
Specifying Electronic Voting Protocols in Typed MSR

[Extended Abstract]

Theodoros Balopoulos, Stefanos Gritzalis, Sokratis K. Katsikas
Department of Information and Communication Systems Engineering

University of the Aegean, Samos, Greece

tbalopoulos@aegean.gr, sgritz@aegean.gr, ska@aegean.gr

ABSTRACT
Electronic voting, as well as other privacy-preserving pro-
tocols, use special cryptographic primitives and techniques
that are not widely used in other types of protocols, e.g.
in authentication protocols. These include blind signatures,
commitments, zero-knowledge proofs, mixes and homomor-
phic encryption. Furthermore, typical formalizations of the
Dolev-Yao intruder’s capabilities do not take into account
these primitives and techniques, nor do they consider some
types of attacks that e-voting as well as other types of proto-
cols are designed to protect against, such as privacy attacks
due to undesired linkability of protocol executions. This
work aims to extend Typed MSR so that it is able to support
the specification of privacy-preserving protocols, as well as
the capabilities of a Dolev-Yao intruder designed to attack
such protocols.

Categories and Subject Descriptors: F.3.1 [Specifying
and Verifying and Reasoning about Programs]: Specification
techniques; D.2.4 [Software/Program Verification]: Formal
methods

General Terms: Security, Design, Verification

Keywords: Security Protocols, Specification, Electronic
Voting, Privacy, Dolev-Yao Intruder, Typed MSR

1. INTRODUCTION
Formal methods are an important tool for designing and

implementing secure cryptographic protocols. However, cer-
tain requirements are not covered as much as others in the
existing work on formal methods. A good example is the
requirement for the preservation of a voter’s privacy in an
e-voting protocol.
This work builds on the Typed MSR specification lan-

guage [5, 6], as well as on the authors’ previous work [3] on
Typed MSR, and aims to make it suitable for the specifica-
tion of e-voting and other privacy-preserving protocols, as
well as for the specification of a version of the Dolev-Yao
intruder [9] that is designed to attack such protocols. More

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WPES’05, November 7, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-228-3/05/0011 ...$5.00.

specifically, it aims to enable the specification of e-voting
protocols based on digital signatures, mixes and homomor-
phic encryption.

2. MESSAGES
Typed MSR is a strongly typed specification language

for security protocols, aiming to discover errors in their de-
sign. However, the standard language does not support the
message constructors needed for e-voting and other privacy-
preserving protocols. In Section 2.1 we give an overview
of messages in the standard version of Typed MSR, and in
Section 2.2 we introduce the needed message constructors.

2.1 Overview of Messages in Typed MSR
In Typed MSR, messages are obtained by applying mes-

sage constructors to a variety of atomic messages. Typically,
the atomic messages include principals, keys, nonces and
raw data. This is formalized by the following grammatical
production:

Atomic messages: a ::= A (Principal)
| k (Key)
| n (Nonce)
| m (Raw data)

In Typed MSR A, k, n and m range over principal names,
keys, nonces and raw data respectively. Raw data denotes
pieces of data whose sole function in a protocol is that they
are transmitted.
The message constructors typically present in Typed MSR

that will be of interest to us are those formalized by the
following grammatical production:

Messages: t ::= a (Atomic messages)
| x (Variables)
| t1, t2 (Concatenation)
| { t }k (Symmetric encryption)
| {{ t }}k (Asymmetric encryption)
| [t]k′ (Digital signature)

We will use the letter t (possibly sub-scripted) to range
over messages. We will write A, k, n and m (possibly sub-
scripted) for atomic constants or variables that are princi-
pals, keys, nonces and raw data respectively. We will also
use the letters B, S, M and V for principals.

2.2 Messages for e-Voting Protocols
To be able to specify e-voting protocols, we add mes-

sage constructors for probabilistic asymmetric encryption,

35

probabilistic digital signatures, commitment, blinding, zero-
knowledge proofs, vote aggregation and vote tallying:

Messages:
t ::= . . . (see above)

| {{ t }}n
k

(Probabilistic asymmetric encryption)

| [t]nk′

(Probabilistic digital signature)

| || t ||n (Commitment)
| 〈 t 〉kn (Blinding)
| ZBS(t, ns, k, nf)

(Zero-knowledge blind signature proof)

| ZAE(t, t
′, n, k)

(Zero-knowledge asymmetric encryption proof)

| P({{ t1 }}n1
k , . . . , {{ ti }}ni

k)

(Vote aggregation)

| S(t1, . . . , ti) (Vote tallying)

Asymmetric-key encryption and digital signatures
In order to accommodate homomorphic encryption in the
context of e-voting, we assume the use of an homomor-
phic encryption compatible cryptosystem featuring the ad-
ditive homomorphic property, such as the Paillier cryptosys-
tem [11]. However, Paillier is a probabilistic cryptosystem,
and, in order to formalize this, probabilistic asymmetric-
key encryption and digital signatures are made to depend
not only on a message t and a public or private key k or k′,
but on a nonce n as well.

