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Abstract. RFID technology constitutes a fundamental part of what is
known as the Internet of Things; i.e. accessible and interconnected ma-
chines and everyday objects that form a dynamic and complex environ-
ment. In order to secure RFID tags in a cost-efficient manner, the last
few years several lightweight cryptography-based tag management pro-
tocols have been proposed. One of the most promising proposals is the
HB+ protocol, a lightweight authentication protocol that is supported
by an elegant security proof against all passive and a subclass of ac-
tive attackers based on the hardness of the Learning Parity with Noise
(LPN) problem. However, the HB+ was shown to be weak against ac-
tive man-in-the-middle (MIM) attacks and for that several variants have
been proposed. Yet, the vast majority of them has been broken.

In this paper, we introduce a new variant of the HB+ protocol that can
provably resist MIM attacks. More precisely, we improve the security of
another recently proposed variant, theHB# protocol by taking advantage
of the properties of the well studied Gold power functions. The new
authentication protocol is called GHB# and its security can be reduced
to the LPN problem. Finally, we show that the GHB# remains practical
and lightweight.

1 Introduction

Radio Frequency Identification (RFID) technology constitutes a fundamental
part and key enabler of what is known as the Internet of Things (IoT); i.e. ac-
cessible and interconnected machines and everyday objects that form a dynamic
and complex environment. In the IoT vision, the Internet extends into our every-
day lives through a wireless network of uniquely identifiable objects or ‘things’.
RFID tags are much “smarter” and more efficient than the classical barcode
and can provide us with the data needed to manage ‘things’, unmanageable un-
til today; thus rendering RFID the most pervasive technology in human history.
Each physical object is accompanied by a rich, globally accessible virtual object
that contains both current and historical information on that object’s physi-
cal properties, origin, ownership. When available ubiquitously and in real time,
this information can dramatically streamline how we manufacture, distribute,
manage, and recycle our goods.
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Applications ranging from inventory monitoring, and payment systems to
supply-chain management and smart home devices are already taking advan-
tage of the RFID technology. However, this rapid proliferation of RFID tags
raises several security and privacy concerns. Given also that, in order to sustain
the pervasiveness, the cost of the tag must remain as low as possible; i.e. space,
as well as, peak and average power consumption limitations must be instituted,
it was identified early on that new lightweight cryptographic protocols have to
be deployed for their management.

In this context, several new lightweight schemes have been proposed in the
last few years ([1]), mainly for secure tag authentication. Amongst the proposed
solutions, the most prominent ones are the authentication schemes that are based
on the conjectured hardness of the Learning Parity in the presence of Noise
(LPN) problem, which is closely related to the well-studied problem of decoding
random linear codes.

Definition 1. (LPN Problem) Let A be a random (q × k)-binary matrix, let x
be a random k-bit vector, let η ∈ (0, 1/2) be a noise parameter, and let ν be a
random q-bit vector such that wt(ν) ≤ ηq. Given A, η, and z = A ·xt+νt, find
a k-bit vector yt such that wt(A · yt + z) ≤ ηq.
In [12], Juels and Weis proposed HB+, a symmetric key authentication scheme,
inspired by HB ([11]), the work of Hopper and Blum for the secure identification
of human beings. The HB+ has very simple circuit representation, as it performs
only a few dot-product and bit exclusive-or computations. In more detail, the
prover (the Tag) and the verifier (the Reader) exchange random binary vectors
a and b, and the prover based on this exchanged information and two secret
vectors x and y, produces and transmits to the verifier one bit z = ax⊕ by+ ν,
where ν is one bit that follows a Bernoulli distribution with parameter η ∈ (0, 12 ).
The verifier accepts z = ax ⊕ by. This basic interaction has soundness 1

2 and
completeness 1− η and it is improved via sequential or parallel composition, i.e.
the verifier accepts if after r repetitions of the basic round at most t times the
condition is not satisfied.

Certainly, the most interesting feature of the protocol is the elegant proof
that supports its security analysis. Specifically, in [12], a concrete reduction of
the LPN problem to the security of the HB+ protocol in two attack models was
shown. In the first model the attacker is passive and can only eavesdrop the
communication between the prover and the verifier, while in the second model
she is active and she can also send queries to the prover. The original proof was
further simplified and extended in [13], [14].

However, the above described attack models do not include more powerful
adversaries, like the ones that can manipulate messages exchanged between the
reader and the tag. Thus, it came as no surprise that soon after the introduction
of the HB+, it was shown ([7]) that there is a simple man-in-the-middle (MIM)
attack that can easily reveal the secret vectors x and y. Motivated by this MIM
attack, several variants of HB+ have been proposed ([6],[8], [2], [24], [22], [3],
[20], [16], [25]). However, most of these schemes have been shown to be weak
against a MIM attacker.
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Recently, the first two HB+ variants that can provably resist MIM attacks
have been proposed and both are based on equivalent to LPN problems. In [15],
Kiltz et al. built on the Subspace LWE problem to construct two secure Message
Authentication Code (MAC) schemes. However, both these schemes require the
application of Pairwise Independent Permutation, while the secret keys are very
long. In [4], Bosley et al., introduced the Learning Subspace with Noise (LSN)
problem and they showed the equivalence between the LPN and LSN. Based on
the LSN problem, they introduced an authentication protocol and they proved
its security against MIM attacks. This protocol is equivalent to the second MAC
scheme introduced in [15].

1.1 Our Contribution

In this paper, we propose a new variant of the HB+ protocol that can provably
resist all known MIM attacks. More precisely, we improve the security of another
recently proposed variant, the HB# protocol ([8]), by taking advantage of the
properties of the Gold power functions. The HB# protocol was introduced by
Gilbert et al. and it was provably secure against the attack that succeeded against
HB+([7]). However, Oaufi et al. [21] presented another MIM attack on HB#.
The main objective of our work is to enhance the security of HB# by adding
some nonlinear components without increasing significantly its complexity.

The idea of using nonlinear functions to built secure LPN-based authentica-
tion protocols is not new. In [2], Bringer et al. proposed the HB++ protocol, a
modified version of the HB+ protocol that could resist the attack in [7] using a
specific family of nonlinear multi-output Boolean functions, the Gold functions.
Gold functions can be efficiently implemented in hardware, they have been ex-
tensively studied in the literature and they possess very good cryptographic
properties, like high nonlinearity and good derivative behaviour, and for that
they constitute an excellent choice. However, HB++ was shown to be weak [9].
A more recent attempt to introduce nonlinear HB-like protocols by Madhavan
et al. [18] was also unsuccessful ([23]).

