
Partial and Fuzzy Constraint Satisfaction to
Support Coalition Formation

Petros Belsis,1 Stefanos Gritzalis2 and Sokratis K. Katsikas 3

Information and Communications Systems Engineering
University of the Aegean

Karlovasi Samos, GR 83200, Greece

Abstract

The creation of dynamic coalitions is a challenging task, seen from a security perspective. Due to the
presence of conflicting requirements and specifications, the policy negotiation and policy merging processes
call for the use of efficient techniques to resolve ambiguities. Constraints and constraint programming
on the other hand, are useful means for representing a wide range of access control states and access
control problems. In this paper we utilize constraints to represent access control policies in a multi-domain
environment. In contrast to monolithic (crisp) constraint satisfaction techniques, we extend the applicability
of constraints for access control, by examining soft constraints and partial constraint satisfaction. We also
introduce a security framework based on fuzzy constraints that allows the determination of preferences for
the participating domains.

Keywords: Coalitions, fuzzy constraints, policies, Role Based Access Control (RBAC)

1 Introduction

The emergence and rapid proliferation of networked infrastructures introduce new

challenges to the integration of Information Systems. Coalitions between autonomous

systems are often formed between organizations that jointly work under a common

framework (ex. Ministries in e-government infrastructures, interconnected hospi-

tals in e-healthcare environments), in order to enable access over shared resources

[11]. Security under these circumstances is a major concern, since heterogeneity,

different policy specifications and diverse restrictions emerge for each domain. It is

also apparent that under these circumstances, conflicts are expected to emerge. The

formation of such coalitions and their security management are time-consuming and

error prone, if we rely more on human intervention and less on the use of flexible

1 Email: pbelsis@aegean.gr
2 Email: sgritz@aegean.gr
3 Email: ska@aegean.gr

Electronic Notes in Theoretical Computer Science 179 (2007) 75–86

1571-0661 © 2007 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2006.08.032
Open access under CC BY-NC-ND license.

mailto:pbelsis@aegean.gr
mailto:sgritz@aegean.gr
mailto:ska@aegean.gr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

methods and automated tools [8].

Instead, we propose a framework that facilitates security management using con-

straints. Constraints are an important aspect of Role Based Access Control Models,

which currently attracts considerable attention in the security research area. Var-

ious access-control restrictions and security related parameters can be formulated

using constraint based representations. Particularly in a multi-domain environ-

ment, security management is harder to implement, since local policies introduce

additional constraints leading to several types of conflicts; it has also been proved

that the problem of interoperation among multiple policies can be considered as an

instance of the satisfiability problem [3,10], which is known to be NP-complete.

Therefore, in cases where multiple constraints may lead to dead-ends, partial con-

straint satisfaction techniques can provide alternative ways to find an acceptable

solution.

The contribution of our work is on the following: we show the applicability of partial

constraint satisfaction methods as a support tool for conflict resolution. We also in-

troduce a flexible security framework, based on the combination of fuzzy constraints;

through this framework domains in a multiple policy environment may define their

preferences over shared resources. Therefore, the administrative overhead of the

system can be minimized significantly, without violating critical constraints.

The rest of the paper is organized as follows: Section 2 discusses partial constraint

satisfaction techniques and briefly discusses the use of constraints for access control.

Section 3 introduces our fuzzy constraint framework and provides a detailed exam-

ple on the utility of this framework to resolve policy conflicts. Section 4 discusses

related work in comparison with our approach. Section 5 concludes the paper and

provides directions for future work.