Commitment Cryptographic commitment allows prin-
cipals to choose and commit to a value without revealing
it, in such a way that they are able to prove at a later time
that the value they reveal is indeed the originally committed
value.
Our abstraction of commitment is based on the non-inter-

active bit commitment using one-way hash functions. Ac-
cording to this method, the commitment of a message is the
hash of the concatenation of the message with a salt value,
which we can abstract as nonce n. The fundamental prop-
erties are that observing || t ||n will not reveal the values of t
and n, and that there is only one commitment for each dis-
tinct message-nonce pair. Note that the latter property is
implicit, because Typed MSR messages are atomic and can
solely be constructed by message constructors.

Blind Signatures A blind signature is a form of digi-
tal signature in which the content of a message is disguised
(blinded) before it is signed. The resulting blind signature
can be publicly verified against the original, unblinded mes-
sage in the manner of a regular digital signature.
Our abstraction of blind signatures and blinding is based

on Chaum’s blinding [8], according to which the construc-
tion of a blinded message depends on a blinding factor,
which we can abstract as nonce n, and on a public key k.
The fundamental property is that if message 〈 t 〉kn is signed
using private key k′ (which corresponds to public key k),
the resulting message can be unblinded using nonce n to
produce the digital signature of message t signed using k′.
Chaum’s blinding assumes the use of the RSA cryptosystem.

Zero-knowledge proofs A zero-knowledge proof is a
method for one principal to prove to another that a state-
ment is true, without revealing anything other than the ve-
racity of the statement.

The abstraction of a zero-knowledge blind signature proof
is based on the non-interactive cut-and-choose protocol in-
troduced in the selective disclosure protocol of Holt and Sea-
mons. The interested reader can refer to Section 3.2.2 of [10].
The fundamental property is that ZBS(t, ns, k, nf) proves
that t was used in the construction of 〈 || t ||ns 〉knf

without
disclosing nonces ns and nf .
The abstraction of a zero-knowledge asymmetric encryp-

tion proof is based on techniques discussed in [4]. The fun-
damental property is that ZAE(t, t

′, n, k) proves that the
value of t in {{ t }}n

k is no greater than t′ without disclosing
message t, nor nonce n.

Homomorphic encryption Homomorphic encryption
refers to certain properties of probabilistic public key cryp-
tosystems where correspondences can be proved to exist be-
tween functions on a certain group in the message space
and functions on the corresponding group in the ciphertext
space.
Our abstraction of homomorphic encryption is based on

properties of the Paillier cryptosystem [1], and will be for-
malized in terms of functions P and S. The first property
is that P({{ t1 }}n1

k , . . . , {{ ti }}ni
k) = {{ S(t1, . . . , ti) }}n

k where k
is a public key and t1, . . ., ti are messages. The second is
that S(t1, . . . , ti) represents the result of the tallying proce-
dure assuming that t1, . . ., ti represent the votes to be con-
sidered. The third is that P(P({{ t1 }}n1

k , . . . , {{ ti−1 }}ni−1
k),

{{ ti }}ni
k) = P({{ t1 }}n1

k , . . . , {{ ti }}ni
k), which allows for vote

aggregation without keeping all the encrypted votes, but
only the result of function P applied to its previous result
and the newly acquired encrypted vote.

3. TYPES
Typed MSR makes use of types to enforce basic well-

formedness conditions (e.g. that only keys can be used to en-
crypt a message), as well as to provide a statically checkable
way to ascertain desired properties (e.g. that no principal
can grab a key he is not entitled to access).