Our protocol, called GHB#, is the first nonlinear variant of HB+ that it
is provably resistant against MIM attacks. Our reduction is using rewinding,
like in the case of the HB+ and HB# protocol and the security is based on
the hardness of the LPN problem. Moreover, we show that, despite the use of
nonlinear functions, the GHB# protocol remains as practical and lightweight as
its direct ancestor HB#.

1.2 Outline

The paper is organized as follows. In Section 2, we establish the necessary back-
ground on vectorial Boolean functions with emphasis in the family of Gold func-
tions. In the same section, we describe the HB# protocol. In Section 3, we present
the new authentication protocol and in Section 4, we provide efficient implemen-
tation guidelines and we compute the overall complexity. In Section 5, we provide
the security analysis and we prove that the new protocol is secure against active



492 P. Rizomiliotis and S. Gritzalis

attackers that can interrogate a tag and/or modify all the exchanged messages
between a tag and the reader. Finally, conclusions and topics for further research
can be found in Section 6.

2 Background

2.1 Gold Functions

Vectorial Boolean functions constitute fundamental building blocks for many
cryptographic algorithms and have been extensively studied in the literature. In
this paper, we use a specific family of such functions, the so called Gold functions
that possess very good cryptographic properties ([10], [5]). First we introduce
some notation and then we present the necessary background.

Let F2 be the finite field with two elements and Bn,m the set of vectorial
Boolean function with n inputs and m outputs; i.e. the set of multi-output
Boolean from F

n
2 to F

m
2 . We use normal, bold and capital bold letters, x, x and

M to denote single elements, vectors and matrices, respectively. Also, normal
and capital bold letters are used for single input (univariate) and multi input
Boolean functions, respectively. The Hamming weight wt(x) of a vector x =
[x(0), x(1), · · · , x(n− 1)] is the number of nonzero elements. Finally, 0m denotes
the all zeros vector of length m and for real numbers η, ψ ∈ �, ]η, ψ[ = {x ∈
�|η < x < ψ}.
Definition 2. ([5]) A vectorial function F ∈ Bn,m is balanced if it takes all
values y ∈ F

m
2 the same number of times; i.e. 2n−m times.

Definition 3. ([5]) The derivative of a vectorial Boolean function F ∈ Bn,m is
defined as DaF (x) = F (x) + F (x+ a), a ∈ F

n
2 and a �= 0n.

Definition 4. A vectorial Boolean function F ∈ Bn,m is called almost perfect
nonlinear (APN) if and only if for every a ∈ F

n
2 , a �= 0n and b ∈ F

m
2 the

equation DaF (x) = b has zero or 2 solutions.

In [10], R. Gold introduced the so-called Gold functions, the power functions
x → xd on the field F2n , where n odd and d = 2i + 1, with gcd(i, n) = 1
and 1 ≤ i < n−1

2 . Gold proved that these univariate polynomials are APN
functions, with very high nonlinearity, balanced and have quadratic algebraic
degree. (Note that Gold functions have good cryptographic properties when n
is an even integer.)

Gold functions have been defined and analysed as univariate functions, but
it is well known, that they can be easily transformed to a vectorial Boolean
function. Let {α0, · · · , αn−1} be a basis of F2n over F2, then any element x ∈ F2n

can be written as x =
∑n−1

i=0 xiαi, xi ∈ F2. In this paper, we are going to use

a normal basis {γ20, γ21 , · · · , γ2n−1} of F2n over F2, where γ ∈ F2n . It is well
known that there is such basis for any m > 1 ([17]). Note that depending on the
choice of the basis, the mapping from the univariate functions to the vectorial
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Boolean functions differs. Thus, a Gold function g = xd can be written as a
multi input Boolean function G as follows,

G(x0, x1, · · · , xn−1) = g(
n−1∑

i=0

xiγ
2i).

Similarly, the output of the function can be written as a linear combination of
the elements of the basis.

Definition 5. ([5]) Two functions are affine equivalent if one derives from the
other with some left and right compositions with an affine permutation.

We denote by G(n, d) the set of all multi-input vectorial Boolean functions that
are affine equivalent to a Gold function with n inputs and outputs and with
exponent d. That is, ifG is the Gold multi-input Boolean function, then for every
vectorial Boolean function Φ ∈ G(n, d), there are affine permutations P 1 and P 2

such that Φ = P 1◦G◦P 2. Every function Φ ∈ G(n, d) has all the aforementioned
properties of Gold functions; i.e. Φ is APN, balanced and quadratic ([5]).

Since every Φ ∈ G(n, d) is quadratic, it can be written as

Φ(x(0), · · · , x(n− 1)) = L(x(0), · · · , x(n− 1))⊕Q(x(0), · · · , x(n− 1)),

where L is a linear vectorial Boolean function and Q a purely quadratic vectorial
Boolean function. We denote by IΦ ⊂ {0, 1, · · · , n − 1} the smallest subset of
the input variable indexes of Φ, such that

Q(x(0), x(1), · · · , x(n− 1)) = 0m,

for all x ∈ K(Φ), where

K(Φ) = {x ∈ F
n
2 | x(i) = 0, ∀ i ∈ IΦ}.

Clearly, K(Φ) is the subspace of equations xi = 0, i ∈ IΦ, and the restriction of
Φ to this subspace is a linear vectorial function, i.e. Φ(x1⊕x2) = Φ(x1)⊕Φ(x2),
for x1,x2 ∈ K(Φ).

