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ABSTRACT 

Sign language recognition is a challenging problem both when 

tracking continuous signs (communication mode) or single words 

(translation mode) 1 . We have developed a system that can 

recognize Greek sign language vocabulary in translation mode 

using Kinect technology. The sensor captures 3D hands 

movement trajectory and then a set of features in the form of body 

joints are fed to a classifier to recognize the input sign. 

Normalization is used to align test and stored trajectories using the 

dynamic time warping algorithm before matching is done using 

the Nearest-Neighbor approach. The low computational 

complexity of the involved algorithms allows for building a 

system with real-time response times. The system was evaluated 

with a sample of 5 individuals and is capable of recognizing 15 

signs of the Greek sign language. Different configurations were 

tested and the best accuracy achieved was 99.33%. 

CCS CONCEPTS 

• Human-centered computing → Ubiquitous and mobile 

computing → Ubiquitous and mobile computing design and 

evaluation methods  
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1 INTRODUCTION 

Over 5% of the world’s population, approximately 360 million 

people has disabling hearing loss [1]. Deaf people often use sign 

language for communication by making hands and face 

movements to convey meaning [2]. Progress in sensors and 

devices development as well as research efforts on algorithmic 

techniques and signal processing empowered with Artificial 
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Intelligence methods have allowed the development of sign 

language recognition systems. In that respect barriers for deaf 

people can be lifted and communication gaps with speakers can be 

covered in everyday life situations. 

Microsoft Xbox Kinect is an RGBD camera that was initially 

developed as a peripheral device for use with the Xbox gaming 

console. The device itself features an RGB camera, a depth 

sensor, a multiarray microphone, and is capable of tracking users' 

body movement. It has not only achieved its initial goal i.e. 

gaming, but set up the floor to the development of a wide number 

of useful applications in the field of Computer Vision [3], Gesture 

Recognition [4] and Robotics [5].  

In this paper, we describe the development and evaluation of a 

sign language recognition system that helps signers and speakers 

to communicate. The application requires the use of Xbox Kinect 

sensor and the Kinect PC Adapter. The system, with the 

appropriate adjustments, can be used in various scenarios. It can 

be installed at information kiosks of airports, for assisting hearing 

impaired employees. For example, a passenger walks in, asks her 

question using spoken language, the signer answers in sign 

language and the system translates the signs to text or speech. 

Also, it can be used by individuals who want to learn or practice 

the sign language. The system displays a sign and asks the user to 

repeat, the user makes the proper gestures and the system assess 

whether the sign was performed correctly.   

In its current state, the system is able to recognize 15 words of 

the Greek sign language. Using the spherical coordinate system to 

track signs, signal filtering, the Nearest-Neighbor classifier and 

the dynamic time warping algorithm for trajectory alignment, the 

recognition accuracy reached up to 99.33%. 

The rest of the paper is organized as follows. Section 2 

discusses related work. The next section presents the key points of 

the approach followed to develop the sign language recognition 

system. We describe the main system components, the way data is 

acquired from the camera, the need for processing with filters and 

data normalization, the sign classifier used and the 

implementation environment. Section 4 discusses the evaluation 

of the system performed with the help of 5 individuals. Results are 

presented for different testing configurations. Finally, we give our 

conclusions and discuss our plans for future work. 

2  RELATED WORK 

A study performed by Chai et al. and supported by Microsoft 

Research Asia, proposed a sign language recognition and 

translation system using the Kinect sensor. Their approach uses 3-



 

D hand trajectory tracking, normalization by linear resampling 

and trajectory alignment to recognize 239 Chinese sign language 

words [6]. Final classification is measured by computing the 

Euclidean distance and results show a matching accuracy between 

83.51% and 96.32%. The system can translate sign language into 

text or speech and help a signer to communicate with a speaking 

person. The study suggests that the system can be installed in a 

doctor's office and an airport to improve communication. 

