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Abstract

Finding suitable elliptic curves for pairing-based cryptosystems is a crucial step for
their actual deployment. Miyaji, Nakabayashi and Takano [11] (MNT) were the first to
produce ordinary pairing-friendly elliptic curves of prime order with embedding degree
k € {3,4,6}. Scott and Barreto [15] as well as Galbraith et al. [9] extended this method
by allowing the group order to be non-prime. The advantage of this idea is the construc-
tion of much more suitable elliptic curves, which we will call generalized MNT curves.
A necessary step for the construction of such elliptic curves is finding the solutions of
a generalized Pell equation. However, these equations are not always solvable and this
fact considerably affects the efficiency of the curve construction. In this paper we dis-
cuss a way to construct generalized MNT curves through Pell equations which are always
solvable and thus considerably improve the efficiency of the whole generation process.
We provide analytic tables with all polynomial families that lead to non-prime pairing-
friendly elliptic curves with embedding degree k € {3,4,6} and discuss the efficiency of
our method through extensive experimental assessments.

Keywords: Pairing-based cryptography, MNT elliptic curves, effective polynomial fam-
ilies, Pell equations.

1 Introduction

Pairing-based cryptography has gained much interest during the past few years. Several
pairing-based protocols have been proposed such as the well known Boneh et al.’s ID-based
encryption [4] and short signatures schemes [5]. All these cryptographic schemes are based on
the construction of elliptic curves that satisfy certain properties. Clearly, generating suitable
elliptic curves for pairing-based cryptosystems is a very important issue in pairing-based
cryptography. These curves are known as pairing-friendly elliptic curves [7].

Let E/F, be an elliptic curve of order #E(FF;) = n defined over a prime field F,. In most
pairing-based cryptographic protocols the ideal case is to construct elliptic curves of prime
order. However, such curves are rare and so the ideal case is hard to achieve in practice. To
this end we may relax this condition and allow the use of curves with #E(F,) = hr for a small
cofactor h > 1 and r a large prime. The p-value is defined as p = log(q)/log(r) and shows
how close to the ideal case is the constructed curve. Clearly, we require the p-value to be as
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close to 1 as possible. Furthermore, let E[r] denote the set of r-torsion points of E/F,. Then
the embedding degree of E[r] is the smallest positive integer k& > 1, such that E[r] C E(F),
or equivalently the smallest positive integer such that r | ¢* — 1, where [F,x is a finite extension
of F, of degree k. According to [7], an elliptic curve E defined over a prime field F, with
small embedding degree and large prime order subgroup is called pairing-friendly.

A well known method to construct elliptic curves over a large prime field is the Complex
Multiplication (CM) method [1]. By Hasse’s theorem, Z = 4¢—t2 must be positive and, thus,
there is a unique factorization Z = DY?, with D a square free positive integer. Therefore

4q = t* + DY? (1)

is satisfied for a given pair (¢, t). The negative parameter —D is called a CM discriminant for
the prime q. For convenience throughout the paper, we will use (the positive integer) D to
refer to the CM discriminant. Knowing the values of ¢ and ¢, an elliptic curve E defined over
F, with n = ¢ + 1 — ¢ number of F,-rational points can be constructed. The triple (g¢,t,n)
represents the curve parameters, i.e. the order of the finite field, the Frobenius trace and the
group order of E(F,) respectively.

A pairing on an elliptic curve E/F, is a map of the form e : E(Fy)[r] x E(F) — F
which is bilinear, non-degenerate and efficiently computable. As mentioned in [15] the most
commonly used pairings are the Weil and Tate pairings [?, 8], while most recent implemen-
tations include the Eta and the Ate pairings [?, ?]. In order to use pairings in cryptography,
we must guarantee that the discrete logarithm problem (DLP) in both E(F,)[r] and Iy is
computationally infeasible. Thus the embedding degree must be chosen to be large enough
in order to keep the DLP in F;k as hard as possible, but also k£ must be small enough for
the efficient arithmetic in F*,. As stated in [15], a good choice for an 80-bit security level
is logr =~ 160 and klogq =~ 1024 bits, so that the cryptosystem can resist attacks both in
elliptic curve groups and in finite fields.