2.2 The HB# protocol

In this section, we briefly describe the HB# protocol ([8]). We try to apply,

as possible, the established notation. We use x
$← X to denote the assignment

to x of a value sampled from the uniform distribution on the finite set X . We
use Ber(η) to denote the Bernoulli distribution with parameter η, meaning that
a bit ν ∈ Ber(η), then Pr[ν = 1] = η and Pr[ν = 0] = 1 − η. A vector ν
randomly chosen among all the vectors of length m, such that ν(i) ∈ Ber(η)

and η ∈ (0, 1/2), for 0 ≤ i ≤ m − 1, is denoted as ν
$← Ber(m, η). Finally, we

use b
$← F

k
2 to denote a random binary vector b of length k.
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Tag (prover)

(secret X, Y)

Reader (verifier)

(secret X, Y)

�
Choose b

$← F
kY
2 ,

ν
$← Ber(m, η) b

�

z = a · X ⊕ b · Y ⊕ ν

Choose a
$← F

kX
2

a

�
If wt(z ⊕ a · X ⊕ b · Y ) ≤ τ ,

then accept tag.

z

Fig. 1. The HB# protocol

The HB# protocol can be seen as a natural matrix extension of the HB+

protocol, where the prover and the verifier, instead of vectors, they share two
binary matricesX and Y with size kX×m and kY ×m respectively. The protocol
is again a three pass one, but now the verifier and prover need only one round
to interact (Fig. 1). Like the HB+ protocol, the HB# has low computational
complexity O(kX ·m+ kY ·m), while it reduces the transmission costs to (kY +
kX +m) bits in total and it provides more practical error rates. However, at the
same time, it needs more memory bits for the secret keys, as the tag has to store
the two secret matrices, i.e. (kX ·m+ kY ·m) bits in total.

Security analysis. The HB# protocol was designed to resist the attack intro-
duced in [7] and for that it is supported by a proof of security against attackers
that can modify only the messages sent by the reader to the tag during an execu-
tion of the protocol. To prove the security of the scheme, a natural matrix-based
extension of the HB problem was introduced, the MHB puzzle.

Definition 6. ((k,m, η, q)-MHB puzzle, [8]) Let η ∈ (0, 1/2) and m and q be
polynomials in k. On input the security parameter 1k, the puzzle generator G
draws a random secret (k×m)-binary matrix X, q random vectors (a1, · · · ,aq)
of length k, computes for 1 ≤ i ≤ q the set of answers zi = ai ·X + νi, where
each bit of νi is 1 with probability η, and draws a random vector a of length
k constituting the challenge to the adversary. It outputs {(ai, zi)}1≤i≤q and a.
The solver returns a vector z. The secret is X, and the verifier V accepts, if and
only if, z = a ·X.

Using the theory of weakly verifiable puzzles the hardness of this extended prob-
lem was proved (Lemma 1) and a concrete reduction of the MHB puzzle to the
security of the HB# protocol was provided in [8]. We are going to use the MHB
puzzle in our proposal as well.

Lemma 1. ([8]) Assume the hardness of the LPN problem. Then, the MHB
puzzle is (1− 1

2m )-hard.

Attack against HB#. In [21], it was shown that the protocol is not secure
against a more general MIM attack. That is, when the attacker can manipulate
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all the messages exchanged between a legitimate tag and the reader, and not
only the messages sent by the reader, there is a key recovery attack that she
can mount. In a few words, the attack goes as follows. The attacker obtains a
valid triplet (b̂, â, ẑ); i.e. a triplet that satisfies wt(ẑ⊕ b̂ ·X ⊕ â ·Y ) ≤ τ . Using
this triplet to modify several executions of the protocol between the reader and
the same legitimate tag, the success of the i-th authentication depends on the
condition wt(νi ⊕ ν̂) ≤ τ , where ν̂ = ẑ ⊕ b̂ ·X ⊕ â · Y and νi ∈ Ber(m, η)
is the masking vector used by the tag. The overall success probability leaks
information on the Hamming weight of ν̂. In the second phase of the attack, the
attacker modifies one bit of ŷ and computes the Hamming weight of the new
vector ν̂ ′. Thus, one bit of the vector ν̂ can be estimated from the difference
between wt(ν̂) and wt(ν̂ ′). After repeating the same procedure several times a
set of linear equations is constructed involving b̂ ·X + â · Y and the solution of
this linear system reveals the secret keys X and Y .

During the application of this attack many unsuccessful executions of protocol
occur and a mechanism that detects this abnormal behaviour could provide a
sufficient countermeasure. However, such a mechanism is not built-in property
of the protocol and a new protocol has to be proposed. In the following section,
we will show that the GHB# is such a proposal.

3 The GHB# protocol

In this section, we introduce a nonlinear variant of the HB# protocol, a one round
symmetric key protocol called the GHB#. Following the notation introduced in
Section 2.2, the tag and the reader share two secret binary matrices X and Y of
size kX ×m and kY ×m respectively. The single round of the protocol appears
in Fig. 2.

The tag and the reader exchange the randomly selected vectors b and a of
length kY and kX , respectively. Then, the tag computes and sends the vector
z = Φ(a ·X)⊕Φ(b ·Y )⊕ ν of length m, where ν ∈ Ber(m, η). If wt(z ⊕Φ(a ·
X) ⊕ Φ(b · Y )) ≤ τ , then the reader accepts the tag as authentic. Otherwise,
the tag is rejected. The threshold τ = um, where u ∈ ]

η, 12
[
.

The function Φ is publicly known and it can be any multi-input function that
belongs to G(m, d); i.e. it is affine equivalent to a Gold multi-input vectorial
Boolean function G, as defined in Section 2.1. The choice of the specific uni-
variate Gold function xd used for the construction of G does not influence the
security of the protocol or its complexity. In Section 4, we give design directives
for the efficient hardware implementation of Φ and we compute the hardware
cost that brings to the protocol.

The error rates of the new protocol are computed similarly to the ones of HB#.
In more detail, the false rejection rate PFR of the protocol; i.e. the probability
to reject a legitimate tag, equals the probability wt(ν) > τ and it is given by

PFR =
m∑

i=τ+1

(
m
i

)

ηi(1− η)m−i.



496 P. Rizomiliotis and S. Gritzalis

Tag (prover)

(secret X, Y)

Reader (verifier)

(secret X, Y)

�
Choose b

$← F
kY
2 ,

ν
$← Ber(m, η) b

�

z = Φ(a ·X) ⊕ Φ(b · Y ) ⊕ ν

Choose a
$← F

kX
2

a

�
If wt(z ⊕ Φ(a ·X) ⊕ Φ(b · Y )) ≤ τ ,

then accept tag.

z

Fig. 2. The GHB# protocol

It is common practice, in most HB-like protocols, to use an extra step in which
ν is used only when its Hamming weight is at most τ ; i.e. the completeness error
is PFR = 0.

