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Abstract 
 

In the present paper, Random Forests are used in a 

critical and at the same time non trivial problem 

concerning the diagnosis of Gas Turbine blading 

faults, portraying promising results. Random forests-

based fault diagnosis is treated as a Pattern 

Recognition problem, based on measurements and 

feature selection. Two different types of inserting 

randomness to the trees are studied, based on different 

theoretical assumptions. The classifier is compared 

against other Machine Learning algorithms such as 

)eural )etworks, Classification and Regression Trees, 

)aive Bayes and K-)earest )eighbor. The 

performance of the prediction model reaches a level of 

97% in terms of precision and recall, improving the 

existing state-of-the-art levels achieved by )eural 

)etworks by a factor of 1.5%-2%. Furthermore, 

emphasis is given on the pre-processing phase, where 

feature selection and outliers identification is carried 

out, in order to provide the basis of a high 

performance automated diagnostic system. The 

conclusions derived are of more general interest and 

applicability.  

 

1. Introduction 
 

Development of effective Gas Turbine Condition 

Monitoring and Fault Diagnosis methods has been the 

target of considerable research in recent years. This is 

due to the high cost, sensitivity and importance of these 

engines for most industrial companies. Most of this 

research is directed towards the diagnosis of Gas 

Turbine blading faults, because of the catastrophic 

consequences that these faults can have, if they are not 

diagnosed in time. Even very small blading faults can 

very rapidly grow and result to huge destructions ([1], 

[2], [3]). 

Blading faults diagnosis is regarded to be a very 

difficult problem, because of the high levels of noise in 

all relevant measurements and the high interaction 

between the numerous Gas Turbine blading rows. 

Therefore, it is very important to take advantage of 

the processing power of modern computers, in order to 

provide a fast and reliable engine condition diagnosis 

from available measurements and to develop the 

highest possible level of intelligence and assistance to 

the operation and maintenance personnel. 

The Gas Turbine Blading Fault Diagnosis problem 

was originally addressed in [4] and [5], based on 

classical pattern recognition methods. In the present 

paper, Random Forests, an ensemble classification 

methodology with promising characteristics, is applied 

for the first time on the task at hand. Applying two 

different types of randomness insertion into the 

individual trees of a forest, we evaluate which performs 

better, as opposed to results obtained by other classical 

Machine Learning algorithms, such as Neural 

networks, Classification and Regression Trees 

(CART), Naive Bayes, and K-nearest neighbor (KNN). 

As regards to Neural networks, researchers mention 

that they portray the best results among the other 

methodologies, at a level of 95%-96% [6]. Our 

contribution to the domain, is the introduction of an 

ensemble classifier, namely Random Forests, which 

outperforms all previous attempts to Gas Turbine 

Blading Fault Diagnosis. Furthermore, Random Forests 

can provide some insight on the inter-relationships 

between input features, unlike Neural nets, thus 

directing domain experts at selecting which 

measurement tools to use in real world applications. 

The outline of the paper is as follows: in Section 2, 

the Gas Turbine Blading Fault Diagnosis problem is 

described, as well as the specific faults to be diagnosed 

and the type of instrumentation and measurements 

used. In this section, some preprocessing issues are also 

introduced, regarding feature selection and outlier 

identification, from which the corresponding pattern 

(feature vector) is calculated. In Section 3, the 

implementation of the Random Forests approach to the 

classification problem is described. In Section 4, the 



experimental results are discussed, followed by some 

concluding remarks. 

 

2. Problem and data description 
 

The present work is based on data acquired from 

dynamic measurements on an industrial Gas Turbine 

into which different faults were artificially introduced. 

During the experimental phase four categories of 

measurements were performed simultaneously:  

1. Unsteady internal wall pressure (using fast 

response transducers P2 to P5).  

2. Casing vibration (using accelerometers A1 to A6 

mounted to the outside compressor casing).  

3. Shaft displacement at compressor bearings (using 

transducer B).  

4. Sound pressure levels (using double layer 

microphone M).  

 

A schematic representation of the Gas Turbine 

schema, illustrating the measuring instruments’ 

arrangement is depicted in Figure 1. 

 

 
Figure 1. Arrangement of the measuring instruments. 

Positioning directives: A1 and A4 are at the same position, 

only the latter is rotated by 90 degrees. In a similar manner, 

A2 with A5 and A3 with A6. 