Miyaji, Nakabayashi and Takano in 2001 [11] were the first who proposed a method
(the so called MNT method) for the construction of prime order pairing-friendly elliptic
curves with embedding degrees k € {3,4,6}. Using the CM equation (1) and representing
the elliptic curve parameters (q,t,n) as polynomials in Z[z], they created three Pell-type
equations, one for each k € {3,4,6}. The solutions of these equations lead to potential
suitable curve parameters (q,%,n). Scott and Barreto [15] extended the idea of Miyaji et al.
by allowing the group order to contain a large prime factor » and a positive small integer
h > 1 called cofactor. In particular, they describe an explicit algorithm that constructs
more Pell-type equations for h > 1, whose solutions lead to the generation of much more
suitable elliptic curves when k € {3,4,6}. Galbraith, McKee and Valenga [9] also extended
the MNT method for k € {3,4,6} by using non-prime elliptic curves. The difference of their
work from [15] is that Galbraith et al. represent the curve parameters (g, t,r) as polynomial
families (¢(z),t(x),r(x)). In their paper they give all polynomial families for h € {2,3,4,5}
when k € {3,4,6}. In [6], Duan, Cui and Wah Chan present a general algorithm for the
construction of pairing friendly elliptic curves with arbitrary embedding degree and similarly
to [9] they represent the curve parameters as polynomial families. In their method they also
construct Pell-type equations from which they obtain suitable curve parameters. Furthermore
they introduce the term of effective polynomial families by inducing some restrictions on the
choice of polynomials (¢(z),t(z),r(x)).
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In this paper we further investigate the construction of generalized MNT elliptic curves
with embedding degree k € {3,4,6} by using quadratic families that have better chances in
producing suitable elliptic curve parameters. In particular we extend the idea of effective
polynomial families, first introduced in [6], and enhance them with the ability to lead to
generalized Pell equations which are always solvable. The solutions of these Pell equations
can be tested for suitability in more than one quadratic families. This observation increases
the chances of finding suitable parameters and speeds up the method considerably. While
previous works in [9, 15] study cases where h < 5 we extend the search to families with
larger cofactors h > 5, but not too large since we wish to keep the p-value as close to one as
possible. The advantage of our method is that we avoid solving Pell equations leading to a
small number of suitable curve parameters. We also present experimental evidence that our
method can considerably speed up the generation of generalized MNT elliptic curves.

The paper is organized as follows. In Section 2 we present previous work for the gener-
ation of MNT elliptic curves with embedding degree k € {3,4,6}. In Section 3 we describe
our method for the construction of generalized MNT curves. In Section 4 we present our
experimental results and we conclude the paper in Section 5.

2 Previous Work

In this section we give a brief overview of previous work concerning the generation of pairing-
friendly elliptic curves with embedding degree k € {3,4,6}. All methods share a common
characteristic: in order to generate the curve parameters, they use the solutions of some
Pell-type equations. These equations are of the form

X2 _8SDY?=m (2)

where S;m € Z and S > 0. The integer D represents the CM discriminant and it is positive
and square-free. If a Pell equation of this form is solvable, then there is an infinite number of
integral pairs (X;,Y;) satisfying it. For more detailed analysis on the theory of Pell equations
the interested reader can consult [12]. Throughout the paper we will consider elliptic curves
E defined over a finite field F, where ¢ is a large prime and #E(F,;) = n = hr for some large
prime r and a cofactor h > 1.

Miyaji, Nakabayashi and Takano were the first to describe a method for producing ordi-
nary pairing-friendly elliptic curves of prime order with embedding degree k € {3,4,6} (e.g.
#E(F,) = n is a large prime number). In their work they represent the values (q,t) as poly-
nomials g(x),t(z) € Z[z], such that the polynomial n(x) = ¢(x) + 1 — t(z) divides ®x(q(z)),
where @ (z) is the k*™P-cyclotomic polynomial for k € {3,4,6}. When the polynomial ¢(z) is
quadratic, we will refer to the families (¢(z),t(x),n(z)) as quadratic polynomial families.