2 Constraints for Role Based Access Control (RBAC)
Specification

A constraint satisfaction problem (CSP) consists of a set of problem variables, a set

of domain values, which can potentially be assigned to these variables, and a set

of constraints specifying which combinations of values are acceptable. Informally,

we can consider a constraint as a combination of acceptable values for a set of

problem variables. Constraints are an important aspect of RBAC. RBAC regulates

the access of users to information and systems resources, on the basis of tasks that

users need to execute within the system limits. A complete RBAC model includes

the following variables and functions:

• The sets U (users), R (roles), P (permissions) and S (sessions)

• User to role assignment UA ⊆ U × R: U → 2R

• Permission to role assignment PA ⊆ P × R : R → 2P

• A mapping of sessions to a single user assignment US: S → U

• A mapping from sessions to the set of roles associated with each session S → 2R

• A partial ordering RH ⊆ R × R, represented by the symbol: ≥ , which defines

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8676

role hierarchy. R1 ≥ R2 implies that R1 inherits permissions from R2.

We can therefore consider U = 〈U1, U2, .., Un〉 the set of users, which map to a set

R = 〈R1, R2, ..Rm〉 of roles, and we can also consider a set O = 〈O1, O2, .., Ok〉 of

shared resources. Additionally, access attributes may be considered members in a

totally ordered set A = 〈w, x, r, wx, .., wrx〉 (combination of values w, r, x as de-

noted in UNIX c©notation). We are interested in forming constraint specifications

which are triplets of the form < R,O,A >.

In multi-domain environments, we are interested in assigning privileges to users be-

longing to another domain. This raises complexity, since classifying permissions in-

dependently for each user for his (her) and other domains may significantly increase

the number of entries in an access matrix (depending on the number of participating

domains and shared resources). Instead we adopt the solution of policy mappings

[2], that allow the determination of corresponding roles from one domain to an-

other. Specifically, we introduce a mapping process F(Ri,Ok,Ai) → (Rj , Og, Al))

that maps roles Ri from one domain to roles Rj from other domain. In order to

ensure authorized accesses, the global policy that emerges from merging the local

policies has to be compliant with restrictions originating from the participating do-

mains. We will attempt to provide a framework that resolves such conflicts, while

reducing the administrative overhead (without violating any critical constraints).

2.1 Problem formulation - Shared resources access example

Through the forthcoming paragraphs we will use an example of a (non-critical) con-

flict for an access control problem in multi-domain environments. For the descrip-

tion of the problem as well as for its solution, we will use a qualitative description

of constraints. In Section 4 we will extend our framework by incorporating fuzzy

constraints in the same example. Different types of conflicts as well as a more for-

mal description of other possible types of conflicts (separation of duty, etc) are not

covered due to space limitations; however, they can be treated in a similar manner.

We will consider the case of two interconnected domains attempting to establish

encrypted communication through IPSec [12]. According to the policy mappings

predefined by coalition administrators, a remote role from domain B is assigned to

domain A as (superior) Role R (Fig.1).

According to RBAC principles, R may inherit permissions from R1 or R2. Now

considering this classification of the remote user from domain B, we want to estab-

lish a way to (semi-)automatically assign access permissions in order for him/her

to be able to access the shared resources. Due to restrictions imposed by IPSec

local policies (such as local firewall rules) such a task may be subject to additional

constraints. For example, in IPSec a local firewall may deny the establishment

of a channel between the two domains if remote access is attempted through an

encrypted channel. If this happens, then the local policy restrictions do not al-

low interoperation between the two domains. We assume that in domain A two

databases are maintained: DB1 and DB2, with DB1 holding data more sensitive

than DB2. Role R1 may be allowed to access (read) Database DB2 and DB1 (the

second database should not be allowed to be viewed or altered remotely). In this

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–86 77

r xw

DB1 DB2

d=1

DB1 DB2

R1 R2

Role
Hierarchy

mappingsR (Superior Role)

mappings

d=0

d=1

d=3

d=0 d=1 d=1

d=3 d=3
r xw r xw r xw

d=0

Fig. 1. A policy mapping example between two interconnected medical domains.

case access to both is denied by local firewall rules due to the restrictions imposed

by IPSec. Additionally, Role R2 may not access DB2 remotely and should not

(strict restriction) gain access to DB1. The remote access restriction on all types

of files also holds for Role B.