Finally, the false acceptance rate PFA; i.e. the probability to accept a ran-
domly selected response z, equals the probability a binary vector of length m to
have Hamming weight at most τ . That is that, the soundness error is given by:

PFA =

τ∑

i=0

(
m
i

)

2−m.

4 Complexity Analysis and Implementation Issues

Next, we compute the overall storage, communication and computation com-
plexity. The main challenge for the GHB protocol is to efficiently implement the
function Φ and for that we provide implementation directives.

Storage Complexity. The memory cost for the tag; i.e. the storage for the two
secret matrices, is (kX ·m+ kY ·m) bits.

Communication Complexity. The protocol requires (kY + kX +m) bits to
be transfered in total.

Computational Complexity. We concentrate on the computationally weaker
of the two entities; i.e. the tag. We distinguish two main operations, the mul-
tiplication of the random vectors with the secret matrices and the application
of the function Φ for the computation of z. The two multiplications require in
total approximately O(kX ·m + kY ·m) basic binary operations. This is, also,
the computational complexity of the HB# protocol. For the implementation of
Φ, we propose the following approach.

Let {γ, γ2, γ22 , · · · , γ2m−1} be a normal basis of F2m over F2, where γ ∈ F2m . It
is well known that there is such basis for any m > 1 ([17]). The implementation

of a Gold function x2
i+1 requires one exponentiation and one multiplication.

By ⊗ we demote the multiplication of two field elements of the field. When a
field element x ∈ F2m is represented in normal form; i.e. x =

∑m−1
i=0 x(i)γ2

i

, the
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Fig. 3. The implementation of the function Φ

exponentiation can be performed by right cyclic shift of the binary representation
x. Thus, x2

i

is obtained by simply shifting x to the right by i steps.
Concerning the multiplication x ·x2i , one of the most straightforward ways to

perform efficiently a normal basis multiplication is the one proposed by Massey
and Omura [19]. More precisely, for each normal basis there is an m×m matrix
M called the multiplication matrix of the normal basis and if x1 and x2 is,
respectively, the binary vector representation of the elements x1, x2 ∈ F2m with
respect to the basis, then the binary representation of the product y = x1x2 is
computed as y(m − 1 − i) = h(x2

i

1 , x
2i

2 ), for 0 ≤ i ≤ m − 1, where h(x1, x2) =
x1MxT

2 . The complexity of the operation is determined by the number CN

of ones of M . It is proved that the number of required AND and XOR gates
is CN and CN − 1 respectively. When an optimal normal basis is used, then
CN = 2m+ 1, and we have the least possible complexity.

Finally, since the function Φ belongs to G(m, d), any function affine equivalent
to a Gold function can be used. This function can be implemented from the
proposed construction for the Gold functions by multiplying the input and the
output vectors by the m×m matrix that corresponds to the left and right affine
permutations, respectively. If P1 and P2 are these two matrices, then the total
computation is given in Fig. 3. The complexity for each one of the permutations
can vary from constant to at most O(m2). Thus, the computational complexity
of the Φ function varies from O(m) to O(m2) depending on the choice of the
permutations and the total computational complexity of the protocol is at most
O(kX ·m+ kY ·m+m2).

To summarize the GHB# protocol has the same communication and storage
complexity as the its predecessor HB#, while it requires at least O(m) (and
at most O(m2)) more basic binary computations (Table 1). In Table 2, we use
practical parameters that have been proposed for the HB# protocol in order to
compare the efficiency of the two protocols.

Table 1. Complexity Comparison between GHB# and HB#

Security Stor. Compl. Comm. Compl. Comp. Compl.

HB# Active O(kX ·m+ kY ·m) O(kX + kY +m) O(kX ·m+ kY ·m)

GHB# MIM O(kX ·m+ kY ·m) O(kX + kY +m) O(kX ·m+ kY ·m+m)
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Table 2. Comparison between the GHB# and HB# protocols for practical parameters

kX kY m η τ Stor. GHB# Stor. HB# Comm. GHB# Comm. HB# Comp. GHB# Comp.HB#

80 512 1163 0.25 405 688k 688k 1.7k 1.7k 689k 688k
80 512 441 0.125 113 261k 261k 1k 1k 261k 261k

5 Security Analysis

5.1 Definition of Security Models

Following the notation used in [8], we use RX,Y ,τ to denote the algorithm that
it is run by the reader (verifier) and TX,Y ,η the one run by a legitimate tag

(prover). We use X
$← F

(m1,m2)
2 to indicate the random selection of a m1 ×m2

binary matrix X.
All the attacks against HB+ and its variants are active ones; i.e. the attacker

can interact with the reader and/or the tag and change some of the messages
exchanged between the two legitimate entities. We distinguish two models of
security, the DET −model and the MIM −model. In each of the models the
adversary runs in two stages. In the first stage she has some interaction with the
prover and/or the verifier and in the second she interacts only with the verifier
and wins if the verifier returns accept. We define the advantage of an attacker
A against GHB# in the models as the overhead success probability over PFA;
i.e. the best possible soundness error we can hope for is the success probability
when the attacker does not perform any action during the first phase of the
attack and just sends a randomly selected z in the second phase. Note that,
PFA is negligible for the chosen values of τ and for security m = Θ(k), where k
is the security parameter. In the DET −model the attacker interacts only with
an honest prover for a polynomial number of times. More precisely,

Definition 7. (DET-model). In the DET −model the attack is carried in two
phases:

– Phase 1. Adversary A interacts q times with the honest tag TX,Y ,η. More
precisely, on the i-th invocation, TX,Y ,η internally generates a random blind-
ing vector bi, it takes a challenge ai from A as input and outputs zi =
Φ(ai ·X)⊕Φ(bi · Y )⊕ νi and sends the message to A.

– Phase 2. Adversary A interacts with the reader RX,Y ,τ trying to imperson-
ate the tag TX,Y ,η with advantage

AdvDET
A (kX , kY ,m, η, τ, q) =

Pr[X
$← F

(kX ,m)
2 ,Y

$← F
(kY ,m)
2 ,ATX,Y ,η(1k) : 〈A,RX,Y ,τ 〉 = ACC]− PFA.