Table 1: MNT Families
a(x) t(x) n(x) Pell Equation Suitable X

1222 — 1 +6z — 1 1222 + 6z + 1 X2 -3DY?2=24 X=6x+3
224+x+1| —z,x4+1 | 22 +204+2,224+1 | X2-3DY?=-8| X=3zx+2,3z+1
422 +1 +2r+1 472 £ 22+ 1 X2 -3DY?=-8 X=6zF1

o k| w| X
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The quadratic polynomial families of Miyaji et al. are presented in Table 1 and are
known as the MNT families. For any pair (q(z),t(x)) of Table 1 substitute them into the
CM equation (Eq. 1) to get

4q(x) — t*(z) = DY? (3)

Multiplying by a constant factor and completing the squares yields to the Pell-type equations
of Table 1. We refer to these equations as the MNT equations. Suppose that the integral
pair (X;,Y;) represents a solution of an equation in Table 1, for some ¢ € N. Then check if
there is an integer xg such that X; is suitable, i.e. if it is written in the form given in the
last column of Table 1. If such a x( exists, substitute xg into the corresponding polynomials
q(x),t(x) and r(z) and check if g(xg) is prime, [t(zo)| < 24/q(x0) and n(xg) is also prime.
If these conditions hold, the triple (¢(z),t(xo),n(xo)) represents the suitable elliptic curve
parameters. An implementation of the MNT method can be found in [10].

In [15], Scott and Barreto argue that by using the MNT method we can find few curves
for actual deployment and furthermore these are the only curves available if we insist on
constructing prime order pairing-friendly elliptic curves with & € {3,4,6}. To overcome this
problem, they generalized the method by allowing the use of curves with nearly prime order,
i.e. #E(F;) = n = hr where r is a large prime and h > 1. Note that in this case the field
size ¢ satisfies the relation ¢ = hr +t¢ — 1. The advantage of this idea is the construction of
more Pell-type equations leading to the generation of much more suitable curve parameters.

Since the group E(IF,) has a subgroup of prime order r and k is the embedding degree of
this subgroup, we must have 7 | ¢* — 1 and 7 { ¢/ — 1 for any i € {1,... k — 1}, according
to the definition of the embedding degree. This condition is equivalent to r | ®x(t — 1) and
r{®;(t—1) forany i € {1,...,k—1}, as shown in Lemma 1 in [2]. Thus we may assume that
@ (t — 1) = ar for some positive integer a. Now substitute ¢, z =t — 1 and r = $(t — 1) /a
into Eq. (1) to obtain the equivalent equation

Py (z)

DY? = 4h —(z—1)2 (4)
By setting 2 = (X — ag)/(4h —a), A = —2|k/2| +4, ax, = A\ +a and fr = a} — (4h — a)?
Eq. (4) is transformed into

X% — a(4h — a)DY? = f;. (5)

This equation has the form of Eq. (2) where D is the CM discriminant. Thus a(4h —a) > 0
forcing a < 4h. If the above Pell equation is solvable for some values D, h and a with solution
an integral pair (X;,Y;), then it is checked if xy = (X; — ag)/(4h — a) is integer. If this is the
case, check if ¢ = hr + xg is prime and r = ®,(zp)/a is also prime. As mentioned in [15],
we may further relax the condition on the group order by allowing r to contain itself a large
prime factor, i.e. r = ms, for some m > 1 and s a large prime. If both conditions hold, the
integers (g, t,r) are suitable elliptic curve parameters.

Galbraith, McKee and Valenga [9] (GMV) also generalize the MNT method by using non-
prime elliptic curves. In their work they present a complete characterization of all polynomial
families (¢(x),t(z),r(x)) with cofactors h € {2,3,4,5} for cases where k € {3,4,6}. Their
polynomial families appear in [9] and lead to the same Pell equations as in the case of Scott
and Barreto method. In order to find suitable curve parameters for a fixed embedding degree
k and a cofactor h, the GMV method proceeds as the original MNT method.