2.2 Partial satisfaction techniques for overcosntrained problems

In order to find acceptable combinations of the form 〈R,O,P 〉, the first choice

would be to use a classical algorithm such as backtracking and perform a search

examining all the possible value combinations (in order to associate access rights

with the shared objects for the remote role of Domain B). It is easy for someone to

verify that all combinations fail, since we are referring to remote, encrypted access

attempts. (the dashes over permissions in Fig.1 indicate failure of all combinations).

Instead of exhaustive searching for a perfect solution that violates no constraints,

we can use an alternative to backtracking approach; branch and bound technique

[6] is looking for a solution that satisfies no less than a predetermined bound N

(N can dynamically change during the search). In the branch and bound search

algorithm, the distance parameter measured by N can be set initially according to

a-priori knowledge (or according to domain’s preferences) and defines the preference

to satisfy no less than N constraints. During the search for a solution a search path

consists of a set of assigned values over the domain variables of interest. The search

path leading to the most recently chosen value for a variable is the current search

path. In algorithm 1 each role in the hierarchy of remote domain B is checked against

the existence of corresponding roles on Domain A; accordingly for the predefined

available mappings an assignment of Objects and Permissions is performed, storing

always the solution found so far that violates as fewer constraints as possible. N,

S and Best-solution are global variables in the algorithm, containing the necessary

and sufficient bounds (domain’s preferences) and the best solution found so far,

during the iterative repetitions of the algorithm.

Our approach calculates for all pairs of roles for both collaborating domains the

values < Ri, Rj,O, P >, thus calculating for each role on a domain the possibility

to access resources from other domains (based on the grounds of maximal constraint

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8678

Algorithm 1 Step 1: For each role ri (ri is a role belonging to the remote domain)

Step 2: For each role rj (rj is a role belonging to the target domain)

Step 3: If mapping between roles exists (ri → rj) then Call Classify PA BB S

(role-hierarchy-path, Distance, DomainA-roles, Objects, Permissions, Values)

[PA BB S:Classify based on PArtial Branch and Bound Search and backtrack] [Backtrack Search: Partial

Searches in order to try combinations of values over the search path and associate Access rights (permis-

sions / privileges) with objects]

Step4: Return

Step 5: Subroutine Classify PA BB S (Search path, Distance, Variables, Values)

([Variables: the Domain variables of interest] [Values: Values assigned to the variables] [Search path: a

Set of assigned values over the domain variables] [Dimension: The number of constraints violated by the

specific combination of values] [S Bound: Dynamically computed in each iteration bound])

Step 6: If Variables=nil then [Values have been assigned to all variables in Search-path]

Step 6:Best-solution ← Search-path, N ← Distance

Step 7: If N≤ S Bound then return ’FINISHED’ [Satisfactory solution was found]

Step 8: Else return ”KEEP - SEARCHING” [repeat with another value for the last variable

assigned to Search-path]

Step 9: Else if Distance =N then Return ”KEEP - SEARCHING” [Search-path was

extended to assign values for remaining variables that do not violate more constraints]

Step 10: Else [try to extend Search-Path] Current-value ← (first value in Values)

New Distance ← Distance

Step 11: Try choices in Search-Path from first to last, as long as New Distance<N

Step 12: If choice is inconsistent with Current-value then New Distance ←

New Distance+1

Step 13: If New Distance < N and Classify PA BB S (Search-path plus current-

value,New Distance, Variables minus first variable, Values of second variable in

Variables) = ’FINISHED’ then return ’FINISHED’ [Search-path sufficiently extended]

Step 14: else [check for another value] return Classify PA BB S (Search-path, Distance,

Variables, Values minus current value)

satisfaction, which provides a form of optimization). The advantage of branch and

bound is that it does not need to search all possible pairs and that it can stop

when a satisfactory solution is detected (thus achieving better response times for

the overall system performance).