In the MIM − model the attacker can interact with both the prover and the
verifier and learn the verifier’s decision, accept or reject.

Definition 8. (MIM-model). In the MIM −model the attack is carried in two
phases and the adversary can manipulate all messages exchanged between the tag
and the reader:
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– Phase 1. On the i-th invocation, TX,Y ,η internally generates a random
blinding vector bi and sends it to the adversary A. The reader RX,Y ,τ re-

ceives a modified blinding vector b̂i = b̄ ⊕ bi from A. Then, the reader
generates a challenge vector ai and sends it to the adversary A. The tag
receives a modified challenge vector âi = ā ⊕ ai from A and replies with
zi = Φ(âi ·X)⊕Φ(bi ·Y )⊕ νi, νi ∈ Ber(m, η). The reader receives a mod-
ified vector ẑi = z̄ ⊕ zi and if wt(ẑi ⊕Φ(ai ·X)⊕Φ(b̂i · Y )) ≤ τ , then the
reader outputs accept. Otherwise, it outputs reject. The adversary interferes
for q executions of the of the protocol.

– Phase 2. Adversary A interacts with the reader RX,Y ,τ trying to imperson-
ate the tag TX,Y ,η with advantage

AdvMIM
A (kX , kY ,m, η, τ, q) = Pr[X

$← F
(kX ,m)
2 ,

Y
$← F

(kY ,m)
2 ,ATX,Y ,η ,RX,Y ,τ (1k) : 〈A,RX,Y ,τ 〉 = ACC] − PFA.

Note 1. As we have all ready described in Section 1, most variants of the HB+

protocol are secure under the DET−model. However, the attack presented in [7],
the GRS attack, against the HB+ protocol was easily applied to most of these
variants ([9]). This attack is included in the MIM −model, but the adversary
in the first phase is limited to modify only the messages that the reader sends.
The HB# protocol was the first one provably secure against the GRS attack,
but it was shown to be weak under the MIM −model ([21]).

5.2 Security Proofs

Next we prove that the GHB# protocol is secure under both the DET −model
and the MIM −model given the hardness of the LPN problem. Our reduction
is using rewinding, like in the case of the HB+ and HB# protocols and the
security is based on the MHB puzzle. We say that a function in x is negligible if
it vanishes faster then the inverse of any polynomial in x.

Lemma 2. There is Φ̂ ∈ G(m, d), such that for each x1,x2 ∈ K(Φ̂), it holds

that Φ̂(x1 ⊕ x2) = Φ̂(x1)⊕ Φ̂(x2) =
(
y||0|IΦ̂|

)
, for some y ∈ F

m−|IΦ̂|
2 .

Proof. The linearity derives directly for the definition of the subspace K(Φ̂).
Next, we prove the existence of such Φ̂.

By definition, every x ∈ K(Φ) has |IΦ| entries fixed to 0 and every Boolean
function Φ ∈ G(m, d) is a linear function in the subspace x ∈ K(Φ). That is,
for x ∈ K(Φ), Φ can be seen as a function with m− |IΦ| input variables and m
outputs.

Since the number of inputs is less than the number of outputs, |IΦ| of the
output bits can written as a linear combination of the other m− |IΦ|; i.e. there
is a linear transformation M that can be applied to the output of Φ and results
to |IΦ̂| zero output bits, for x ∈ K(Φ). Also, as any permutation P of the
outputs is acceptable, these zero outputs can be put last. From the composition
Φ̂ = P ◦M ◦Φ, of Φ with the linear transformation and the permutation with
Φ̂, the result follows. ��
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Theorem 1. (Security in the DET-model) If there is an adversary A# that
can attack the GHB# protocol, with parameters (kX , kY ,m

#, η, τ), in the DET-
model by interacting with an honest tag q# times, running time T# and achieving
advantage at least δ#, then, there is an adversary A that can solve the (kY ,m

#−
|IΦ|, η, q)−MHB puzzle with parameters in running time T = 2qT# and success

probability δ > ( 1
2m + δ#

4 ), where q = m#q#L(2+ log2 q
#), L ≥ 2

ε′2 ln(
1

1−e−
ln2
m

),

ε′ = δ#
3

16 (12 − τ
m )3(12 − 1

kX
) and Φ is the Gold linearly equivalent function used

in GHB#.

Proof. The adversary A has obtained q pairs (bi, zi) from the MHB puzzle gen-
erator, where zi = bi · Y ⊕ νi, 1 ≤ i ≤ q, and Y is a randomly selected k ×m
binary matrix. Let b be the k-bit challenge vector of the puzzle; i.e. she has to
compute z = b ·Y . We will show how the adversary A can solve the MHB puzzle
using the algorithm of the adversary A#. The proof is a modified version of the
proof introduced for the security reduction in the DET-model in [8].

During the attack, A# interrogates a legitimate tag and A simulates the
behaviour of the tag algorithm. The function Φ is chosen to be one that has the
properties described in Lemma 2. Let X# and Y # be the two secret matrices
shared between the tag and the reader. The kX ×m# matrix X# has all the
entries randomly selected except the i-th column X#(:, i), for all i ∈ IΦ, and the
s-th row X#(s, :), for a random row 1 ≤ s ≤ kX , that are all zero. Similarly, the
matrix Y # is a kY ×m# binary matrix that has also the i-th column Y #(:, i)
all zero, for all i ∈ IΦ, while all the other entries of the matrix are randomly
selected.