In [6], Duan, Cui and Wah Chan present an alternative way for producing pairing-friendly
elliptic curves with arbitrary embedding degree k. Following the same approach as [9], they
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represent the curve parameters as polynomials ¢(z),t(x),r(x) € Z[z]. Furthermore they
introduce the concept of effective polynomial families. According to their definition a polyno-
mial family (q(z),t(x),r(x)) is called effective if the polynomial f(z) = 4q(x) — t>(x) can be
factorized with one square polynomial, or it is quadratic and factorable, or it only contains
terms with smaller degree compared to ¢(z). An example for the first case is studied by
Barreto and Naehrig in [3] for £ = 12. Duan et al. argue that an effective polynomial family
has better chances in producing suitable elliptic curve parameters.

Although the method of Duan et al. is suitable for any k& we focus on the case where
k € {3,4,6}. If we substitute ¢(x) = hr(z) + 1 —t(z) in Eq. (3) we have that

f(z) = DY? = 4hr(z) — (t(z) — 2)2 (6)

Then, we choose a quadratic polynomial r(x) and since we wish r to be prime, the polynomial
r(z) must be irreducible over Z[z]. A linear trace polynomial ¢(z) must also be chosen, such
that r(z) | ®x(t(r) — 1). Knowing r(z) and t(x) we may compute f(x) and ¢(z). Since
degr(x) = 2, the polynomial f(z) is quadratic and a generalized Pell equation should be
solved. Using the solutions of these equations we may search for suitable curve parameters
in the usual way.

3 The Proposed Method

We focus on the generation of pairing-friendly elliptic curves with embedding degree k €
{3,4,6} and we determine a way to construct quadratic polynomial families that have better
chances in producing suitable elliptic curve parameters. To this end we adopt the remarks
from the work of Duan, Cui and Wah Chan [6] about effective polynomial families. In our
study we will consider effective polynomial families where the polynomial f(z) = 4q(x)—t3(x)
is quadratic and factorable. We present a complete characterization of all such polynomial
families and we argue that these families lead to a special kind of Pell equations which are
always solvable and this fact considerably improves the efficiency of the whole generation
method. We also extend the ideas presented in the previous section by allowing the cofactor
to take values larger than the ones studied by Scott and Barreto and Galbraith et al. i.e.
h > 5. We begin our study by analyzing the case k = 6, while the same ideas hold for the
other two cases k € {3,4}.

3.1 The case of k=6

Suppose that ¢(x),t(z),r(x) € Z[z] is a polynomial representation for the field size, the trace
polynomial and the subgroup order respectively. Let a be a positive integer and suppose that
the trace polynomial is linear of the form ¢(z) = ax + b for some b € Z. Substitute ¢(z) — 1
into ®¢(x) to obtain

Do(t(x) — 1) = a®2® + a(2b — 3)z +b* — 3b+ 3. (7)
Since ®g(t(z) — 1) must be divisible by r(z), we may set

b2 —3b+3

r(z) = az® 4+ (2b — 3)z + .
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and thus @ must be chosen such that the congruence b?> — 3b + 3 = 0 mod a is satisfied for
some b € Z. The polynomial r(x) is irreducible over Z[x], since its discriminant is equal to
A, = —3 < 0. Because r(z) represents the order of a subgroup of E(F,), it has to represent
primes and therefore the condition that r(z) is irreducible over Z[z] is essential. We may then
assume that the order of E(F,) is given by a small integer cofactor h times the polynomial
r(z), i.e. #E(Fy) = hr(z). Now substitute r(z) into ¢(x) = hr(z) + t(z) — 1 to obtain the
corresponding field polynomial

+b2h—3bh+3h+ab—a

a

q(z) = ahx® + (2bh — 3h + a)x (9)
Note that (b*h —3bh+3h+ab—a)/a € Z, since we have chosen a | (b*> —3b+3). Furthermore
the field size must be prime and thus the polynomial ¢(x) must be irreducible over Z[x].
This means that the integer A, = (a — h)? — 4h? must not be a perfect square and also
the coefficients of ¢(x) must not have a common factor. Now substitute ¢(x) and ¢(z) into
Eq. (3) represented in polynomial field and set f(z) = 4q(z) —t2(z). We obtain the quadratic
polynomial