The algorithm crosses the search tree, by moving down to the lowest level of the

tree, each level corresponding to a problem variable. A set of assigned values to

the problem variables consists of a search path. The term ”distance” refers to

the number of constraints violated by a specific combination of values. In our

example, by the time we chose to assign to role R the permissions of role R2 (since

a superior role inherits the permissions of a minor role) and by the moment we

attempt to provide access to DB1, we have a constraint violation, leading to the

assignment d=1. Next, by attempting to classify permissions (one level below at

the search path) over the resources, we have d=3, since DB1 should not be accessed

or modified remotely by any role, and role R2 should not be eligible at all to access

the specific resources. N is used to store the number of inconsistencies in the

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–86 79

best solution. As the branch and bound search proceeds, a better solution is found

violating one single constraint (R1,DB2, r) where only the encrypted remote reading

privilege is violating the domain’s policy). By relaxing this (non-critical) constraint,

the aforementioned RBAC policy integration approach seems to be able to get a

satisfactory solution (in Fig. 1 this solution is indicated by a circle). Therefore, by

applying partial constraint satisfaction techniques it is possible to achieve solutions

to the multiple policies paradigm (excluding critical policy restrictions). We have

to note also that this technique does not guarantee that the best solution will be

found; Depending on the circumstances often immediate answers are required; for

example a policy decision is subject to time restrictions. In such a case the algorithm

provides the best solution found (within pre-specified time intervals). It is also not

definite that a solution will be found; in worst case the search times are no better

than backtracking (exponential).

3 Fuzzy constraints

In contrast to crisp constraints, soft constraints allow determination of preferences

between values (k-tuples) that can be assigned to a set of variables [7]. These pref-

erences may be considered as members of a totally ordered (fuzzy) relation, that

assigns to each tuple a level of preference μe(u1, .., uk) in a totally ordered set [0,1].

As a fuzzy constraint we can consider a mapping from a domain (D = D1, .,Dk)

to the [0,1] interval. For a fuzzy constraint c the number c(v1, .., vk) denotes ”how

well” the tuple (v1, .., vk) satisfies the constraint.

We can extend therefore the notion of a CSP to incorporate fuzzy preferences:

as a fuzzy CSP we can consider a list of variables (x1, .., xk), a list of finite do-

mains of values (D1, .,Dk) and a list of fuzzy constraints (c1, ., ck). An instantiation

v∗ ∈ D is considered as a perfect solution if all individual constraints are satisfied.

v∗ ∈ D is a best solution if the degree of joint satisfaction of all the constraints

C((c1, c2, .., ck)v∗) is maximal [5]. By using soft constraints we can determine mul-

tiple ways to handle preferences.

We assume that these preferences are encoded in a fuzzy relation R that asso-

ciates each k-tuple (u1, .., uk) with a level of preference P(u1, .., uk). PR(u1, .., uk) >

PR(u
′

1, .., u
′

k) means that (u1, .., uk) is preferable over (u
′

1, .., u
′

k). PR(u1, .., uk) = 0

means that tuple (u1, .., uk) fully violates the constraint while PR(u1, .., uk) = 1

means the constraint is fully satisfied.

3.1 Fuzzy relations

Fuzzy restrictions are an alternative formalism to describe fuzzy constraints, offering

the ability to express prioritized constraints. They offer the possibility to model

priorities -similar to preferences- expressed by levels in the scale [0,1]. A coefficient

ac expresses the priority degree of each constraint C and indicates the degree to

which C must be satisfied. ac = 1 means the constraint has to be fully satisfied,

while ac = 0 means it can be totally ignored. Therefore a fuzzy relation S on

U1 × .. × Uk can model the pair (C, ac) as a fuzzy relation μS(u1, .., uk)=1 in case

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8680

(u1, .., uk) satisfies the constraint C or μS(u1, .., uk) = 1−ac if (u1, .., uk) violates it.

In other words, μS is determined by whether the maximum value is achieved through

satisfying the constraint or by violating it; For a soft constraint C, modeled by the

fuzzy relation R, the pair (C, ac) is represented by the fuzzy relation μS(u1, .., uk) =

max(1 − ac, μR(u1, .., uk)) [5].