3.1 Overview of Types in Typed MSR
The typing of Typed MSR is based on the notion of de-

pendent product types with subsorting [2] and the basic types
are summarized in the following grammar:

Types: τ ::= principal (Principals)
| nonce (Nonces)
| shK A B (Shared keys)
| pubK A (Public keys)
| pubKP A (Probabilistic public keys)
| privK k (Private keys)
| privKP k (Probabilistic private keys)
| msg (Messages)

The notion of dependent product types with subsorting
accommodates the need of having multiple classifications
within a hierarchy. For example, everything that is of type
nonce, is also of type msg — but the inverse is not true.
Therefore, we say that nonce is a subsort of msg. In fact, all
the types listed above are subsorts of msg. We will use the
notation τ :: τ ′ to state that τ is a subsort of τ ′.

3.2 Types for e-Voting Protocols
To better cope with e-voting and other privacy-preserving

protocols, we introduce types for tractable, semitractable
and intractable messages:

36

Types: τ ::= . . . (see above)
| tract (Tractable messages)
| semitract (Semitractable messages)
| intract (Intractable messages)

Type tract is used to classify messages that are very com-
mon. Because of the tractable number of their possible
values, we consider that an intruder (regardless of whether
these messages are publicly known or not) is able to to find
them out by successfully employing a brute-force dictionary
attack on them. On the other hand, if a principal reveals
the same (tractable) message in more than one protocol or
subprotocol execution, the intruder will not be able to link
these executions together (at least not because of this partic-
ular message). Therefore, this classification isolates pieces
of information on the secrecy of which it is erroneous to base
the correctness of a protocol, but on the anonymity of which
it is safe to do so.
Type intract is used to classify messages that are very

uncommon. These are pieces of information on the secrecy
of which it is safe to base the correctness of a protocol, but
on the anonymity of which it is certainly erroneous to do so.
Type semitract is used to classify messages that are com-

mon enough to be considered realistic candidates for brute-
force dictionary attacks, but not common enough to be con-
sidered anonymous. It is not safe to base the correctness of a
protocol neither on the secrecy of such pieces of information,
nor on their anonymity.
We will now classify each of the standard types according

to their tractability. Private keys, shared keys and nonces
should be regarded as intractable. Principals should be re-
garded as semitractable: we should not base the correctness
of protocols on the number of available principals. Public
keys should also be regarded as semitractable for the same
reason.
Similarly to the standard types, tract, semitract and intract

should be regarded as subsorts of msg.

3.3 Signatures
Typed MSR has typing rules that check whether an ex-

pression built according to the syntax of messages can be
considered a ground message. These rules systematically
reduce the validity of a composite message to the validity of
its sub-messages. In this way, it all comes down to what the
types of atomic messages are. Typed MSR uses signatures to
achieve independence of rules from atomic messages. A sig-
nature is a finite sequence of declarations that map atomic
messages to their type. The grammar of a signature is given
below:

Signatures:
Σ ::= . (Empty signature)

| Σ, a : τ (Atomic message declaration)

For our extended type system, we will need two signa-
tures. Signature Σ will map atomic messages to one of the
standard types, and signature Γ will map them to one of
the extended types, i.e. classify them into tractable, semi-
tractable or intractable. We will write t :Σ τ to say that
message t has type τ in signature Σ, and we will write t :Γ τ ′

to say that message t has type τ ′ in signature Γ. Hence the
following two rules:

(Σ, α : τ,Σ′) 	 α :Σ τ
(SIG1)

(Γ, α : τ,Γ′) 	 α :Γ τ
(SIG2)

3.4 Type Rules
We will now present type rules for a selection of the mes-

sage constructors introduced in Section 2.2. These type rules
employ the new types introduced in Section 3.2.

Blind signatures Blind signatures can be considered to
be intractable because of the nonce (blinding factor) used in
the calculation.

Γ 	 t : τ Σ 	 k : pubK A Σ 	 nf : nonce

Γ 	 〈 t 〉knf
: intract

(BLIND)

Zero-knowledge proofs The zero-knowledge blind sig-
nature proof can be considered to be intractable, as two
nonces are used in its calculation (a salt value and a blind-
ing factor). However, we require that the underlying mes-
sage t of a zero-knowledge proof is tractable in order to avoid
linkability.

Γ 	 t : tract Σ 	 ns : nonce
Σ 	 k : pubK A Σ 	 nf : nonce

Γ 	 ZBS(t, ns, k, nf) : intract
(ZEROBS)

The zero-knowledge asymmetric-key encryption proof can
be considered to be intractable, as a nonce is used in its
calculation. However, we require that upper bound t′ of
message t is tractable in order to avoid linkability.