 

Five experiments were performed, testing the datum 

healthy engine and a similar engine with the following 

four typical small (but quite rapidly growing, as 

mentioned in the introductory section) and also not 

straightforwardly diagnosable faults:  

1. Fault1: Rotor fouling.  

2. Fault2: Individual rotor blade fouling.  

3. Fault3: Individual rotor blade twisted (by appr. 8 

degreed).  

4. Fault4: Stator blade restaggering.  

 

Tests were performed at four different engine loads 

(full load, half load, quarter load and no load), both for 

the healthy engine as well as for the above four faults. 

At each load, four series of time domain data were 

acquired for each instrument (two series in each of the 

two sampling frequencies, l = 13 kHz and m = 32 kHz). 

The fault signatures were initially calculated in the 

form of spectral difference patterns, defined by the 

following expression: 

 

( )  20[log( ( )) -  log( ( ))]P f sp f sph f=  

 

where P(f) is the spectral difference pattern, which 

is a function of frequency f, sp(f) is the power spectrum 

of the signal of the measuring instrument from a faulty 

engine, and sph(f) is the signal spectrum from a healthy 

engine at the same load, sampling frequency and 

measurement series. Also, the most useful diagnostic 

information is contained at the harmonics of the shaft 

rotational frequency. This led to filtering out the values 

of P(f) at frequencies other than the shaft rotational 

frequency harmonics. The resulting pattern from this 

filtering, Pr(f), is referred to as reduced spectral 

difference pattern (and for simplicity ‘pattern’ in the 

following), and is given by the following equation: 

 

Pr( )  ( ) *  ( )f P f H f=  

 

where H(f)=1, if f is a rotational harmonic, and 

H(f)=0, for all other frequencies. 

Patterns were calculated for frequencies up to the 

27-th harmonic of the shaft rotational frequency, i.e. 

patterns belong to a 27-dimensional space [7]. An 

example of the pattern calculation procedure described 

above is shown in the following figure for power 

spectra of unsteady pressure transducer P2. 

 
Figure 2. Pattern calculation procedure for power spectra of 

unsteady pressure transducer P2. 

 

2.1. Goal of the study 
 

As we described above, for the present Gas Turbine 

Blading Fault Diagnosis problem, twelve (12) different 



measuring instruments were installed. Our goal is to 

check whether we are able to use Data Mining 

techniques as a diagnostic tool, in order to reduce the 

number of these instruments to one or two. In this 

manner we can achieve an important cost reduction, 

taking the fact that measurement series of this kind are 

costly and the maintenance personnel have to be 

specialized as well into consideration. 

Nevertheless, if we are able to forecast a potential 

damage, we can deter machine’s downfall, which 

entails substantial costs for any enterprise. The 

objective is to find a model and an instrument 

designing such that can foretell quite reliably a Gas 

Turbine’s fault condition. 

 

2.2. Data Description 
 

As mentioned before, 12 different measuring 

instruments were used and measurements were taken 

for every possible combination between engine’s 5 

operational conditions (healthy engine and 4 faulty 

conditions), 4 different engine loads (full load, half 

load, quarter load and no load) and 2 sampling 

frequencies (low and high). To be more precise, 

regarding engine’s healthy condition, measurements 

have been taken for every combination between the 

engine load and sampling frequency (total 8 different 

combinations). Especially in engine’s faulty condition 

there’s been one more measurement series for all the 

above combinations. Consequently, for every 

instrument we have aggregately 72 different 

measurements: 8 healthy engine’s measurements and 

64 faulty engine’s measurements. For every instrument, 

each and every one of the above measurements consists 

of 27 values that are forms of the spectral difference of 

the first 27 harmonics of rotor’s shaft rotational 

frequency. So, if we would like to present the entirety 

of data in a data base then this would be composed of 

864 instances described by 27 distinct attributes, 

corresponding to the 27 harmonics that were mentioned 

above. 

 

2.3. Pre-processing 
 

Since a large number of input sensors was used, 

feature selection and outlier identification issues had to 

be confronted, in order for the classification model to 

be built in a robust and effective manner. In order to 

perform feature selection, we estimated the importance 

of each variable using the Gini index and sorted them 

in descending order (from the most important to the 

least important value). The feature importance graph 

provided important information regarding the 

significance of each variable to the classification 

process. By using correlation tests, these results were 

verified. As a last pre-processing step, removal of noisy 

data points was carried out, using statistical techniques 

[7]. 

 

3. Random forests 
 

Despite the fact that Random Forests ([8], [9]) have 

been quite successful in classification and regression 

tasks, to the best of our knowledge, there has been no 

research in using the afore-mentioned algorithm for 

Gas Turbine Fault Diagnosis. 