In a similar study performed by Hee-Deok Yang et al. a sign 

language recognition system was developed [7]. Of the 24 signs, 7 

were one-handed signs, and 17 were two-handed signs. The 

system tracked 10 upper body points and the hand shape is 

normalized with the help of a black wristband. Using a 

hierarchical conditional random field framework and a BoostMap 

embedding method, 24 signs of American sign language are 

recognized at a rate of 90.4%. 

In another study, Capilla developed an automatic sign 

language translator for 14 unofficial signs [8]. In this study, 

several functions of classification are proposed. The best accuracy 

achieved was 95.23% by using spherical coordinates and 

processing the data with the Nearest-Neighbor function. The cost 

is calculated using dynamic time warping algorithm. Capilla 

suggests installing the system in hospitals and supermarkets to 

assist deaf people interaction.  

Oszust et al. developed a polish sign language words 

recognition system using Kinect [9]. Two approaches were 

evaluated. The best one yielded 98.33% accuracy using nine 

subsets as the training set and the remaining subset as the test set. 

The first approach focused on describing hands by using images 

obtained by the color and depth camera of the Kinect. The second 

approach used skeletal data obtained by the sensor and delivered 

89.33% accuracy.  

A study performed by Fernando and Wimalaratne reporting a 

sign language to Sinhalese language translator applied to a chat 

application [10]. Using dynamic time warping and Nearest-

Neighbor classification, the translator could recognize 15 signs. 

The system achieved 92.4% accuracy using 225 test samples. 

Lang et al. developed an open source framework, called 

Dragonfly, for general gesture recognition using the Kinect 

camera. Dragonfly, is written in C++ and makes use of the cross-

platform Kinect driver OpenNI [11]. With the use of continuous 

density hidden Markov models, 25 signs of the German sign 

language are recognized with an accuracy up to 97%. 

In another study performed by Wu et al. and supported by 

National Science Foundation and Texas Instruments Inc., an 

American sign language recognition system using wrist-worn 

motion and surface EMG sensors was developed [12]. The system 

is capable of recognizing 40 signs. Data are obtained from sensors 

via Bluetooth and are stored after filtering. Four classification 

algorithms are used, namely decision tree, support vector 

machine, Nearest-Neighbor and Naive Bayes. Support vector 

machine obtains the best accuracy of 95.14%.  

A study performed by Starner et al. presented two hidden 

Markov model-based systems that recognize 40 sentence-level 

American Sign Language words [13]. The first system uses a 

desk-based tracking camera and achieves 92% word accuracy by 

analyzing images at 320x240 resolution and 10 frames per second. 

The second system uses a hat-mounted camera worn by the 

signer, pointing to the hands. It achieves 98% accuracy.  

Our approach is closely related to the approaches described in 

[8] and [10] with the following enhancements. We used the newer 

Xbox’s One Kinect sensor instead of the Xbox’s 360 sensor and 

the newer version of the Kinect API (v2). The new sensor 

provides higher resolution and tracks more skeleton joints. 

Additional joints that are used with respect to similar approaches 

are the hand tip and the thumb joints. The use of data filtering 

techniques found to be useful in improving system accuracy. 

Finally, our system reaches its best accuracy, 99.33%, when 

testing signs are compared to training samples that are coming 

from a single position, which is higher compared to corresponding 

cases in related work. 

3  SYSTEM DEVELOPMENT 

A fully functional system recognizing continuous signs is a 

particularly challenging problem because it is difficult to model 

the transition between signs. In this paper, a simplified version of 

the problem is studied i.e. recognizing specific words of the Greek 

sign language. In terms of implementation each sign is modeled 

separately and a training phase is required. For training a set of 

data is needed for each frame acquired and includes information 

that can be extracted from the available channels i.e. movement 

and hand position, handshape, facial expression and voice.  