A divides the q pairs, that she has obtained from the MHB puzzle, in m sets
with Lq#(1 + r) pairs each. L is the number of estimations for each bit of the
vector z that the adversary gets from each set and r defines the size of a pool
of extra pairs that she can use in each estimation. The vector e of length m
stores intermediate values and it is initialised e = 0m. We use ’||’ to denote the
concatenation of vectors.
For j0 = 0 to m− 1 do:

1. For j1 = 0 to L− 1 do:
(a) Phase I: For j2 = 0 to q# − 1 do:

i. A selects random bit c ∈ F2 and sends b#j0,j1,j2 = b(j0L+j1)q#+j2⊕c·b.
ii. Let a#

j0,j1,j2
be the challenge vector send by the attacker A#.

iii. If a#
j0,j1,j2

(r) = c, then A replies with

z#
j0,j1,j2

= Φ(a#
j0,j1,j2

X#)⊕ z#
(j0L+j1)q#+j2

, (1)

where the second term is given by

z#
(j0L+j1)q#+j2

=
(
z(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)
,

and μ#
(j0L+j1)q#+j2

∈ Ber(|IΦ|, η). Otherwise, she rewinds adversary

A# to the beginning of the current query and uses a new pair. If the
available pairs are exhausted, guess the message z#

(j0L+j1)q#+j2
.
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(b) Phase II: A proceeds to the second, impersonation, phase of the DET-
model attack.
i. Adversary A# sends the commitment vector b′.
ii. Adversary A chooses two challenges a′

0 and a′
1 with complement

values at the s-th bit; i.e. a′
0(s)⊕ a′

1(s) = 1.
iii. Adversary A transmits a′

0 and gets the reply z′
0.

iv. Adversary A rewinds the attacker A# just after the transmission of
b′ and sends a′

1 to get the reply z′
1.

v. Adversary A computes the sum

z′ = z′
0⊕z′

1⊕Φ
⎛

⎝
kX∑

i=1,i�=s

a′
0(i)X

#(:, i)

⎞

⎠⊕Φ
⎛

⎝
kX∑

i=1,i�=s

a′
1(i)X

#(:, i)

⎞

⎠

(2)
and adds the value of the j0-th bit to e(j0), i.e e(j0) = e(j0)+z′(j0).

2. The estimation of the bit z(j0) is given by majority decision; i.e.

z(j0) = e(j0)/L mod 2.

We will show that the attacker A successfully simulates a tag algorithm that
uses a kY ×m# binary matrix Y # that has the i-th column Y #(:, i) all zero,
for all i ∈ IΦ, i.e. from Lemma 2, Φ(b1 · Y #)⊕Φ(b2 · Y #) = Φ((b1 ⊕ b2) · Y #)
and the last |IΦ| of the output of are all zero. Finally, the secret matrix Y # is
such that Φ(bi · Y #) =

(
bi · Y || 0|IΦ|

)
.

When a#
j0,j1,j2

(r) = 0, the reply (1) of A can be written as

z#
j0,j1,j2

= Φ(a#
j0,j1,j2

X#)⊕
(
z(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)

= Φ(a#
j0,j1,j2

X#)⊕ (
b(j0L+j1)q#+j2 · Y ||0IΦ

)

⊕
(
ν(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)

and since ν(j0L+j1)q#+j2 ∈ Ber(m − |IΦ|, η) and μ#
(j0L+j1)q#+j2

∈ Ber(|IΦ|, η),
it holds that,

(
ν(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)
∈ Ber(m, η).

Due to the specific choice of the matrix X#, the function Φ is restricted to K(Φ)

and behaves like a linear function. Thus, for a#
j0,j1,j2

(r) = 1, the reply (1) of A
can be written as

z#
j0,j1,j2

= Φ

⎛

⎝
kX∑

i=1,i�=s

a#
j0,j1,j2

(i)X#(:, i)

⎞

⎠⊕Φ(X#(s, :))

⊕ (b · Y ||0IΦ)⊕
(
b(j0L+j1)q#+j2 · Y ||0IΦ

)⊕
(
ν(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)

and, again, it holds that,
(
ν(j0L+j1)q#+j2 ||μ#

(j0L+j1)q#+j2

)
∈ Ber(m, η). From

the above, we have that only the first m− |IΦ| entries of z′ given in (2) provide
an estimation of the puzzle’s answer z.
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Next, we compute necessary amount of estimations L for the majority strategy
to give the correct value of z with significant advantage δ. For the computation
of r, L, δ, we follow mainly the approach presented in [8].

For each of the L estimations of a single bit of z, the attacker has r · q# extra
pairs, where r = 1 + log2q

# and these pairs will be sufficient with probability
more than 1/2.

The guess of z is correct if either both z′
0 and z′

1 are correct or if both are false.

From [12], the probability this to happen is greater than p = 1
2+

ε3

2 − ε3+1
kX

, where

ε = δ#

2 (12 − τ
m ). Since, the probability of guessing the message z#

(j0L+j1)q#+j2
is

less than 1/2, the probability of correct guessing one of the m bits of z is lower

bounded by 1/4 + p/2 ≥ 1/2 + ε′, where ε′ = ε3

4 − ε3+1
2kX

.
Finally, from Chernoff bound on the majority of the L experiments, the guess

of all m bits is lower bounded by pMHB ≥
(
1− e−Lε′2

2

)m

. Thus, for the prob-

ability pMHB to be greater than 1/2, the number of experiments must be at
least

L ≥ 2

ε′2
ln

(
1

1− e− ln(2)
m

)

.

��
From Theorem 1, any efficient adversary achieving a noticeable advantage δ#

against the GHB# protocol in the DET-model can be turned into an efficient

solver of the MHB puzzle with a success probability greater than 1
2m by δ#

4 , and,
from Lemma 1, this contradicts the hardness assumption of the LPN problem.

Lemma 3. Let Φ ∈ G(m, d) and let X and Y be two sets of randomly selected
binary vectors of length m with cardinality |X| = 2kX and |Y| = 2kY , respectively,
and kX ≤ kY . Then, for given (b̄, ā, z̄) ∈ F

m
2 × F

m
2 × F

m
2 , the probability

p(d) = Pr [wt(DāΦ(x)⊕Db̄Φ(y)⊕ z̄) ≤ d] , 1 ≤ d ≤ n
where x ∈ X and y ∈ Y, is upper bounded by

p(d) ≤ 2−min(kX ,m)+2+mH( d
m ).

H(s) = s · log2(1s )− (1− s) · log2( 1
1−s ) is the entropy function.

Proof. From the Definition 4 of APN functions, for given ā there is a subset
Sā ⊆ F

m
2 , such that for every c ∈ Sā there is x ∈ X satisfying DāΦ(x) = c.

Since each c ∈ Sā can appear at most twice, it holds that min(2kX−1, 2m−1) ≤
|Sā| ≤ min(2kX , 2m−1). Similarly, we define Sb̄ ⊆ F

m
2 , such that for every c ∈ Sb̄

there is y ∈ Y such that Db̄Φ(y) = c, with c ∈ Sb̄ and min(2kY −1, 2m−1) ≤
|Sb̄| ≤ min(2kY , 2m−1).