Γ 	 t : τ Γ 	 t′ : tract Σ 	 n : nonce Σ 	 k : pubKP A

Γ 	 ZAE(t, t′, n, k) : intract
(ZEROAE)

Vote aggregation The vote aggregation function P can
be considered to be tractable when applied to zero encrypted
votes (because P() is a known constant), and intractable
when applied to a non-zero number of encrypted votes (be-
cause each probabilistically encrypted vote is intractable).
Furthermore, the unencrypted votes should be considered
tractable for homomorphic encryption to give meaningful
results.

Γ 	 P() : tract (AGGBASE)

Γ 	 t1 : tract · · · Γ 	 ti : tract
Σ 	 n1 : nonce · · · Σ 	 ni : nonce Σ 	 k : pubKP A

Γ 	 P({{ t1 }}n1
k , . . . , {{ ti }}ni

k) : intract
(AGGSTEP)

Vote tallying The vote tallying function S can be con-
sidered to be tractable.

Γ 	 S() : tract (TALLYBASE)

Γ 	 t1 : tract · · · Γ 	 ti : tract

Γ 	 S(t1, . . . , ti) : tract
(TALLYSTEP)

4. THE DOLEV-YAO INTRUDER
In this Section, we present a selection of Dolev-Yao in-

truder capabilities which are relevant in attacks against e-
voting, as well as other privacy-preserving protocols.
It has been proved [12] that there is no point in consider-

ing more than one Dolev-Yao intruder in any given system.
Therefore, we can select a principal, I say, to represent the
Dolev-Yao intruder. Furthermore, we associate I with an
MSR memory predicate MI(), whose single argument can

37

hold a message, to enable I to store data out of sight from
other principals.
The rules that formally describe the relevant capabilities

of the Dolev-Yao intruder are represented below, and in the
same way as in [5].

Generate fresh intractable data The intruder may
generate fresh nonces, fresh private keys, fresh shared keys,
as well as other intractable messages.

� · → ∃ t :Γ intract. MI (t)
�I

Guess tractable and semitractable data The in-
truder may guess or get access to public keys, principals, as
well as other tractable or semitractable messages.

�∀ t :Γ tract. · → MI (t)
�I �∀ t :Γ semitract. · → MI (t)

�I

Notice that this rule can be used together with the previ-
ous one to allow the intruder to generate a key-pair by first
generating a fresh private key, and then by ‘guessing’ the
corresponding public key.

Probabilistically decrypt Probabilistic decryption re-
veals to the intruder who holds the necessary private key not
only the cleartext, but also the nonce representing the prob-
abilistic nature of encryption.

0
BBBB@

∀ t :Σ msg.
∀A :Σ principal.
∀ k :Σ pubKP A.
∀ k′ :Σ privKP k .
∀n :Σ nonce.

MI ({{ t }}n
k)

MI (k
′) → MI (t)

MI (n)

1
CCCCA

I

Unblind messages The intruder may unblind a blinded
message given the blinding factor (nonce).

0
BB@

∀ t :Σ msg.
∀A :Σ principal.
∀ k :Σ pubK A.
∀n :Σ nonce.

MI

�〈 t 〉kn
�

MI (n)
→ MI (t)

1
CCA

I

Unblind signatures The intruder may unblind a blinded
signature given the blinding factor (nonce), if the public key
used in the blinding corresponds to the private key used in
the signing.

0
BBB@

∀ t :Σ msg.
∀A :Σ principal.
∀ k :Σ pubK A.
∀ k′ :Σ privK k .
∀n :Σ nonce.

MI

�
[〈 t 〉kn]k′

�
MI (n)

→ MI ([t]k′)

1
CCCA

I

Observe a zero-knowledge proof The intruder will
get the same information as anyone else who observes a zero-
knowledge proof.

0
BBB@

∀ns :Σ nonce.
∀A :Σ principal.
∀ t :Σ msg.
∀ k :Σ pubK A.
∀nf :Σ nonce.

MI (ZBS(t, ns, k, nf)) →
MI (t)
MI (k)
MI(〈 || t ||ns 〉knf

)

1
CCCA

I

0
BBB@

∀ t :Σ msg.
∀ t′ :Σ msg.
∀n :Σ nonce.
∀A :Σ principal.
∀ k :Σ pubKP A.

MI (ZAE(t, t
′, n, k)) →

MI (t
′)

MI (k)
MI ({{ t }}n

k)

1
CCCA

I

Aggregate votes The intruder may generate the image
of zero votes under function P (induction base case).

(· → MI(P()))I

Furthermore, the intruder may aggregate encrypted votes as
he picks them up by holding their image under function P
(induction step).