Of great value is also the ability to treat concurrently multiple constraints. Two

operations can be defined under this context: combination and projection. Given

two subsets W = {w1, ., wk} and Y = {y1, ., yi} of the sets of variables (x1, ..xk),

where W ⊆ Y and a fuzzy relation T restricting the possible values of Y, then

the projection of T on W is a fuzzy relation R = T↓W , defined by μR(w1, ., wk) =

sup{(uy1,,u(yh))/(uy1,,uy2)↓W=(uw1,,uwk)}μT (uw1, , uwk) where (uw1, ..uwk) denotes the

restriction of (uy1, ..uyi) on W. Informally, the fuzzy relation μR denotes to what

extent a partial instantiation (uw1, .., uwk) of Y can be extended to a complete

instantiation of Y that satisfies T. This is very important in case we have first

instantiated the constraints of interest and we want to extend the least important

constraints so as to satisfy (partially) the given problem to the highest degree.

The combination T = R⊗S of two fuzzy restrictions R and S, restricts the possible

values of two sets of variables X and Y over the possible values of W = X ∪ Y . It

is defined by μT (uw1, .., uwk) = min{(μR(uw1, .., uwk) ↓ X), (μR(uw1, .., uwk) ↓ Y)}.

Typically the outcome of μ(R1⊗R2⊗R3⊗..⊗Rm)(u1, .., un), estimates to what extent

the combination (u1, .., un) of values satisfies jointly the constraints. Therefore it

enables us to transform preference levels on constraints into preference degrees on

the possible solutions.

In addition we may consider the set of individual constraints as a decomposition of

a fuzzy global relation ρ = R1 ⊗ R2 ⊗ R3 ⊗ .. ⊗ Rn, restricting the combination of

values that may be assigned to the set of variables (x1, ..xn). Even if there is no

correlation in the set of constraints {R1, R2, .., Rm}, ρ implies a restriction between

the acceptable values for a variable, no matter what values are assigned to other

variables. In most cases there is an implied variation on values that can be assigned

to other variables: ρ↓{xi,xj} ⊂ ρ↓{xi} ⊗ ρ↓{xj}.

3.2 Towards fuzzy solutions

The solution of fuzzy constraint problems in most of the cases emerges as an ex-

tension of a partial solution, that instantiates the values in the given variables

sequentially in such a manner that the given instantiation satisfies all the defined

constraints. The notion of partial satisfaction is of primary importance within the

context of fuzzy constraint problems. Selection criteria for constraint satisfaction

can be the instantiation of the most critical values first, or alternatively the most

constrained values first.

The appropriateness ai(v) of a value v ∈ Di for a variable xi is evaluated on the

basis of the degree of the best possible joint satisfaction of the constraints referring

to xi. It is defined as ai(v) = max{C((ci1, .., cih), v)|v ∈ Di1×, × Dik−1 × {v} ×

Dik+1.. × Dih}. We can also measure the difficulty of a variable, according to the

formula di =
∑

v∈Di
αi(v)[4]. This metric can be used as an estimation of the most

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–86 81

critical parameter, which should be instantiated first. While looking for a best solu-

tion we first instantiate variables with a limited set of appropriate values, in order

to apply branch and bound techniques (which keep track of the best so far known

good solution). By calculating the degree of satisfaction of an existing partial so-

lution, we continue exploring only further solutions that achieve higher degree of

satisfaction. All partial instantiations for which the degree of satisfaction does not

exceed the best solution found so far are then excluded from further consideration.

