significant role in e-commerce

transactions involving electronic

merchandise. A broad range of applications

[7]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

in this category will heavily depend on

digital multimedia information. Video-image

servers and digital libraries are some of the

most representative examples.

The underlying infrastructure will be

based on CORBA compliant products. Of

particular interest is TINA's security

architecture, CrySTINA (Staamann et al.,

1998). It is aligned with the CORBA security

specification, but it still considers

enhancements necessary when it comes to

converge security policies and capabilities of

different systems, in order to ensure the

preservation of security permissions through

different security contexts. The central idea

is that of a security association setup service,

responsible for establishing a security

association between client and server object.

The security association setup service

provides authentication, security parameters

(e.g. cryptographic keys) exchange, and

security policy negotiation. The exact way

this negotiation is to take place has not yet

been defined.

4. DCOM security model

DCOM (Horstmann et al., 199; Microsoft,

1996) is Microsoft's extension to the

component object model (COM), its own

standard for building components (Rogerson,

1997; Dulepet, 1998). DCOM provides the

necessary infrastructure for COM objects to

communicate over a network; it is the

distributed equivalent of interprocess

communication, which occurs between

processes on a single machine. As in the

other approaches, communication takes

place in a transparent way both for the client

and the server component.

DCOM was first implemented in

Microsoft's Windows NT Operating System.

Its security model relies heavily on the

security capabilities supplied by Windows

NT (Concalves, 1998). Implementations on

other platforms will use the security

providers of these platforms in a similar or

identical way. Microsoft claims that most

UNIX implementations of DCOM will be

security-compliant with the NT

implementation.

At the core of the DCOM security scheme

there is the notion of an Access Control List.

DCOM implements an extended ACL, which

includes components and associated users.

This offers to application developers location,

authentication and authorisation

transparency. The user's authentication

credentials are retrieved by the underlying

operating system and are checked against the

ACL. If the user does not have the necessary

credentials to access a certain object or

invoke a method then his/her request is

rejected, before invoking the method or

accessing the object in any way.

The latter applies to applications and

components, which are not security-aware

and have to rely solely on the DCOM

authentication and authorisation model.

However, DCOM provides support, through

the operating system's libraries, for security-

aware components to develop their own

security mechanisms for authentication,

authorisation, policies and auditing. These

application-level mechanisms operate on top

of the ones operated by the underlying

operating system.

Using the user credentials stored in

Windows NT Servers in order to authenticate

and control the access of clients requesting

the invocation of DCOM objects in a

Windows NT domain does work in Intranets.

Using the mechanisms provided by Windows

NT for ensuring data protection can also

work in Intranets. However, this might not

be the case with wider networks such as the

Internet because the number of potential

users that have to be stored in each and every

NT Server that hosts components and lies

within a group of co-operating Servers in a

distributed environment is much higher and

probably the users are not known a priori.

Therefore the cost of administration and the

total cost of ownership of such a system is

very high. To cope with this, Microsoft has

expanded the security mechanisms offered

by NT in order to incorporate widely

deployed methods for authentication,

authorisation and data protection, such as

SSL (Freier et al., 1996).

Components of DCOM security
infrastructure
DCOM distinguishes between four

fundamental aspects of security:

1 Access security. DCOM provides process-

level access control, through the

mechanisms provided by the underlying

operating system. Security-aware

applications may extend this access

control functionality to include their own

controls on top of it, possibly operating on

a much higher level.

2 Launch security. Previous to accessing

objects, object creation should be secured,

primarily to protect the server from

denial of service attacks. As previously

described, DCOM checks for security

credentials before the object is involved,

i.e. before their creation process is

launched.

3 Identity. DCOM provides for

impersonation, where the object is

[8]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

identified with the caller. Any subsequent

calls are limited by the caller's privileges.

This approach, while useful, cannot be

used in environments with a large

number of distributed users, like the

Internet, where the information

concerning the identity of callers is not

always located locally (in Microsoft

Windows NT user databases), or even

when the callers are not known a priori.