0
BBBBBBBBB@

∀A :Σ principal.
∀ k :Σ pubKP A.
∀ t1 :Σ msg.
· · ·
∀ ti :Σ msg.
∀n1 :Σ nonce.
· · ·
∀ni :Σ nonce.

MI(P({{ t1 }}n1
k , . . . , {{ ti−1 }}ni−1

k))
MI({{ ti }}ni

k)

↓
MI(P({{ t1 }}n1

k , . . . , {{ ti }}ni
k))

1
CCCCCCCCCA

I

Tally votes The intruder may generate the image of
zero votes under function S (induction base case).

(· → MI(S()))I

Furthermore, the intruder may tally votes as he picks them
up by holding their image under function S (induction step).
0
BB@

∀A :Σ principal.
∀ t1 :Σ msg.
· · ·
∀ ti :Σ msg.

MI(S(t1, . . . , ti−1))
MI(ti)

→ MI(S(t1, . . . , ti))

1
CCA

I

Apply homomorphic encryption properties The
intruder may convert the image of the encrypted votes un-
der function P to the image of the (cleartext) votes under
function S.

0
BBBBBBBBBBB@

∀A :Σ principal.
∀ k :Σ pubKP A.
∀ t1 :Σ msg.
· · ·
∀ ti :Σ msg.
∀n1 :Σ nonce.
· · ·
∀ni :Σ nonce.
∀n :Σ nonce.

MI(P({{ t1 }}n1
k , . . . , {{ ti }}ni

k))

↓
MI({{ S(t1, . . . , ti) }}n

k)

1
CCCCCCCCCCCA

I

Furthermore, the intruder may do the opposite, i.e. convert
the image of the unencrypted votes under function S to the
image of the encrypted votes under function P.

5. SPECIFYING E-VOTING PROTOCOLS
We now demonstrate how the message constructors de-

scribed above may be employed in the specification of mixes,
and in the specification of two simple e-voting protocols.

5.1 Specifying Mixes
According to Chaum [7], a mix is a store and forward

device that accepts a number of fixed-length messages from
numerous sources, performs cryptographic transformations
on the messages, and then forwards the messages to the
next destination in a random order. The assumption is that
a single perfect mix adequately complicates traffic analysis
(although a sequence of multiple mixes is used in practice
because real mixes are not ideal).

38

Chaum’s mix makes use of deterministic asymmetric-key
encryption and nonce creation1. Here’s how A can send a
message to B using mix M :

A → M : {{n2, {{n1, t }}kB
, B }}kM

M → B : {{n1, t }}kB

5.2 Protocol based on Blind Signatures and
Mixes

Preparing the ballot Alice wants to participate in an
electronic election held by a voting Server. To do this, Alice
sends to the Server a zero-knowledge blind signature proof
for each of the two possible votes of this election, encrypted
using their shared key. The Server verifies the proofs, checks
that Alice is eligible for voting and that messages v1 and v2

represent the possible votes, signs the blind commitment of
each vote and sends the signatures back to Alice.

A → S : {ZBS(v1, s1, kS , f1),ZBS(v2, s2, kS , f2) }kAS

S → A : [〈 || v1 ||s1 〉kS
f1
]k′

S
, [〈 || v2 ||s2 〉kS

f2
]k′

S

Voting Alice unblinds the signatures of the blinded com-
mitments, which gives her the signatures of the commit-
ments. She can now cast her vote vA by sending the signa-
ture of the vote’s commitment—together with the vote itself
and the nonce used in the computation of the commitment—
to the Server via a Mix. The Server verifies its own signature
and, after checking that the commitment is indeed computed
using the data send, it accepts Alice’s vote.

A → M : {{n2, {{n1, vA, sA, [|| vA ||sA]k′
S
}}kS

, S }}kM

M → S : {{n1, vA, sA, [|| vA ||sA]k′
S
}}kS

Tallying The Server posts the commitment signatures,
together with the votes and nonces used in their computa-
tion, to a world-readable bulletin board, so that every voter
can verify the election result and check that his vote has
been counted in.

5.3 Protocol based on Homomorphic Encryp-
tion

Voting Alice wants to participate in an electronic elec-
tion held by a voting Server and a Voting authority. To do
this, Alice sends to the Server a zero-knowledge asymmetric
encryption proof of the vote vA she wishes to cast, encrypted
using their shared key. The Server checks that Alice is eligi-
ble for voting and verifies that her vote is valid, i.e. that it is
no greater than the maximum allowed vote v′. However, it
cannot decrypt her vote {{ vA }}nA

kV
, as it is encrypted using

the Voting authority’s public key.