3.3 Applying fuzzy constraints for access control

R

R 1 R 2

DB 1
DB 2

d= 0.8

O bject
d=1.3 P ermission

d=2.5

w x r
d=1.0

Con -
straint

Satisfa -
ction

R
(role)

P
(permi -
ssion)

O
(Object)

0.8 R 1 w
1 R 1 r

0.7 R 1 x
0.1 R 2 w

C 1

0.2 R 2 r
0.5 R1 DB 1

0.8 R1 DB 2

0.1 R 2 DB 1

C 2

0.2 R 2 DB 2

0.4 w DB 1

0.8 w DB 2

0.5 r DB 1

0.8 r DB 2

0.5 x DB 1

C 3

0.7 x DB 2

Fig. 2. a(left). Expressing preferences over constraints b(right). Calculation of values to reach the best
solution.

We now re-consider the role - permission assignment problem of Section 2. We

will model the problem as a FCSP with variables R (role), O (object) P (permission)

with value-domains {R1, R2}, {DB1,DB2}, and {w,r,x} respectively. We have de-

fined a matching preference according to different combinations of variables, which

is represented in (Fig. 2a) (some combinations which are totally unacceptable are

not represented). As already discussed, the problem is over-constrained and there

is no exact solution; we can consider partial solutions only.

We will utilize as measures the appropriateness and difficulty of a variable that

were described in paragraph 4.2, in order to calculate optimal solutions that satisfy

the given constraints to the highest extent. Therefore we calculate for the domain

variables starting from the role variable R: aR(R1) = 1, aR(R2) = 0.2, dR = 1.2.

For variable P (permissions), we have: ap(r) = 1, ap(w) = 0.8, ap(x) = 0.7 dp = 2.5

while for variable O (objects to be accessed): ao(DB1) = 0.5 and ao(DB2)=0.8

giving a dO = 1.3. Hence, the most critical variable R that achieves lower value

for the difficulty metric is first instantiated getting the value R1, which is the value

that satisfies best the constraint.

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8682

Next, among the two remaining variables, the most critical needs to be instanti-

ated. Since there has been a selection for R, the search space for the remaining

values has been reduced so as to include combinations that include the R1 choice

for the R selection (Fig 2a). Therefore, for the remaining two variables we have:

aP (w) = 0.8, aP (r) = 1, aP (x) = 0.7, with difficulty dP = 2.5 and aO(DB1) = 0.5,

aO(DB2) = 0.8 with difficulty dO(O) = 1.3. From the last calculation it is obvious

that the next variable to be instantiated is Object (O) (since the difficulty for this

variable is lower) and the most appropriate value (Object) to be assigned to the

already selected R1 value (for the role variable) is DB2.

We have achieved so far to automatically classify R1 to be most possible to access

DB2, which satisfies better among the two choices the constraint; the next step is to

check for inconsistencies with the possible combinations of permissions. We can see

that the most acceptable solution is r, which achieves higher degree of satisfaction.

Therefore we conclude that the most satisfactory combination is the triplet 〈R,O,P 〉

〈R1,DB2, r〉 (Fig. 2b). The total satisfaction degree of the achieved solution is given

by the product combination principle Cprod((c1, .., cn), v) =
∏n

i=1 ci(vi). This metric

estimates to what extent a given set of values satisfies the total set of constraints.

In our case the achieved total degree of satisfaction is 0.8.

3.4 Prototype evaluation

Fig. 3. Access Control architecture. The sequence of messages following a request from a remote or local
domain is listed in execution order

In this section we briefly describe our prototype implementation architecture.

Our basic authorization module builds upon the XACML [14] operational princi-

ples. It consists of the following entities (Fig. 3): The Policy Enforcement Point

(PEP) which grants access to roles, the Policy Decision Point which reasons over a

specific access request after evaluating the requestor’s credentials and the request

according to the available policy and the Context Manager (CM) which are re-

sponsible for collecting and sending to the PDP context related attributes, such as

domain specific information.

We have implemented a special purpose registry that stores the policy mappings

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–86 83

and the preferences of the domains codified as numeric entries in a matrix. This

registry is distributed as suggested in [11], [9] in order to avoid introducing a

single point of failure. In brief, the overall operation of this multi-domain autho-

rization framework, functions as follows: The policy administrator edits the policy

and makes it available to the domain, through the Policy Decision Point (PDP).