All the sums c = c1 ⊕ c2 of a given vector c1 ∈ Sā with any c2 ∈ Sb̄, are
different. Thus, the sum DāΦ(x)⊕Db̄Φ(y) = c, with x ∈ X and y ∈ Y can take
the same value c with probability at most

2

2min(kX ,m)

2

2min(kY ,m)
2max(|Sā|,|Sb̄|) ≤ 1

2min(kX ,m)−2
.
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Given that the number of binary vectors of length m and Hamming weight less
than d is

∑d
i=0

(
m
i

) ≤ 2mH( d
m ), the probability DāΦ(x) ⊕Db̄Φ(y) = c to have

Hamming weight less than d ≤ n is upper bounded by 2−min(kX ,m)+2+mH( d
m ).

To conclude, clearly, the constant value z̄ does not influence this probability. ��

Theorem 2. (Security in the MIM-model) If there is an adversary A# that can
attack the GHB# protocol with parameters (kX , kY ,m

#, η, τ) in the MIM-model
by modifying q# protocol executions between an honest tag and the reader, with
running time T# and achieving advantage at least δ#, then, there is an adversary
A that can attack the GHB# protocol in the DET-model with the same parameters
by interrogating an honest tag q# times, with running time at most T# and with
advantage at least δ ≥ δ# − (PFA + δ#)q#pr, where pr is a negligible function.

Proof. The attacker A has a legitimate tag at her disposal that she can interro-
gate. We will show how A can attack GHB# protocol in the DET-model using
the algorithm that the adversary A# executes.

During the MIM attack, A# is modifying all messages between the legitimate
tag and reader. While, the adversary A has access to an honest tag, she has to
simulate the behavior of the reader. More precisely, her strategy goes as follows.

1. A receives from the honest tag TX,Y ,η a blinding vector b and sends this
vector to the A#.

2. A# produces a new blinding vector b̂ = b ⊕ b̄ and sends this vector to the
simulated reader; i.e. to the adversary A.

3. A produces a random challenge vector a, on behalf of the reader and sends
it to A#.

4. A# produces a new challenge vector â = a⊕ ā and sends this vector to the
honest tag, via A.

5. the tag responds with z and A sends the response to A#.
6. A# produces a new response vector ẑ = z ⊕ z̄ and sends this vector to the

simulated reader; i.e. to adversary Â.
7. If the triplet (b̄, ā, z̄) is all-zero, the simulated reader; i.e. A, notifies adver-

sary A# that the tag has been accepted. Otherwise, it is rejected.

The previous steps are repeated q# times. The adversary A impersonates the
tag to an honest reader in the DET-attack, by using the second phase of A#.

The probability of successfully simulating a reader’s behavior depends on the
ability of the adversary to simulate the last step; i.e. the acceptance or rejection
of the tag. Let pauth be this probability, then the overall probability of the attack
is given by

pMIM = pauth · (PFA + δ). (3)

We will compute pMIM . In order for the attack to be successful, the adversary
A must be able to simulate the reader’s behavior for q# consecutive executions
of the protocol. Let pr be the probability to fail in one execution. Then,

pauth = (1− q# · pr). (4)
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The probability of false rejecting a tag when (b̄, ā, z̄) is all zero is PFR. That is,
pr ≥ PFR = 0, since we have assumed that the Hamming weight of ν is checked.
The value pr is also defined by the probability that the condition wt(ẑ ⊕ Φ(a ·
X) ⊕ Φ(b̂ · Y )) ≤ τ is satisfied when (b̄, ā, z̄) �= (0kY ,0kX ,0m). The sum can
be written as

ẑ ⊕Φ(a ·X)⊕Φ(b̂ · Y ) = Φ(â ·X)⊕Φ(b · Y )⊕ ν ⊕ z̄ ⊕Φ(a ·X)⊕Φ(b̂ · Y )

= DāΦ(a ·X)⊕Db̄Φ(b · Y )⊕ ν ⊕ z̄.

Let yā,b̄,z̄ = DāΦ(a ·X)⊕Db̄Φ(b ·Y )⊕ z̄ and let βā,b̄,z̄ be the Hamming weight
of yā,b̄,z̄. Then, m − βā,b̄,z̄ bits of yā,b̄,z̄ ⊕ ν follow a Bernoulli distribution of
parameter η and the rest βā,b̄,z̄ bits follow a Bernoulli distribution of parameter
1−η. That is, the Hamming weight wt(yā,b̄,z̄⊕ν) follows a binomial distribution

of expected value μ = (m−βā,b̄,z̄)η+(1−βā,b̄,z̄η) and variance σ2 = mη(1−η).
Since, the expected value is a function of βā,b̄,z̄ we can easily verify that for

βā,b̄,z̄ ≥ 1 + � τ−ηm
1−2η �, it holds that μ > τ .

When, μ > τ ; i.e. βā,b̄,z̄ ≥ 1 + � τ−ηm
1−2η � from the Chernoff bound we have

that wt(yā,b̄,z̄ ⊕ ν) < τ with probability p1 < e−
(μ−τ)2

2μ . When, μ ≤ τ ; i.e.

βā,b̄,z̄ < 1 + � τ−ηm
1−2η �, trivially we have that wt(yā,b̄,z̄ ⊕ ν) < τ with probability

p2. By combining the two cases, wt(yā,b̄,z̄ ⊕ ν) ≤ τ with probability

p̂r = p1 · Pr[μ > τ ] + p2 · Pr[μ ≤ τ ] ≤ e−
(μ−τ)2

2μ · Pr[μ > τ ] + P [μ ≤ τ ].

From Lemma 3, we have that P
[
βā,b̄,z̄ ≤ 1 + � τ−ηm

1−2η �
]
is upper bounded by

Pr

[

βā,b̄,z̄ ≤ 1 + �τ − ηm
1− 2η

�
]

≤ 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m).

Thus,

pr ≤ e−
(μ−τ)2

2μ · (1 − 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m)) + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m)

≤ e− (μ−τ)2

2μ + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m).