Nowadays, numerous attempts in constructing 

ensemble of classifiers towards increasing the 

performance of the task at hand have been introduced 

([10], [11], [12]). A plethora of them has portrayed 

promising results as regards to classification 

approaches. Examples of such techniques are 

Adaboost, Bagging and Random Forests [13]. Random 

Forests are a combination of tree classifiers such that 

each tree depends on the values of a random vector 

sampled independently and with the same distribution 

for all trees in the forest. The generalization error of a 

forest of tree classifiers depends on the strength of the 

individual trees within the forest and their inter-

correlation. Using a random selection of features in 

order to split each node yields output error rates that 

compare equally to Adaboost, yet they are more robust 

with respect to noise. While traditional tree algorithms 

spend a lot of time choosing how to split at a node, 

Random Forests perform this task with little 

computational effort. Compared with Adaboost, 

Random Forests portray the following characteristics:  

 

• the accuracy is as good as Adaboost and 

sometimes better. 

• they are relatively robust to outliers and noise. 

• they are faster than bagging or boosting. 

• they provide useful internal estimates of error, 

strength, correlation and variable importance. 

• they are simple and easily parallelized. 

 

A Random Forest multi-way classifier Θ(x) consists 

of a number of trees, with each tree grown using some 

form of randomization, where x is an input instance 

[14]. The leaf nodes of each tree are labeled by 

estimates of the posterior distribution over the data 

class labels. Each internal node contains a test that best 

splits the space of data to be classified. A new, unseen 

instance is classified by sending it down every tree and 

aggregating the reached leaf distributions. The process 

is described in figure 3. Each tree is grown as follows: 



• If the number of cases in the training set is N, 

sample N cases at random but with replacement, 

from the original data. This sample will be the 

training set for growing the tree. 

• If there are M input variables, a number m<<M is 

specified such that at each node, m variables are 

selected at random out of the M and the best split 

on these m is used to split the node. The value of 

m is held constant during the forest growing. 

• Each tree is grown to the largest extent possible. 

Therefore, no pruning is applied. 

 

 
Figure 3. Hierarchical decomposition of a Random Forests 

classifier on a data set 

 

As regards to the overall error rate of the Random 

Forests, this is affected by two different factors: 

 

1. Tree inter-correlation. Highly correlated trees 

result in high error rate. 

2. Robustness (strength) of each individual tree 

within the forest. Higher strength results in 

lower error rates. 

Upon completion of the tree construction step, the 

set of data are run down the tree, and proximity values 

are computed for each pair of cases. If two cases 

occupy the same terminal tree node, their proximity is 

augmented by one. At the end of the run, proximities 

are normalized, divided by the number of trees. 

In order to make the classification process more 

formal, suppose that the joint classifier Θ(x) contains x 

individual classifiers Θ1(x), Θ2(x),...,Θx(x). Let us also 

assume that each data instance is a pair (x,y), where x 

denotes the input attributes, taken from a set Ai, 

i=1,...,M and y symbolizes the set of class labels Lj, 

j=1,...,c (c is the number of class values). For reasons 

of simplicity, the correct class will be denoted as y, 

without any indices. Each discrete attribute Ai takes 

values from a set Vi, i=1 to mi (mi is the number of 

values attribute Ai has). Finally, the probability that an 

attribute Ai has value vk is denoted by p(vi,k), the 

probability of a class value yj is denoted by p(yj) and 

the probability of an instance with attribute Ai having 

value vk and class label yj is symbolized by p(yj |vi,k). 

Each training example is picked up from a set of N 

instances at random with replacement. By this 

procedure, called bootstrap replication, a pool of 

36.8% of the training examples are not used for the tree 

construction phase. These out-of-bag (oob) instances 

allow for computing the degree of strength and 

correlation of the forest structure. Suppose that Ok(x) is 

the set of oob instances of classifier Θk(x). 

Furthermore, let Q(x, yj) denote the subset of oob 

samples which were voted to have class yj at input 

example x. An estimate of p(Θ(x) = yj) is given by the 

following equation: 
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where I(·) is the indicator function. 

 

The margin function which measures the extent to 

which the average vote for the right class y exceeds the 

average vote for any other class labels is computed by: 

1,
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j j y j

x y P x y

P x y
= ≠

= Θ =

Θ =

 

Since strength is defined as the expected margin, it 

is computed as the average over the training set: 
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The average correlation is given by the variance of 

the margin over the square of the standard deviation of 

the forest: 
2

(margin)
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σ
=

Θ
, is estimated for every 

input example x in the training set Q(x, yj). 