Another implication of impersonation is

the possibility of a malicious component

to use the security privileges of the caller

to perform actions otherwise not allowed.

To prevent this, DCOM provides the caller

with the capability to indicate what the

called object is allowed to do with the

security token it obtains. These options

are:
. Anonymous. The object is not allowed

to obtain the identity of the caller. The

safest approach, but also, the most

restrictive for the server component.
. Identify. The identity of the caller (i.e.

user name) can be detected by the

component but no impersonation is

allowed.
. Impersonate. Only one object at a time

can be identified with the caller and

perform actions locally. This is an

unsecured approach, still a powerful

one.
. Delegate. The object can delegate the

caller's identity to other objects in

order for them to operate, using the

initial caller's rights. Even remote

operations can be performed. This

option will probably be supported in

the version of Microsoft Windows NT

which will succeed version 4.

4 Connection policy. It concerns the

protection of transmitted data. An entity

may choose to protect only the integrity of

data or their confidentiality as well. This

choice can be altered dynamically.

Connection policy also concerns

authentication. Before laying the ground

for protected communication, the identity

of the caller should be authenticated.

After that an impersonation level of the

ones previously described can be selected.

Clients are being authenticated at a first

stage by the security providers of the

underlying operating system.

Authentication credentials are cached in

order to avoid having the authentication

process repeated. This, however, raises

security issues regarding the secure

storage of the cached authentication

credentials.

5. Enterprise Java Beans (EJB)

EJB is Sun's implementation of distributed

component architecture. What seems most

promising with EJB is Sun's decision to

avoid defining an underlying infrastructure.

A set of standard application program

interfaces (API) provides access to existing

infrastructure services. Thus developers can

use their preferred infrastructure

environment, be it COM, CORBA, or any

other, to communicate with Enterprise Java

Beans Components. Security issues emerging

from the use of these infrastructures are

explicitly dealt with in other parts of this

paper. At the core of EJB is a container,

where components reside in the EJB server.

The container is responsible for all object

manipulation, from registering and creating

object instances to co-ordinating

transactions.

Apart from supporting a large set of

existing middleware infrastructures, Sun

provides Java applications with a way to

directly invoke methods on EJB server

components residing in a remote Java virtual

machine (JVM). These EJB components

implement one or more remote interfaces

and are called remote objects. The action of

invoking a remote method on such an object

is called remote method invocation (RMI).

RMI is another extension to the classic

remote procedure call communication

method, using stub and skeleton objects as

described in the introduction.

The most unique feature of RMI is the

ability to pass objects as method parameters

by value. Objects can be either remote (as

described above) or local (that do not

implement any remote interfaces). In the

case of remote objects, what is actually

downloaded is the bytecode of the stub object

of Figure 1. Thus the client can dynamically

extend its set of types to include the new

object. The stub object of course does nothing

more than forwarding client requests to the

skeleton object residing on the other side. In

the case of local objects the actual bytecode is

downloaded and executed on the remote VM,

providing certain services locally. Note that

this can be bi-directional (e.g. to allow the

server to perform certain callbacks on the

client).

Enterprise Java Beans security
Security in EJB is handled by the container.

No explicit security coding is needed for

server components, since every component

method is associated with a list of users

legitimate to execute it. This association is

defined in a set of AccessControlEntry

objects, used by the EJB container, which is

[9]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

used in order to check the user security

privileges regarding the server component.

The security model thus resembles the one of

DCOM, since a form of an access control list

is also used.

The major security concern has to do with

RMI itself. The possibility to download

executable content to the client machine

inherently includes the possibility to (Java,

1998):
. attack the integrity of the system;
. violate the user's privacy;
. limit system resources availability;
. achieve user's annoyance.

By implication, one has to carefully consider

what system resources and to what extent

may be made available to a downloaded

server object, without endangering the

system's security and at the same time

guaranteeing the usefulness of the executable

content. One of the primary system goals for

supporting distributed object in Java is to

`̀ . . .preserve the safety provided by the Java

runtime environment'' (RMI, 1997a). Towards

this end, Sun has extended the RMI

specification to fit well in the Java language

Security Model. A brief description of the

original Java Security Model vis-aÁ -vis mobile

executable content (applets) follows.