The Microsoft Kinect sensor, in addition to RGB video, 

provides depth footage by using an infrared laser projector 

combined with a monochrome CMOS sensor and skeletal tracking 

[14]. Therefore, Kinect's usefulness in gesture recognition 

applications is evident, since it greatly facilitates the assessment 

of tracking the position and movement of hands and body. Key 

elements of the Kinect are the ability to track joints i.e. specific 

parts of a body and obtaining data of these joints for each frame 

i.e. an electronically coded still image in real time. 

An overview of the sign language vocabulary recognition 

process is shown in Fig. 1.  

 

Figure 1: Overview of the sign language vocabulary 

recognition process. 

The user is standing in front of the Kinect camera performing 

a sign. A new frame is obtained every 0.033sec (30 fps) and the 

video stream is updated. When a sign is given either in training or 

translation mode the data of the selected tracked joints are 



 

obtained using functions given by the Kinect API. Afterwards, 

these data are normalized and saved to a data structure, until the 

recording is stopped. In the training mode, the recorded sign is 

added to the training set whereas in the testing/translation mode 

the recorded sign is compared with signs that already exist in the 

sign repository using a classifier and the matching output is 

displayed as text (see Fig. 2) 

 

Figure 2: Training and testing modes of the system. 

3.1 Data Acquisition 

With the use of the Kinect API, up to 25 joints of person’s 

body can be tracked. Tracking all of them results in generating 

redundant data because the signs reenactment requires only hand 

movement, therefore the program would track only 10 joints. 

These joints are defined as the set:  

J = {HTL, TL, WL, HL, EL, HTR, TR, WR, HR, ER},  

where HTL is the Hand Tip Left, TL is the Thumb Left, WL is 

the Wrist Left, HL is the Hand Left, EL is the Elbow Left, HTR is 

the Hand Tip Right, TR is the Thumb Right, WR is the Wrist 

Right, HR is the Hand Right and ER is the Elbow Right as 

illustrated in Fig. 3. 

 

Figure 3: Upper body joints. 

Even though these joints are enough for describing a sign, two 

more joints are required for the data normalization steps. These 

are the Head and the Spine Mid defined as H and O respectively 

(see Fig. 3). In this way, the final selected tracked joints are 

reduced from 25 to 12. 

3.2  Data Filtering 

Median filtering is widely used to remove noise from an 

image or signal. In one of the proposed configurations, we apply a 

median filter to smooth the data obtained in both modes. The 

algorithm used is shown in Fig. 4. 

 

Figure 4: Median Filtering algorithm. 

3.3  Two-Step Data Normalization 

The normalization of the data must take into account the 

position of the person in the room and the data must be stored in 

the repository accordingly. A different position of the user in the 

room causes a variation of the Cartesian coordinates X, Y, Z, 

resulting in different values for the same sign. These coordinates 

are obtained using the Kinect API. 

In the literature, different normalization rules have been 

proposed. We have examined two of them, based on the middle of 

the spine [8] and based on the center of distance between the two 

shoulders [10]. In our system, all the joint coordinates will be 

normalized with respect to the position of the middle of the spine 

(O), because this position remains constant while recording a sign 

and will make the user's position independent. Furthermore, 

instead of storing the Cartesian coordinates X, Y, Z in the 

repository, the spherical coordinates considering the above 

normalization will be stored.  

The spherical coordinate system is a coordinate system for 

representing geometric figures in three dimensions using three 

coordinates: the radial distance of a point from a fixed origin (R), 

the zenith angle from the positive z-axis (Θ), and the azimuth 

angle from the positive x-axis (Φ). 