When a request for a resource appears (Fig 3), its consistency has to be validated

with the local security policy prior to execution. In case of a request from a remote

domain, the available mappings and the domain preferences are retrieved. A calcu-

lation of the fuzzy parameters is performed, as described in section 3.3. Next, each

request (from the same or from remote domain) is directed to the Policy Enforce-

ment Point (PEP). The request is constructed in an appropriate XML message and

directed to the Policy Decision Point (PDP). Prior to the validation of the request,

the Context Manager sends additional subject, resource, action and environment

attributes to the PDP. Accordingly, the request is validated from the PDP and a

response message is sent to the policy enforcement point (PEP), which handles the

details about providing authorization to the requester.

The fuzzy decision module that calculates the criticality of constraints, presents to

the administrator conflicts that achieve high satisfaction degrees (and therefore do

not constitute critical conflicts). It can thus facilitate the administration of the

coalition by rejecting immediately all the critical violations and by requesting fur-

ther treatment for remote requests that are close to satisfying most of the locally

imposed restrictions.

4 Related work

The importance of constraints for RBAC representation has been recorded recently

in the relevant security literature.

Barker and Stuckey [1] apply constraint logic programming to express policies and

present an easy to implement technique to represent multiple access control policies.

In their work they do not provide support for multiple access control restrictions,

such as limitations to access objects at certain locations (incorporated in our ap-

proach). They also do not discuss issues of partial constraint satisfaction in the

case of presence of diverse domain restrictions; moreover, they do not discuss the

possibility to determine preferences over constraints.

Khurana et al. [8] define a model for the dynamic management of coalitions based

on the RCL 2000 language. Coalition formation is performed as a round robin ne-

gotiation where domains make proposals about the management of shared coalition

assets resources. A coalition access control matrix is formulated, that keeps records

of allowed accesses; the matrix is being modified during the negotiation process and

as intermediate system states are formed. Conflict resolution techniques are not

discussed. Our work, focuses mainly on resolving non-critical conflicts in a secure

manner with minimal human intervention.

In [13] Shafiq et al. define a policy merging algorithm that allows the determina-

tion of a global policy, based on a merging process of the individual access control

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8684

policies. For conflict resolution they define an Integer Programming (IP) based

approach. In their work a global policy is formed as a sum of all roles and role

hierarchies of constituting domains; this makes it hard to reflect policy updates,

since the policy merging algorithm requires polynomial time. In our work, policy

updates are easily integrated in the registry, while there is support to define domain

preferences through fuzzy relations.

Bonatti et al [4] propose an algebra for the creation of an access control policy

out of simpler policies. In their model, the expressiveness of their language is anal-

ysed with respect to first order logic. They show that the formal semantics of their

language are equivalent to first order logic formulations. Our work, instead, builds

a model that allows the determination of domain preferences by means of fuzzy

expressions.

In [15] a flexible framework is proposed that combines subpolicies in a hierarchical

manner. This framework allows the determination of safe release paths and pro-

vides support for conflict resolution by defining a number of policy operators. Our

work, instead, builds upon constraints instead of logic programs, while introducing

flexibility by using fuzzy constraints.

In [11], a scalable solution supporting the dynamic formation of coalitions is pro-

posed, utilising a distributed service registry, similar to the coalition registry intro-

duced in our approach. Our approach extends the functionalities of this approach

by codifying the domain preferences in a matrix (stored at the registry) and calcu-

lating dynamically the degree of satisfaction of constraints, based on the values of

this matrix.

5 Conclusions

The multi-domain policy formulation process is a complex task, subject to the

presence of multiple -and of diverse characteristics- restrictions. In order to support

coalition formation and to resolve conflicts, a model based on partial constraint

satisfaction has been introduced. This framework has been extended using fuzzy

constraints, which allow the determination of domain preferences and prioritization

over constraints. We have additionally illustrated the validity and applicability of

our framework by applying it to an RBAC-driven example. A prototype architecture

that builds upon standardised languages and utilises principles of our framework,

has also been described in this paper.