The exponent of the second term is negative for practical values of the parameters
and a decreasing function of d. Also, similarly to [8], in order to ascertain that

the first term is negligible, we define d̂ the least integer such that μ((̂d) > (1+c)τ

for some c > 0 and for all d ≥ d̂, e−
(μ−τ)2

2μ ≤ e−
(cτ)2

2(c+1) . From (3) and (4), the
overall probability of the attack is lower bounded by

(1− q# · (e− (μ−τ)2

2μ + 2mH(
1+� τ−ηm

1−2η
�

m )+2−min(kX ,m))) · (PFA + δ) ≤ pMIM .

��
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From Theorem 2, any efficient attacker achieving a noticeable advantage δ#

against the GHB# protocol in the MIM-model can be turned into an efficient
attacker against the same protocol in the DET-model. However, from Theorem 1
this contradicts the conjectured hardness assumption of the LPN problem.

6 Conclusions

The design of lightweight protocols for RFID tag authentication is a challenging
task. In this paper, we introduced a new secure authentication protocol, the
GHB#, that it is supported by a security proof based on the conjectured hardness
of the LPN problem. The new protocol belongs to the family of HB-like protocols
that have been extensively analysed in the last few years. The GHB# protocol is
shown to be secure against all the attacks that have been proposed so far against
LPN-based authentication protocols, including the MIM attacks in which the
attacker is able to modify all messages exchanged between an honest tag and
the reader. These MIM attacks has been the Achilles heel of almost all the
HB-like protocols with only two very recent exceptions ([15], [4]).

As further research, it is interesting to investigate the relation between the
GHB# protocol and other recently proposed LPN based protocols ([15], [4]),
that can resist MIM attacks.

Acknowledgement. The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

References

1. Avoine, G.: RFID Security and Privacy Lounge, The list of papers is available at
http://www.avoine.net/rfid/download/bib/bibliography-rfid.pdf

2. Bringer, J., Chabanne, H., Dottax, E.: HB++: a Lightweight Authentication Pro-
tocol Secure against Some Attacks. In: Proceedings of the IEEE Int. Conference
on Pervasive Sevices, Workshop - SecPerU (2006)

3. Bringer, J., Chabanne, H.: Trusted-HB: A Low-Cost Version of HB Secure Against
Man-in-the-Middle AttackHB++. IEEE Transactions on Information Theory 54,
4339–4342 (2008)

4. Bosley, C., Haralambiev, K., Nicolosi, A.: HBN: An HB-like protocol secure against
man-in-the-middle attacks. Cryptology ePrint Archive, Report 2011/350 (2011),
http://eprint.iacr.org

5. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, Y., Hammer,
P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and
Engineering, pp. 398–469. Cambridge University Press (2010)

6. Duc, D.N., Kim, K.: Securing HB+ against GRS Man-in-the-Middle Attack. In:
Proceedings of the Symp. on Cryptography and Information Security (2007)

7. Gilbert, H., Robshaw, M., Silbert, H.: An Active Attack against HB+-a Provable
Secure Lightweighted Authentication Protocol. Cryptology ePrint Archive, Report
2005/237 (2005), http://eprint.iacr.org

http://www.avoine.net/rfid/download/bib/bibliography-rfid.pdf
http://eprint.iacr.org
http://eprint.iacr.org


506 P. Rizomiliotis and S. Gritzalis

8. Gilbert, H., Robshaw, M., Seurin, Y.: HB#: Increasing the Security and Efficiency
of HB+. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 361–378.
Springer, Heidelberg (2008)

9. Gilbert, H., Robshaw, M., Seurin, Y.: Good Variants of HB+ Are Hard to Find.
In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 156–170. Springer, Heidelberg
(2008)

10. Gold, R.: Maximal recursive sequences with 3-valued recursive crosscorrelation
functions. IEEE Transactions on Information Theory 14, 154–156 (1968)

11. Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 52–66. Springer, Heidelberg (2001)

12. Juels, A., Weis, S.A.: Authenticating Pervasive Devices with Human Protocols. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 293–308. Springer, Heidelberg
(2005)

13. Katz, J., Shin, J.S.: Parallel and Concurrent Security of the HB and HB+ Protocols.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 73–87. Springer,
Heidelberg (2006)

14. Katz, J., Shin, J.: Analyzing the HB and HB+ Protocols in the Large Error Case.
Cryptology ePrint Archive, Report 2006/326 (2006), http://eprint.iacr.org/

15. Kiltz, E., Pietrzak, K., Cash, D., Jain, A., Venturi, D.: Efficient Authentica-
tion from Hard Learning Problems. In: Paterson, K.G. (ed.) EUROCRYPT 2011.
LNCS, vol. 6632, pp. 7–26. Springer, Heidelberg (2011)

16. Leng, X., Mayes, K., Markantonakis, K.: HP-MP+: An Improvement on the HB-MP
Protocol. In: Proceedings of the IEEE Int. Conference on RFID 2008, pp. 118–124.
IEEE Press (2008)

17. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications.
Cambridge University Press (1994)

18. Madhavan, M., Thangaraj, A., Sankarasubramaniam, Y., Viswanathan, K.: NLHB:
A Non-Linear Hopper Blum Protocol. In: Proceedings of IEEE National Conference
on Communications, NCC (2010), CoRR abs/1001.2140:2010.

19. Massey, J.L., Omura, J.K.: Computational Method and Apparatus for Finite Field
Arithmetic. US Patent No. 4,587,627 (1986)

20. Munilla, J., Peinado, A.: HP-MP: A Further Step in the HB-family of Lightweight
authentication protocols. Computer Networks 51, 2262–2267 (2007)

21. Ouafi, K., Overbeck, R., Vaudenay, S.: On the Security of HB# against a Man-in-
the-Middle Attack. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
108–124. Springer, Heidelberg (2008)

22. Piramuthu, S.: HB and Related Lightweight Authentication Protocols for Secure
RFID Tag/Reader Authentication. In: Proceedings of CollECTeR Europe Confer-
ence, Basel, Switzerland, June 9-10 (2006)

23. Reza, M., Abyaneh, S., On, S.: the Security of Non-Linear HB (NLHB) Protocol
Against Passive Attack. Cryptology ePrint Archive, Report 2010/402 (2010),
http://eprint.iacr.org/

24. Rizomiliotis, P.: HB-MAC: Improving the Random - HB# Authentication Proto-
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