JAVA's security model provides a

customisable sandbox in which JAVA

programs run. This model restricts applet's

actions in a dedicated area of the Web

browser. Within its sandbox, the applet may

do anything it wants but cannot gain access

to the user's file systems, network

connections or other resources.

Applets are loaded from the network by the

applet ClassLoader that receives the bytecode

instruction stream and converts it into

internal data structures that represent the

applet's classes. The ClassLoader invokes the

Bytecode Verifier (Yellin, 1995) before

running a newly imported applet. The

Verifier subjects each applet class to a

number of safety tests (Sun, 1997): checks the

bytecode to ensure that it does not forge

pointers, (Sun, 1997) or access objects using

incorrect type information as well as any

other actions that could lead to partial

corruption of the security mechanism. The

security manager is an abstract class that

enforces the boundaries around the sandbox.

Whenever an applet tries to perform an

action that could corrupt the local system,

the JVM first asks the security manager if

this action can be performed safely. If the

security manager does not approve, a

security exception is raised and an error

message is written to the JAVA console.

The Java Development Kit 1.2 (JDK1.2)

includes a set of new features (Gong et al.,

1997; Gong, 1997) which introduce another

modus operandi for the Java security system.

JDK 1.2 will consist of the following new

protection mechanisms: security policy,

access permissions, protection domains,

access control checking, privileged operation

and Java class loading and resolution.

The security policy introduced by JDK1.2

is instantiated at JVM startup and may be

altered a posteriori via secure methods.

Permissions, in JDK 1.2, are not granted to

classes but to protection domains. The latter

consist of all the objects that correspond to a

principal who has been authorised by the

system. One of the future adjustments

pertinent to the protection domains is the

inclusion and usage of user authentication

and delegation information, in order to be

able for a piece of code to have different

permissions when executed by different

principals. User authentication information

inclusion and usage has already been tested

and performed to a certain degree (Balfanz

and Gong, 1997), (Gritzalis and Katsikas,

1996).

Java itself does not address efficiently the

problems that might arise from denial of

service attacks. However, research is being

performed in that field in order to provide

Java with the capability to limit the

percentage of CPU or memory available to a

specific applet (Gorrieri and Marchetti, 1998).

The RMI security model relies on the Java

security infrastructure to build the security

features it needs. The very first requirement

a client must satisfy to load classes from

remote machines is the presence of a security

manager, either defined by the application or

the RMISecurityManager provided by RMI

itself. If that requirement has not been

satisfied, stub loading is not allowed (RMI,

1997b).

There is a RMI-specific class loader used to

load stubs, skeletons, and other classes

needed by them, the RMIClassloader. Local

classes are loaded first, followed by stubs

loaded from the same or a remote machine.

Any subsequent calls to corresponding

objects force loading from the original source

with the same security privileges. Classes

used directly by these objects are also

loaded by the RMIClassLoader and are

subject to the same restrictions. What should

be noted is that after access to a resource

has been granted to an object, there currently

is no way to restrain the object from

abusing it.

[10]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

6. Comparative evaluation

In this section we compare various

characteristics of the three aforementioned

architectures. The criteria we will use, arise

from the previous descriptions of the three

architectures and hopefully highlight some

of the subtle security aspects and issues

concerning the three architectures.

Security policy ± flexibility
All three systems provide a clear set of

security services. CORBA does it through its

specification, Java Beans through its API,

and DCOM through its four aspects of

security. A flexible security policy can be

implemented, using the aforementioned

services and featuring a number of security

levels. CORBA provides for a wide range of

detailed security services and security levels

to which these services belong. CORBA

provides a solid framework for a scalable

DCS security scheme. The extensibility of the

CORBASEC as well as its ability to replace

certain functional parts of the security

scheme (e.g. security mechanisms) is

remarkable. Java Beans seems to be quite

flexible also, since user permissions are

assigned to object methods rather that the

objects alone. On the other hand, DCOM

assigns the responsibility to extend the

security mechanisms to the developer (e.g. in

order to make certain object methods more

secure than others).