We used unpruned decision trees as base classifiers 

and introduced two different additional methods for 

randomness to the trees. Following Breiman’s 

approach, we utilized the Random Input Forests and 

the Random Combination Forests algorithms. 

Nevertheless, for both methods, the evaluation metric 

on which tree nodes are chosen to split is the Gini 

index, taken from the CART algorithm. Other similar 

metrics presented by researchers are Gain ratio [15], 

MDL [16] and Relief-F [17]. The formula of the Gini 

index is as follows [18]: 
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3.1. Random input forests 
 

The simplest random forest with random features is 

formed by selecting at random, at each node, a small 

group of input variables to split on. Grow the tree using 

CART methodology to maximum size and do not 

prune. The process is tabulated below: 

For building K trees: 

• Build each tree by: 

o Selecting, at random, at each node a small 

set of features (F) to split on (given M 

features). Common values of F are: 

� 1. F=1. 

� 2. F=log2(M) + 1. 

o For each node split on the best of this 

subset (using oob instances). 

o Grow tree to full length. 

 

3.2. Random combination forests 
 

This approach consists of defining more features by 

taking random linear combinations of a number of the 

input variables. That is, a feature is generated by 

specifying L, the number of variables to be combined. 

At a given node, L variables are randomly selected and 

added together with coefficients that are uniform 

random numbers on [-1,1]. F linear combinations are 

generated, and then a search is made over these for the 

best split. The complete procedure is as follows: 

For building K trees: 

• Build each tree by: 

o Create F random linear sums of L 

variables: 

1

L

f fj i

i

A b x
=

=∑ , where bfj = uniform 

random number on [-1,+1] 

o At each node split on the best of 

these linear boundaries. 

o Grow tree to full length. 

 

4. Experimental results 
 

We applied the two versions of Random Forests 

(Random Input (RI) Forests and Random Combination 

(RC) Forests) on the Gas Turbine data set, using oob 

estimates. As for evaluation metric, we considered per-

class precision and recall. Accuracy in some domains, 

such as the one at hand, is not actually a good metric 

due to the fact that a classifier may achieve high 

accuracy by simply always predicting the non faulty 

class. This problem particularly appears in the present 

task, where, from more than 2/5 of the data set 

contained the afore-mentioned class. A set of well-

known machine learning techniques have constituted 

the benchmark to which our results have been 

compared: Multilayer Perceptron Neural Networks, 

Naive Bayes, Classification and Regression Trees 

(CART), and k-Nearest Neighbor (kNN) instance 

based learning. Cross-validation was performed with 

kNN in order to determine the best k. 

As regards to the Random Forests implementation, 

the best results were obtained by using 500 trees and 6 

features. The evaluation outcomes are depicted in the 

following two figures (F1 to F4 denotes the fault 

categories and OK denotes the non faulty state) 

 

 
Figure 4. Precision metric for all methodologies. 

 
Figure 5. Recall metric for all methodologies. 

 

Both of the Random Forests implementations 

outperform all other algorithms. RC is slightly better 

that RI, however the increase is very small, so that we 

could claim that they perform similarly. 

Due to lack of space, we only provide the margin 

curve for the most effective algorithm (RC) in figure 6. 

The margin curve prints the cumulative frequency of 

the difference of the actual class probability and the 

highest probability predicted for the other classes As 

can been observed, the majority of instances are 



correctly classified by the Random Forests model, 

since they are located near the area of probability one 

(the right part of the graph). 

 

 
Figure 6. The margin curve as extracted for the RC 

algorithm. 

 

5. Conclusion 
 

We have shown that an ensemble method such as 

Random Forests is well suited for the task of predicting 

Blading faults on a Gas Turbine. Results have indicated 

that, regardless of the method of injecting randomness 

to the trees of the forest, that algorithm outperforms all 

previous approaches and presents state-of-the-art 

outcomes in terms of precision and recall. More 

specifically, both Random Input Forests and Random 

Combination Forests appeared to be more accurate than 

Naive Bayesian, Neural Networks, Classification and 

Regression Trees and k-Nearest Neighbor classifiers. 

Furthermore, the structure of the forests can provide 

essential feedback to the domain experts, as regards to 

the most effective (both in accuracy and cost figures) 

number of measuring units required for the creation of 

an automated diagnosis framework with desirable 

characteristics. 

The reduction in measuring units is beneficial since 

there is a significant decrease in cost. Nevertheless, we 

are of the belief that such ensemble methods like the 

one at hand can be applied to other domains with 

similar robust behavior. 
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