(4h — a)b? 4+ 2(2a — 6h)b + 12h — 4a

f(x) :a(4h—a)x2—|—2((4h—a)b—|—2a—6h)$—|— ,

Table 2: Some effective polynomial families for k = 6

h t(x) q(x) r(x) Pell Equation

4 | 13z+5 5222 + 41z + 8 1322 + Tz + 1 (39z 4+ 17)2 — 39DY? = 42
13z + 11 5222 4 89x + 38 1322 + 192 + 7 (392 + 35)2 — 39DY2 = 42

9 | 3lz+7 27922 + 130z + 15 3122 4+ 11z + 1 (1552 + 43)? — 155DY2 = 122
3lx + 27 27922 + 490x + 215 3122 + 51z + 21 (1552 + 143)% — 155DY 2 = 122

12 | 397 +18 | 468z% + 435z + 101 3922 + 33z + 7 (1172 + 56)? — 39DY? = 42
39z + 24 4682 + 579x + 179 3922 + 45z + 13 (117x + 74)? — 39DY 2 = 42

16 | 49x + 20 7842% + 641z + 131 4922 + 372 4+ 7 (7352 + 302)% — 735DY 2 = 82
49z +32 | 78422 +1025x + 335 | 4922 + 61z + 19 (735x + 482)% — 735DY? = 82

25 | 792425 | 197522 + 125420 +199 | 7922 +47x+7 | (1659 + 533)% — 1659DY 2 = 202
792 4+ 57 | 197522 4+ 2854z + 1031 | 7922 4+ 111z +39 | (16592 + 1205)% — 1659DY 2 = 202

25 | 91z + 11 22752% 4 566z + 35 91z + 19z + 1 (819z + 131)% — 819DY? = 402
91z + 18 227522 4 916 + 92 9122 + 33z + 3 (8192 + 194)%2 — 819DY? = 402
91z + 76 | 22752% + 3816z + 1600 | 91z? + 149z + 61 (819z + 716)% — 819DY 2 = 402
91z + 83 | 227522 + 4166x + 1907 | 91z% + 163z + 73 (8192 + 779)% — 819DY? = 402

36 | 109z +47 | 39242% + 3385z + 730 | 109z% + 91z + 19 | (3815z + 1647)? — 3815DY 2 = 122
109z + 65 | 392422 + 4681z + 1396 | 10922 + 127z + 37 | (3815z + 2277)% — 3815DY 2 = 122

Since deg f(x) = 2, this will lead us to a generalized Pell equation. Following the def-
inition of Duan et al. when f(z) is factorable over Z[z] we have better chances in finding
suitable pairing-friendly elliptic curves and in this case the triple (q(z),t(x),r(z)) is an effec-
tive polynomial family. In particular suppose that the above polynomial f(z) is factorable
over Z[z]. Then the integer Ay = 16h(a —3h) must be positive and perfect square. Moreover
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since Ay > 0 we get that a > 3h. Multiplying the relation f(z) = 4q(z) — t*(z) = DY? by
a(4h — a), completing the squares and setting X = a(4h —a)z + (4h—a)b+ 2a — 6h we obtain
an equation of the form
X2 — a(4h — a)DY? = (2 h(a — 3h)>2. (10)

This is a generalized Pell equation and in fact it is the same as the one found by Scott and
Barreto, since fg = 4h(a — 3h). The difference is that we consider these equations only when
fe is a perfect square. Furthermore, combining the two inequalities for a we conclude that
an equation of the form of Eq. (10) is possible, if a is chosen in the range 3h < a < 4h.

Conversely, suppose that the polynomial f(z) is quadratic of the form f(z) = ax?+bx+-c €
Z[z] that leads to a generalized Pell equation of the form X? — SDY? = m with m a
perfect square. Multiply f(z) by 4a and complete the squares to obtain the Pell equation
(2az +b)? —aD(2Y)? = b*> — dac where S = a and m = b? — 4ac. Since m is a perfect square,
we have that the integer b — 4ac must be a perfect square which in turn means that f(z) is
factorable over Z[z]. Hence we have shown that in order to get a generalized Pell equation
of the form of Eq. (10) we must have f(z) factorable and thus h(a — 3h) must be a perfect
square. The above discussion actually indicates that these are the only Pell equations of this
form for k = 6. We conclude that all effective polynomial families for £ = 6 have the next
parametric polynomial representation