In the proposed system, the position of the point results by 

combining the currently tracked joint set J and the middle of the 

spine origin O. The set of radial distances R = {rHTL, rTL, rWL, rHL, 

rEL, rHTR, rTR, rWR, rHR, rER}, the inclinations (polar angles) Θ = 

{θHTL, θTL, θWL, θHL, θEL, θHTR, θTR, θWR, θHR, θER} and the azimuths 

(azimuthal angles) Φ = {φHTL, φTL, φWL, φHL, φEL, φHTR, φTR, φWR, 



 

φHR, φER} are defined as follows (n is the number of features in set 

J): 

∑ 𝑅(𝑖) = √(𝐽(𝑖)𝑥 − 𝑂𝑥)2 + (𝐽(𝑖)𝑦 − 𝑂𝑦)
2

+ (𝐽(𝑖)𝑧 − 𝑂𝑧)2

𝑛

𝑖=1

 (1) 

∑ 𝛩(𝑖) = 𝑎𝑡𝑎𝑛2 (√(𝐽(𝑖)𝑥 − 𝑂𝑥)2 + (𝐽(𝑖)𝑦 − 𝑂𝑦)
2
,  (𝐽(𝑖)𝑧 − 𝑂𝑧) )

𝑛

𝑖=1

 (2) 

∑ 𝛷(𝑖) = 𝑎𝑡𝑎𝑛2 ((𝐽(𝑖)𝑥 − 𝑂𝑥), (𝐽(𝑖)𝑦 − 𝑂𝑦) )

𝑛

𝑖=1

 (3) 

Additionally, the data of the recorded sign must be stored in 

the repository without taking into account the user's body size. 

The different size of each user causes a significant variation to the 

distance from one joint to another. 

After applying the normalization on the user's position, as 

described above, every joint in J is expressed by the relative 

distance to the origin O and the two angles θ and φ. Θ describes 

the angle between the zenith direction and the line segment OJ 

and Φ describes the signed angle measured from the azimuth 

reference direction to the orthogonal projection of the line 

segment OJ on the reference plane (Fig. 5). 

 

Figure 5: Spherical coordinates of a joint J. 

In order to deal with that problem, the radial distance OJ will 

be normalized by using the distance between the head joint and 

the middle of the spine (rΗΟ) as proposed in [8]. This factor tells 

about the size of the user and can be used to solve the problem 

when taller users have greater distance between their head and the 

middle of the spine than shorter. 

Given the set of radial distances R = {rHTL, rTL, rWL, rHL, rEL, 

rHTR, rTR, rWR, rHR, rER}, the normalized set of distances Rnorm is 

obtained as follows: 

∑ 𝑅𝑛𝑜𝑟𝑚(𝑖) =
𝑅(𝑖)

𝑟𝐻𝑂

𝑛

𝑖=1

 (4) 

where n is the number of radial distances from R and rHO. 

There is no need to normalize the angles θ and φ since the user's 

size does not affect angles. 

3.4  Data Storage 

Once the data for each sign are obtained and normalized, signs 

are stored to the repository in a specific unique way. Three files 

are generated, one for each spherical coordinate R, Θ and Φ. Each 

file contains information for every frame for each of the ten 

selected tracked joints. 

3.5  Sign Classifier 

The sign classifier will classify the test sample (translation 

mode) with the closest one from the repository and will output the 

recognized word. The problem here is that the two compared 

signs do not have the same number of frames. 

3.5.1 Nearest-Neighbor with Dynamic Time Warping. The 

Nearest-Neighbor classifier is used with the dynamic time 

warping algorithm employed for trajectory alignment (Fig. 6). The 

recorded test sign is classified with the most similar single sign 

from the repository. The most similar sign from the training set is 

the one with the smallest Euclidean distance, which is calculated 

within the dynamic time warping algorithm. 

 

Figure 6: Nearest-Neighbor algorithm. 

3.5.2 Dynamic Time Warping. Dynamic time warping is a 

well-known algorithm to find an optimal alignment between two 

given sequences which don't have the same length, in our case 

two signs that are described with different number of frames. 

Originally, DTW has been used to compare different speech 

patterns in automatic speech recognition but it has also been 

successfully applied to automatically cope with time deformations 

and different speeds associated with time-dependent data. The 

algorithm used is shown in Fig. 7. The sequences are warped in a 

nonlinear fashion to match each other. 