Infrastructure dependency
By this we mean the ability of an

architecture to maintain its security features

when ported to arbitrary platforms. EJB has

been designed with portability in mind. The

security services API (provided by the

AccessControlEntry objects), as any other

API, is expected to be provided by all vendors

implementing an EJB container. Moreover,

EJB supports portability at the cost of an

underlying `̀ virtual machine'' that is not an

integral part of the operating system.

Increased portability is an advantage but

usually it results in decreased efficiency in

terms of application speed, system resources

available to the applications themselves and

most important it raises the potential of

attacks when a security aspect is well

established on one platform but more

vulnerable on others. On the other hand,

CORBA is platform neutral by definition

since it only provides a specification of the

architecture. Commercial and non-

commercial CORBA platforms provide their

own implementations of the CORBA security

services. These platforms are usually

platform dependent, since they are designed

for specific operating systems. However, the

CORBA specification ensures

interoperability on the security services

level. Finally, DCOM is the most platform-

dependent architecture when it comes to

security services. We are still waiting to see

an implementation on Macintosh and UNIX

that will provide adequate security support.

User vulnerability
This criterion is closely related to the

previous one. We make the distinction

though, to explicitly address the issue of

security-unaware users who connect to

objects of the three architectures in order to

use their services and the risk this imposes.

We have analysed how objects passed

through RMI conform to the Java Sandbox

security architecture. The security-unaware

user is provided with an adequate level of

security and with the safety of the code

execution, which is provided by the Java

virtual machine (JVM). In CORBA the

security-unaware user is also provided with

a basic level of services, while the security-

aware user can further control and adjust the

parameters of the respective security

mechanisms. Furthermore, the security-

aware user can use additional services, such

as delegation. On the contrary, DCOM

expects security awareness from the users, in

order to operate the security mechanisms it

offers and implement security services even

at the lowest level. The difference between

the basic level of protection offered by

CORBA and EJB to the security-unaware

users is that in EJB the users are provided

from the JVM with mobile code safety as

well.

The fact that there is no support for an

advanced audit filtering system in the models

we have examined probably renders the task

of security management a more difficult one,

when it comes both to security-aware and

security-unaware users.

Intra-architecture security preservation
This is a question that naturally comes to

mind since both Microsoft and Sun along

with major CORBA implementers are about

to provide the capability to communicate

with objects embedded in each other's

architecture schemes. What will probably

happen is a convergence between EJB and

CORBA with developers creating products

allowing EJB servers to run over CORBA

engines. Iona's OrbixHome v1.1 (Iona, 1998)

already supports such an integration. This

approach does not seem to impose any

security problems as long as the container

provides a robust implementation for the

EJB security API. Regarding DCOM,

[11]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

according to Sun, interaction between COM

clients and EJB servers does not make a

difference for the EJB server. We were not

able to designate how a user communicating

with COM is to be authenticated by the

AccessControlEntry object though. COM

communication with CORBA objects is still a

development process so there is not yet an

issue of security preservation between these

two architectures.

Interoperability
CORBA has not yet been tested that much in

the implementation field; at least as much as

the other models and especially DCOM. One

should take under consideration the fact that

the CORBA specification is too large and

detailed to be implemented even partially,

without running the risk of unforeseen

software bugs and vulnerabilities that may

come up later on. Furthermore, at the present

time a large number of commercial ORBs are

being implemented and marketed. The

promised interoperability level does not

seem to reflect itself in practice, at least for

the time being and to the degree described in

the specification.

CrySTINA is moving towards

improvements of its CORBA-like security

scheme, when it comes to interoperability of

security features of different systems. It is

expected that CrySTINA will provide a much

more interoperable security scheme, which

is probably going to be a subset of

CORBASEC, because secure interoperability

in TINA networks is of paramount

importance.