t(r) = az+b
b2 — 3b
r(z) = az’® + (2b — 3)z + b"-3b6+3
a
2 - —_—
o(x) = aha? + (2bh — 3h + a)g 4 30 F3hrab—a

a

where the following conditions must be satisfied: (i) the integer h(a — 3h) is a perfect square,
(i) the congruence b> — 3b+ 3 = 0 mod a is solvable, (iii) the integer (a — h)? — 4h? is not a
perfect square and (iv) the coefficients of ¢(x) have no common factor. The last two conditions
guarantee that ¢(x) has no constant or linear factors. Some examples of Pell equations of the
form of Eq. (10), obtained by effective polynomial families are given in Table 2.

Pell equations of the form of Eq. (10) are considered as a special case and this is because
they have a very usefull advantage compared to others. In particular consider the standard
Pell equation

U? — a(4h — a)DV? = 1. (11)

By Theorem 4.1 [13] Eq. (11) is always solvable for every positive integer D, such that
a(4h — a)D is not a perfect square. Suppose that the pairs (U;,V;) define a sequence of
solutions for Eq. (11), with i € N. Then the pairs (X;,Y;) = (24/h(a — 3h)U;,2¢/h(a — 3R)V;)
represent the corresdonding solutions of the generalized Pell equation (10). Thus there is
always at least one class of solutions for Eq. (10) arising from the units in the quadratic
field Q(y/a(4h — a)D). Of course in most cases there are more than one classes of solutions.
This is a very important observation because the more integer solutions we have to test, the
more possibilities we have to generate suitable curve parameters. Once a solution (X;,Y;) of
the appropriate size is obtained, we follow the standard MNT method in order to construct
the curve parameters. More precisely check if there is a x¢p € Z such that X; is written
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as X; = a(4h — a)xg + (4h — a)b + 2a — 6h, for some b € Z satisfying the congruence
b2 —3b+3 = 0 mod a. If such a zq exists, substitute into ¢(z) and 7(x) and check if g(x) is
prime and r(xg) is prime or nearly prime.

The above procedure generalizes the work of Duan et al. [6] since it defines a parametric
representation of all effective polynomial families (¢(x),t(x),r(z)) such that f(z) is quadratic
and factorable. This analysis also shows that for a chosen pair (a,h) such that h(a — 3h)
is a perfect square and b2 — 3b 4+ 3 = 0 mod a is solvable there are more than one effective
polynomial families and the number of these families depends on the number of different b €
Z, satisfying the above congruence. All these different families lead to the same generalized
Pell equation. For example the effective polynomial family proposed in [6] for k = 6, h = 9
and t(z) = 31z + 7 is not the only one. In Table 2 we have shown that there is a second
family for t(x) = 31z +27. Thus in our case we solve this generalized Pell equation only once
and we are searching for suitable values q(z¢) and r(z¢) for all effective polynomial families
leading to this Pell equation. Following the strategy of Duan et al., the same Pell equation
may be solved more than once which induces a considerable delay in the execution time.

3.2 The case of k =3,4

For the cases where k = 3, 4 we follow the same arguments as in the case of k = 6. In particular
when k = 3 we may represent the quadratic families (¢(x),t(x),r(x)) by the parametrization

t(r) =ax+b
b —b+1

r(z) = az® + (2b — 1)z +
a

b’h—bh+h+ab—a
a

q(z) = ahz® + (2bh — h + 1)z +

where the following conditions are satisfied: (1) the integer 48h(a — h) is a perfect square,
(2) the congruence b> — b+ 1 = 0 mod a is solvable, (3) the integer (a + h)? — 4h? is not
a perfect square and (4) the coefficients of g(x) are coprime. Furthermore a and h must
also satisfy the relations 4h —a > 0 and a — h > 0 and thus a lies in the range h < a < 4h.
Multiplying the relation f(x) = 4q(z)—t%(z) by a(4h—a), completing the squares and setting
X =a(4h — a)x + (4h — a)b + 2a — 2h we conclude to the special Pell equation