 

Figure 7: Dynamic time warping algorithm. 

3.6  Implementation Environment 

The application was developed in C# programming language 

using the Visual Studio 2015 Community Edition, the .NET 



 

Framework, the Kinect API and the Speech Recognition API 

provided by Microsoft in a machine running Windows 10. The 

data were saved locally in text files. 

4 EVALUATION 

For the evaluation of the system a sample of 5 individuals (2 

male, 3 female) with different size and characteristics was 

assembled. All participants did not know the words of the Greek 

sign language prior to participation. Each user who participated in 

the evaluation process performed 15 signs, four times. This results 

in 300 samples that were used to assess the accuracy of the 

system. The four samples for each sign were obtained as follows: 

2 were obtained from the center position, 1 from the right position 

and 1 from the back position. 

Prior to participation in the evaluation study the participants 

studied and learnt how to perform the 15 signs based on videos 

provided by the Institute of Educational Policy [15]. They were 

presented with all the details, such as key points of each sign, and 

how to start recording a sign through speech or standard graphical 

interaction in both modes supported by the system. 

From the 15 signs, 6 were one-handed signs and 9 were two-

handed signs. Two-handed signs can be sub-categorized into 4 

signs that require mirrored hand movement and 5 that require 

normal hand movement as shown in Table 1. Some additional 

criteria for the selection of the signs were considered. Signs that 

indicate direction are representative of the way they are performed 

and have everyday usage. Also, signs that are performed in a 

similar position e.g. ‘book’, ‘middle’ and in a vague way e.g. 

‘paint’ were selected in order to challenge the classification. The 

participants performed the signs that require one hand with their 

dominant hand and the two-handed signs on their convenience. 

Table 1: The 15 GSL signs used 

Type Signs 

One-handed key, white, paint, straight, phone, hot 

Two-Handed 

(Normal) 

left, right, middle, guitar, hammer 

Two-Handed 

(Mirror) 

camera, book, run, table 

 

Six different configurations were evaluated. All 

configurations compared the spherical coordinates after being 

normalized as suggested, with every combination of them 

possible. The configurations were: 

(1) Plain classification: Spherical coordinates of the signs are 

compared only. 

(2) Weighted classification: Spherical coordinates of the signs 

are compared focusing on the hand joints (90% weight on hand 

joints and 10% weight on elbow joints). 

(3) Median filtering classification: Spherical coordinates of 

the signs are compared after applying a median filter. After testing 

different window sizes, best results were achieved with a window 

size of 5. Mean filtering with different window sizes was also 

tested but it didn’t improve the accuracy of the system.  

(4) Classification considering less joints: Six joints (WL, HL, 

EL, WR, HR and ER) instead of ten spherical coordinates of the 

signs are compared.  

(5) Classification considering two individuals instead of five.  

(6) Classification considering only the center position i.e. only 

150 samples of the center position are used. 

The results achieved are shown in Table 2. From the analysis, 

several conclusions can be obtained. In general, the sensor itself 

provides accurate data and combined with the processing 

performed high recognition accuracies are obtained confirming 

the relevant literature. In particular in the plain classification the 

best accuracy is 93.00%. A better accuracy is achieved when 

considering the radial distance and the azimuthal angle, in 

combination with the median filter applied on the stored data 

(94.67% accuracy).  

From the quantitative analysis of the accuracies obtained and 

regarding the spherical coordinate system, a conclusion drawn is 

that the radial distance and the azimuthal angle are the two 

spherical coordinates that change the most when performing a 

sign thus they describe the sign better. On the other hand, the 

polar angle when considered alone provides the worst results and 

also if combined with the other two spherical coordinates 

degrades the results. It is considered that the reason is because this 

angle has a similar behavior when performing a sign. Another 

observation that could be made is that using all three spherical 

coordinates doesn’t improve the accuracy of the system.  