Trusted computing base
Remote method invocation significantly

extends current distributed object

architecture with its support for dynamically

loaded stubs and skeletons and its capability

to pass object code for execution to other

virtual machines. The RMI security model

conforms to the original Java security model,

which has been and continues to be under

continuous public scrutiny and improvement

by Sun. However, one should not neglect the

fact that RMI does make assumptions

regarding the security functionality provided

by the underlying operating system and

hardware. One of the most fundamental

security features of Java is its type safety.

However, without the proper memory

protection and segregation mechanisms from

the operating system, it would be much more

difficult to achieve.

These assumptions are also made by the

other models we have examined. DCOM, in

particular, relies heavily on the security

provided by the underlying operating

system, most often Microsoft Windows NT.

While this is a serious advantage in such

environments, clients residing on less secure

operating systems seem to be unguarded

from the server side.

Transparency
All the models we have examined hide the

complexities of the underlying mechanisms,

for networking and security, among others.

The level of transparency varies according to

the model but this is a feature that they could

improve even more. Certainly, security-

aware distributed components can make

better use of the security interfaces and

mechanisms provided by the models we have

examined, at the cost of the complexity the

application programmers have to face.

7. Conclusions

In this paper we have considered a number of

distributed component architectures and

their security features to support the

underlying infrastructure of Secure

Electronic Transactions. Authentication and

Electronic Payment, along with a number of

Corporate and Business to Business services

are likely to rely heavily on this

infrastructure, in order to establish a secure

electronic marketplace. We have also briefly

presented TINA, an architecture offering a

range of solutions for the up-and-coming

transactions involving digital merchandise.

We have seen that there are a lot of

security issues still to be examined, in

distributed component software systems.

However, the advances that have been

performed in this field recently do provide a

solid framework for studying further their

vulnerabilities and improving the

interoperable and distributed security

infrastructures that DCS systems need to

operate securely. Thus, along with ease of

deployment, flexibility and scalability,

vendors and individual organisations in the

electronic marketplace should also be

expected to improve and implement robust

security infrastructures, in order to provide

real value for their customers.

References
Balfanz, D. and Gong, L. (1997), `̀ Secure multi-

processing in Java'', available at <http://

www-Swiss.ai.mit.edu/~jbank/javapaper/

javapaper.html>

Concalves, M. (1998), Windows NT 4.0 Server

Security Guide, Prentice-Hall, Englewood

Cliffs, NJ.

CORBA (1998a), Common Object Services

Specification, available at <ftp://ftp.omg.org/

pub/docs/formal/98-07-05.pd>

[12]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

CORBA (1998b), Internet Inter-ORB Protocol v2.2,

available at <ftp://ftp.omg.org/pub/docs/

formal/98-07-01.pdf>

CORBA (1998c), Security Services Specification,

available at <ftp://ftp.omg.org/pub/docs/

ptc/98-01-02.pdf>

Dulepet, R. (1998), `̀ COM security in practice''

Microsoft Developer's Network Library,

available at <http://premium.microsoft.com/

msdn/library/techart/msdn_practicom.htm>

Freier, A., Karlton, P. and Kocher, P. (1996), SSL

specification, available at <http://

home.netscape.com/newsref/std/SSL.html>

Gollmann D. (1999), Computer Security, John

Wiley & Sons, New York, NY.

Gong L. (1997), `̀ New security architectural

directions for Java'', Proceedings of IEEE

COMPCON.

Gong, L., Mueller, M., Prafullchandra, H. and

Schemers, R. (1997), `̀ Going beyond the

sandbox: an overview of the new security

architecture in the Java Development Kit

1.2'', Proceedings of the USENIX Symposium

on Internet Technologies.

Gorrieri, R. and Marchetti, R. (1998), `̀ Applet

watch-dog: a monitor controlling the

execution of Java applets'', Proceedings of the

IFIP SEC'98, Austrian Computer Society,

pp. 15-23.