X2 — a(4h — a)DY? = (2 3h(a — h))Q. (12)
In the same way if & = 4 then there is a parametrization of the quadratic families
(q(2), t(x),r(x)) as
t(x) =ax+b
r(z) = az® +2(b— 1)z + bQ_sz
q(z) = ahz?® + (2bh — 2h + a)z + BPh—2h+2h+ab-a

a

where the following conditions are satisfied: (1) the integer 32h(a — 2h) is a perfect square,
(2) the congruence b? — 2b+ 2 = 0 mod a is solvable, (3) the integer a® — 4h? is not a perfect
square and (4) the coefficients of g(x) have no common factor. Multiplying the relation
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f(x) = 4q(z) — t*(x) by a(4h — a), completing the squares and setting X = a(4h — a)x +
(4h — a)b + 2a — 4h yields the special Pell equation
2
X2 — a(4h — a)DY? = (2 2h(a — 2h)) . (13)
If we wish to find suitable curve parameters in both cases we proceed in the usual way. Note
here that the number of effective polynomial families decreases as the value of k increases in
{3,4,6}. The reason is that the choices for a are decreased. In particular when k£ = 3 the
integer a is chosen in the range (h,4h) while if £ = 6, the integer a lies in (3h,4h).

4 Experimental Results

The most crucial step in the above procedure is solving a generalized Pell equation of the
form of Eq. (2). A well known method used to solve any kind of Pell equations is the LMM
algorithm [13, 14]. Alternative ways are also presented in [14]. One of these methods finds all
solutions of an equation of the form (2) by computing the simple continued fraction expansion
of the quadratic irrational v/SD, but it is only suitable for values of the CM discriminant D
such that m?/S < D. This method is also implemented by Karabina and Teske in [10] for the

Table 3: Suitable parameters for k € {3,4,6} and h > 1 from effective polynomial
families (768 < klogq < 1536, logs > 128 and D < 10%)

k=3 k=4 k=6
Cofactor | a | Suitable Cofactor | a | Suitable Cofactor | a | Suitable

h (q,t,r) h (q,t,r) h (q,t,r)
4 7 392 8 17 52 4 13 384
12 21 46 8 25 19 9 31 13

12 37 45 16 34 52 12 39 72

16 19 57 16 50 19 16 49 37

16 43 10 18 37 60 25 79 7

36 111 36 18 61 23 25 91 17

48 49 33 32 65 53 36 109 40

original MNT equations. When m?/S > D this procedure finds only some of the solutions
for some D. Thus in our implementation we might lost a few suitable parameters. For more
precise results, one should implement the LMM algorithm when m?/S > D.

Table 3 presents the number of suitable curve parameters obtained by effective polynomial
families for certain choices of h when k € {3,4,6}. The criteria for suitability are the same
as those in [15]. In particular the field size ¢ is chosen such that 768 < klogq < 1536 and
the group order r is chosen to be a product r = ms for some prime s with log s > 128 bits.

For example when k = 6 we are looking for primes ¢ such that 128 < logq < 256 bits.
In this case the most lucky families appear when h = 4 and a = 13 where we found 384
suitable triples (q,t,7). When k = 3 the field size ¢ must be chosen between the sizes
256 < logq < 512. The most lucky case appears when h = 4 and a = 7 where we found 392
suitable curve parameters. When k = 4 the best results appear when h = 18 and a = 37
where we found 60 suitable triples (g, t,r) with 192 < log ¢ < 384.
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Table 4: Time required for the generation of suitable triples (q,t,r) when
k €{3,4,6} (768 < klogq <1536 and logs > 128)

k=3 k=4 k=6
SB Effective SB Effective SB Effective
Triples | h | Method | Families | h | Method | Families | h | Method | Families
(sec) (sec) (sec) (sec) (sec) (sec)
4 a="17 8 a=17 4 a=13
1 9.01 18.03 20.43 3.38 0.26 0.82
212.38 50.87 733.42 25.29 36.94 9.24
10 739.51 76.68 2717.25 100.61 377.71 11.69
20 1172.41 208.80 3670.81 383.85 1809.48 23.84
30 1641.05 310.70 6053.82 962.65 1874.23 45.34
12 a=21 16 a=34 9 a=31
1 8.68 9.26 4.82 3.45 12.49 18.58
279.08 132.92 240.88 27.50 72.48 226.62
10 931.51 1635.00 1112.30 121.02 3773.71 3176.45
16 a=19 18 a=237 12 a=39
1 2.60 12.62 21.40 44.23 111.06 0.19
5 1303.61 70.88 92.37 255.47 3118.85 50.67
10 3135.41 165.36 3869.22 638.52 6537.99 275.64
48 a=49 32 a==65 16 a=49
1 1.68 0.51 307.74 5.65 0.94 11.96
157.48 99.35 5899.03 44.15 298.87 35.30
10 6386.99 1170.49 13121.12 199.86 1168.44 141.01