From the qualitative analysis of the accuracies obtained across 

the six different configurations we can conclude to the following 

results. When applying weighted classification the best accuracy 

achieved (92.67%) is lower than the plain configuration, 

evidencing that elbows play a significant role when performing a 

sign and must be treated the same way as the hand joints. 

Reducing tracked joints from ten to six results in losing the detail 

from the movement of the thumbs and hand tips when performing 

a sign and lowers accuracy to 92.00%. Median filter smooths the 

data obtained from the Kinect sensor and raises accuracy to 

94.67%. The best result when considering two individuals instead 

of five, is the same when comparing with raw data (93.00%). That 

result raised the question of using median filtering and comparing 

the signs of two individuals instead of five. In that case, accuracy 

was 94.33%. 

One extra configuration was tested because it was observed 

that considering the radial distance alone, had higher accuracy 

without applying the median filter (see first row in Table 2). The 

additional configuration (not shown in Table 2) represented a 

classification which considered both radial distance without 

filtering and the azimuthal angle with median filtering. Results 

showed an accuracy of 94.00%.  

The default approach used by the system is the one providing 

the best results i.e. radial distance and azimuthal angle after 

applying median filter with a window size of 5 on both spherical 

coordinates. From the total of 300 samples 16 are misclassified, 9 

of them are performed at the ‘right’ position and 7 at the ‘back’ 

position. For 10 of the signs we had 100% accuracy. The 5 signs 

that aren’t classified with absolute accuracy can be seen in Table 

3.



 

Table 2: Accuracies for the different configurations 

Spherical Coordinates Plain Weighted Median 

Filter 

Reduced 

Joints 

Reduced 

Samples 

Center 

Only 

Radial Distance (RD) 89.00% 86.00% 87.33% 89.00% 91.33% 94.67% 

Zenith Angle (ZA) 81.67% 81.00% 80.00% 75.00% 81.33% 92.67% 

Azimuth Angle (AA) 87.67% 87.67% 90.00% 88.33% 88.00% 98.00% 

RD + ZA 89.00% 89.00% 89.00% 87.33% 88.33% 98.67% 

RD + AA 93.00% 92.67% 94.67% 92.00% 93.00% 97.33% 

ZA + AA 90.67% 89.67% 91.33% 89.00% 89.33% 98.00% 

RD + ZA + AA 92.00% 92.33% 92.67% 92.67% 91.00% 99.33% 

 

From the observations we made, we found out that the signs 

that are performed in similar position relatively to the O with 

another sign are more likely to be wrongly classified. 

Table 3: Probabilities of misclassified GSL signs 

 

Finally, if we consider only the center position during the 

classification, the accuracy raises to 99.33% using all three 

coordinates. From the 150 samples only one is misclassified. 

Given the fact that this is the configuration that is the most tested 

in the related literature underlines the usefulness of our 

implementation. However it should be noted that this 

configuration may cancel the normalization performed with 

respect to user’s position. 

5 CONCLUSIONS 

By combining the Kinect technology with the Nearest-Neighbor 

classifier enhanced with dynamic time warping for trajectory 

alignment and median filtering, the presented system is able to 

recognize 15 words of the Greek sign language performed by 

different users. Different configurations were evaluated. A 

recognition rate of 94.67% is achieved when the position of the 

subject can vary and 99.33% accuracy is achieved when the 

subject is standing at a standard position. 

Future work will concern expanding the number of signs that 

can be recognized by the system and testing the system with more 

individuals without lowering the accuracy. Facial expressions play 

vital role in sign language and Kinect v2 introduced face tracking. 

An upgrade would be to obtain data regarding facial expressions 

so that each sign is modeled more precisely and hopefully raising 

the accuracy of the system in more challenging environments. 
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book key white paint straight middle phone hot run

book 0,8 0,15 0,05

key 0,8 0,05 0,15

white 0,05 0,9 0,05

paint 0,8 0,05 0,15

straight 0,05 0,9 0,05