Gritzalis, D. and Katsikas, S. (1996), `̀ Towards a

formal system-to-system authentication

protocol'', Computer Communications, Vol. 19,

Elsevier, pp. 954-61.

Horstmann, M. and Kirtland, M. (1997), `̀ DCOM

Architecture'', Microsoft Developer's Network

Library, available at <http://www.microsoft.

com/windows/downloads/bin/nts/

dcom_architecture.exe>

Iona Information (1998), Orbix Home found at

<http://www.iona.com/info/

orbixhome.html>

Java Security (1998), available at <http://www-

swiss.ai.mit.edu/~jbank/javapaper/

javapaper.html>

Microsoft Corp. (1996), `̀ DCOM Technical

Overview'', available at <http://www.

microsoft.com/windows/downloads/bin/nts/

dcomtec.exe>

Object Management Group (OMG) (1999),

available at <http://www.omg.org>

RMI Specification (1997a), available at <http://

www.javasoft.com/products/jdk/1.1/docs/

guide/rmi/spec/rmiTOC.doc.html>

RMI Tutorial (1997b), available at <http://

www.javasoft.com/docs/books/tutorial/rmi/

index.html>

Rogerson, D. (1997), Inside COM, Microsoft Press,

Redwood, WA.

Spinellis, D., Kokolakis, S. and Gritzalis S. (1999),

`̀ Security requirements, risks, and

recommendations for small enterprise and

home-office environments'', Information

Management and Computer Security, Vol. 7

No. 3, pp. 121-8.

Staamann S. (1997), `̀ Overall integrity of service

control in TINA networks'', Proceedings of the

CMS'97 3rd IFIP TC6/TC11 International

Joint Working Conference on Communications

and Multimedia Security, Chapman & Hall,

London, pp. 3-15.

Staamann, S., Buttyan, L. and Wilhelm U. (1998),

`̀ Security in TINA'', Proceedings of the 14th

IFIPSEC '98 International Information

Security Conference, published by Austrian

Computer Society, pp. 111-22.

Sun Microsystems (1997), Frequently Asked

Questions ± Applet Security, available at

<http://java.sun.com/sfaq/>

Yellin, F. (1995), Low Level Security in Java,

available at <http://java.sun.com/sfaq/

verifier.html>

[13]

Stefanos Gritzalis,
John Illiadis and
Spyros Oikonomopoulos
Distributed component
software security issues on
deploying a secure electronic
marketplace

Information Management &
Computer Security
8/1 [2000] 5±13

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F09685220010312290&crossref=10.1016%2FS0140-3664%2896%2901139-5&citationId=p_12
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F09685220010312290&crossref=10.1109%2FCMPCON.1997.584679&citationId=p_9
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F09685220010312290&crossref=10.1109%2FCMPCON.1997.584679&citationId=p_9
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F09685220010312290&system=10.1108%2F09685229910371071&citationId=p_21
http://www.emeraldinsight.com/action/showLinks?doi=10.1108%2F09685220010312290&system=10.1108%2F09685229910371071&citationId=p_21

This article has been cited by:

1. Mohammed Hussein, Mohammad Zulkernine. 2007. Intrusion detection aware component-based systems: A specification-
based framework. Journal of Systems and Software 80:5, 700-710. [Crossref]

2. Stuart Maguire. 2007. Twenty-Five Years of National Information Systems in the NHS. Public Money and Management 27:2,
135-140. [Crossref]

3. S.A. Kokolakis, E.A. Kiountouzis. 2000. Achieving Interoperability in a Multiple-Security- Policies Environment. Computers
& Security 19:3, 267-281. [Crossref]

D
ow

nl
oa

de
d

by
 A

eg
ea

n
U

ni
ve

rs
ity

 A
t 0

2:
15

 1
5

M
ay

 2
01

8
(P

T
)

https://doi.org/10.1016/j.jss.2006.08.017
https://doi.org/10.1111/j.1467-9302.2007.00569.x
https://doi.org/10.1016/S0167-4048(00)88615-0