According to our earlier analysis we expect that the number of suitable parameters ob-
tained from effective polynomial families is larger than the number of parameters from non-
effective ones. Thus we argue that one may use only the effective polynomial families for
finding suitable triples (¢q,t,r) when k € {3,4,6}. In order to show the efficiency of our
method, we implemented the algorithm proposed by Scott and Barreto and compared the
time required for the construction of a fixed number of suitable parameters with their method
and our proposal. The results appear in Table 4. In the case where there are more than one
effective polynomial families, we studied only the first one, i.e. the first a € Z leading to an
effective polynomial family.

In almost all cases, we observe that our method is faster than the method of Scott and
Barreto, especially as the number of the desired suitable triples (g,t,r) increases. This is
because the Pell equations from non-effective polynomial families are not always solvable and
thus there might be a large distance between the suitable values of D. For example consider
the case where k = 6 and h = 4. If we wish to construct only one elliptic curve (e.g. one triple
(g,t,r)), the algorithm of Scott and Barreto requires 0.26 seconds, while our method needs
0.82 seconds. If we wish to construct 5 elliptic curves (or the first 5 triples), Scott and Barreto
method requires 36.94 seconds, while our method needs only 9.24. For a required number
of 10 parameters, the difference is more clear. Taking the number of suitable parameters
even further, say 20 or 30 the method of Scott and Barreto needs to solve more than one
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Pell equations. This fact provides a considerable delay in the whole procedure. The same
remarks hold also for the case k = 3 and h = 4. Furthermore since the density of the values
of D is larger in our case, we expect that for a fixed number of suitable triples the values of
the discriminants will be smaller in the case of effective polynomial families than in the case
of Scott and Barreto method. For example when k = 6 and h = 4 the first 30 suitable triples
appear for values of D < 2221, while in the case of Scott and Barreto the same number of
triples were found for D < 97282. In order to achieve higher security levels, we may change
our requirements to accept larger values for the prime ¢. In this case we observe the same
behaviour as in the results of Table 4. See Table 5 for example.

Table 5: Time required for the generation of suitable triples (q,t,r) when k=6
and 3072 < klogq < 4608

SB Effective SB Effective SB Effective
Triples | h | Method | Families | h | Method | Families | h | Method | Families
(sec) (sec) (sec) (sec) (sec) (sec)
4 a=13 9 a=31 16 a=49
1 3.68 9.60 1208.45 18.15 15.13 35.75
1004.76 106.19 1465.73 356.10

5 Conclusion

According to Scott and Barreto [15] the construction of generalized MNT elliptic curves
is based on solving several Pell-type equations of the form of Eq. (2). For certain choices
of cofactor h, some of these equations have more chances than others in producing suit-
able elliptic curve parameters. In particular the most lucky quadratic polynomial families
(q(x),t(z),r(x)) are those for which f(z) = 4q(z) — t*(z) is quadratic and factorable. The
Pell equations obtained by such families have the advantage that they are always solvable
for every positive and square-free integer D and thus the more solutions we have to test for
suitability, the higher is the probability to get suitable curve parameters. This observation
also implies that this special kind of Pell equations provides even more flexibility on the CM
discriminant, since there are no congruential restrictions on D. In this work we isolate these
equations and introduce a procedure that uses only these special equations to construct the
desired generalized MNT elliptic curves. Based on our experimental assessments, we argue
that our method can considerably speed up the algorithm proposed in [15]. This is theoret-
ically explained (mainly) from the fact that we manage to avoid the solution of ”unlucky”
Pell equations.
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