We are currently working on expanding the ability of our model to cover a wider

range of constraints. We also plan to measure the performance of the resolution

procedures in the presence of multiple constraints, by using a large number of access

request queries from different domains as input .

References

[1] Barker, S. and P. Stuckey, Flexible access control policy specification with constraint logic programming,
ACM Transactions on Information Systems Security (TISSEC) 6 (2001), pp. 501–546.

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–86 85

[2] Belsis, P., S. Gritzalis and S. Katsikas, A scalable security architecture enabling coalition formation
between autonomous domains, in: 5th IEEE International Symposium on Signal Processing and
Information Technology (ISSPIT05), 2005, pp. 560–566.

[3] Bharadwaj, V. and J. Baras, Towards automated negotiation of access control policies, in: 4th IEEE
International Workshop on Policies (IEEE Policy), 2003, pp. 77–86.

[4] Bonatti, P., S. D. C. diVimercati and P. Samarati, A modular approach to composing access control
policies, in: 7th ACM Conference on Computer and Communications Security (CCS ’00), 2000, pp.
164–173.

[5] Dubois, D., H. Fargier and H. Prade, The calculus of fuzzy restrictions as a basis for flexible constraint
satisfaction, in: IEEE International Conference on Fuzzy Systems, 1993, pp. 1131–1136.

[6] Freuder, E. and R. J. Wallace, Partial constraint satisfaction, Artificial Intelligence 8 (1992), pp. 21–70.

[7] Kaburlasos, V. G. and V. Petridis, Learning and decision-making in the framework of fuzzy lattices, in:
L. Jain and J. Kacprzyk, editors, New Learning Paradigms in Soft Computing, Physica-Verlag GmbH,
Studies in Fuzziness and Soft Computing series, Heidelberg, Germany, 2002 pp. 55–96.

[8] Khurana, H., V. Gligor and J. Linn, Reasoning about joint administration of coalition resources, in:
International Conference on Distributed Computing Systems, 2002, pp. 429–439.

[9] Malatras, A., G. Pavlou, P. Belsis, S. Gritzalis, C. Skourlas and I. Chalaris, Deploying pervasive
secure knowledge management infrastructures, International Journal of Pervasive Computing and
Communications 1 (2005), pp. 265–276.

[10] McDaniel, P. and A. Prakash, Methods and limitations of security policy reconciliation, in: IEEE
Symposium on Security and Privacy, 2002, pp. 73–87.

[11] Mukkamala, R., V. Atluri and J. Warner, A distributed service registry for resource sharing among
ad-hoc dynamic coalitions, in: IFIP 11.1 & 11.5 Joint Working Conference on Security Management,
2005, pp. 319–336.

[12] Rfc 2401:security architecture for the internet protocol, http://rfc.net/rfc2401.html .

[13] Shafiq, B., J. Joshi, E. Bertino and A. Ghafoor, Interoperation in a multidomain environment employing
rbac policies, IEEE Transactions on Knowledge and Data Engineering 17 (2005), pp. 1557–1577.

[14] Xacml extensible access control markup language specification 2.0, http://www.oasis-open.org .

[15] Yao, C., W. Winsborough and S. Jajodia, A hierarchical release control framework, in: IFIP 11.1 &
11.5 Joint Working Conference on Security Management, 2005, pp. 121–140.

P. Belsis et al. / Electronic Notes in Theoretical Computer Science 179 (2007) 75–8686

http://rfc.net/rfc2401.html
http://www.oasis-open.org

	Introduction
	Constraints for Role Based Access Control (RBAC) Specification
	Problem formulation - Shared resources access example
	Partial satisfaction techniques for overcosntrained problems

	Fuzzy constraints
	Fuzzy relations
	Towards fuzzy solutions
	Applying fuzzy constraints for access control
	Prototype evaluation

	Related work
	Conclusions
	References