A → S : {ZAE(vA, v′, nA, kV) }kAS

Tallying The Server applies the additive homomorphic
encryption property and computes the election result, en-
crypted using the Voting authority’s public key. It then
sends it to the Voting authority, encrypted using their shared
key.

1
Chaum uses nonce creation in order to guarantee that the asym-
metric encryption result is intractable. In our formalization, this is
sometimes redundant.

S → V : { {{ S(. . . , vA, . . .) }}n
kV

}kSV

Furthermore, the Server posts the encrypted votes to a world-
readable bulletin board, so that every voter can check that
his vote has been counted in, and also verify the calculation
of {{ S(. . . , vA, . . .) }}n

kV
. Finally, the Voting authority posts

the result of the election S(. . . , vA, . . .), as well as nonce n,
so that every voter can verify the election result.

6. SUMMARY AND CONCLUSIONS
In this extended abstract, we have presented an extension

of Typed MSR that makes it suitable for the specification
of e-voting and other privacy-preserving protocols. Indeed,
we have shown that the introduced non-interactive mes-
sage constructors for blind signatures, commitments, zero-
knowledge proofs and homomorphic encryption, as well as
the introduced modelling of mixes, make the standard lan-
guage rich enough to specify some simple e-voting proto-
cols based on these cryptographic primitives and techniques.
Furthermore, the extended type system makes the standard
language capable of statically checking against attacks on
privacy. Finally, the introduced extended version of the
Dolev-Yao intruder creates a formal framework on which
attacks on e-voting and other privacy-preserving protocols
may be attempted.
Further work will focus on the formal specification of more

complex, real world e-voting protocols.

7. REFERENCES
[1] Alessandro Acquisti. Receipt-free homomorphic elections and

write-in ballots. Technical Report 2004/105, International
Association for Cryptologic Research, May 2004.

[2] D. Aspinall and A. Compagnoni. Subtyping dependent types.
In E. Clarke, editor, Proceedings of the 11th Annual
Symposium on Logic in Computer Science, pages 86–97.
IEEE Computer Society Press, July 1996.

[3] Theodoros Balopoulos, Stefanos Gritzalis, and Sokratis K.
Katsikas. Specifying privacy-preserving protocols in Typed
MSR. Computer Standards & Interfaces, 27(5):501–512, June
2005.

[4] Fabrice Boudot. Efficient proofs that a committed number lies
in an interval. In EUROCRYPT, pages 431–444, 2000.

[5] Iliano Cervesato. Typed Multiset Rewriting Specifications of
Security Protocols. In A. Seda, editor, First Irish Conference
on the Mathematical Foundations of Computer Science and
Information Technology — MFCSIT’00, pages 1–43, Cork,
Ireland, 19–21 July 2000. Elsevier ENTCS 40.

[6] Iliano Cervesato. Typed MSR: Syntax and Examples. In V.I.
Gorodetski, V.A. Skormin, and L.J. Popyack, editors, First
International Workshop on Mathematical Methods, Models
and Architectures for Computer Networks Security —
MMM’01, pages 159–177, St. Petersburg, Russia, 21–23 May
2001. Springer-Verlag LNCS 2052.

[7] David Chaum. Untraceable electronic mail, return addresses,
and digital pseudonyms. Communications of the ACM, 4(2),
February 1981.

[8] David Chaum. Security without identification: transaction
systems to make big brother obsolete. Communications of the
Association for Computing Machinery, 28(10):1030–1044,
October 1985.

[9] D. Dolev and A. C. Yao. On the security of public key
protocols. IEEE Transactions on Information Theory,
2(29):198–208, 1983.

[10] Jason E. Holt and Kent E. Seamons. Selective disclosure
credential sets. Accessible as
http://citeseer.nj.nec.com/541329.html, 2002.

[11] P. Paillier. Public-key cryptosystems based on discrete
logarithms residues. In Advances in Cryptology - Eurocrypt
’99, pages 223–238. Springer-Verlag LNCS 1592, 1999.

[12] Paul Syverson, Catherine Meadows, and Iliano Cervesato.
Dolev-Yao is no better than Machiavelli. In P. Degano, editor,
First Workshop on Issues in the Theory of Security —
WITS’00, pages 87–92, July 2000.

39

