
158

Efficient Trip Generation with a Regulation

Modeling Language for Airline Crew Scheduling

Christos Goumopoulos
1
, Efthymios Housos

2

1Lyseis Ltd AITS, Patras Scientific Park, GR-26500, Greece

2Department of Electrical & Computer Engineering, University of Patras, GR-26500, Greece

Abstract. Trip generation is the most time-consuming phase of the crew scheduling

process. A large number of trips must be constructed while satisfying a complex set of

regulations. In this paper, we present an efficient trip generation method that utilizes

effectively a legality checking system in order to reduce the corresponding search

space. Special pruning rules are defined using a high-level rule language, which also

supports the modeling of the business regulations required in the scheduling process.

In addition, the legality checking mechanism has been tuned to perform efficiently in

order to cope with the vast amount of the legality checks required by the trip

generator. The algorithms are tested as a module for a crew re-scheduling application

satisfying the tight response time requirements of a production system. We present

experimental results based on problems provided by a major European airline that

validate the usefulness and applicability of our work.

1 Introduction

Scheduling and administering people are difficult and time-consuming processes [1]. The

situation is further complicated from the fact that the schedules must satisfy intricate opera-

tional constraints. Computer applications that perform the scheduling process are of primary

importance because of the extremely high cost of human resources. The combinatorial nature

and the size of large-scale resource management create the need for the solution of large

problems. Although performance improvements in computer hardware and software are

happening continuously, airline problems tend to require also faster solution times due in part to

the recent high competition that occurred after deregulation of the airline industry.

An important problem in the airline planning process is the construction of legal trips or

lines of work that cover the entire airline’s flight, at minimal cost [2]. The problem is usually

confronted in two phases. The first one refers to the generation of a large number of legal trips,

while the second one to the selection of an optimal set of trips. A trip consists of a sequence of

flights to be flown by a crewmember that starts and ends at the crewmember’s home base. For

short haul fleets the lengths of the trips typically range from one to five days (shifts) with up to

25 flights. Each trip has an associated cost and must satisfy a large number of union, company

and governmental regulations.

Trip generation is also used in solutions to crew re-scheduling or recovery problem [3].

Namely, during the recovery process, new trips have to be generated in real time in order to

deal with disruptions in operations. For reasonable disruptions, the biggest problems involve up

to 15,000 trips. This number would increase considerably for large disruptions like snowstorms

at major airline hubs. The difficulty of this problem is not the large number of trips to be

considered but the need to generate them as fast as possible. An efficient trip generation process

can meet this requirement.

159

In the past, the regulations that define legal trips have been hard coded into the scheduling

applications, with the exception of some external parameters. European airlines, however,

frequently wish to modify the rules and these modifications often require more than just a

parameter change. Consequently, it has been required extensive software changes for the

maintenance and addition of new rules. Therefore, a high-level domain specific rule language

would be an ideal solution for the expression and management of rules. Two systems that use a

special purpose language for the expression and subsequent management of rules are presented

in [4] and [5].

The aforementioned rule systems usually present a black box interface to client applications

(e.g., trip generator) examining simply if a partial or a complete trip is legal or not.

Experimentations have shown that a different interaction with the rule system could speedup the

trip generation phase. This is very important, since the trip generation phase takes, depending

on the type and the size of the problem, 70-85% of the runtime required for the solution of a

crew-scheduling problem.

The rest of the paper is organized as follows. In section 2, we are making a brief anaphora in

the DAYSY regulation handling system since this plays a central role in the trip generation

process. In section 3, we define the trip generation problem and describe the search algorithm

that is used. In section 4, we present algorithms and methods to improve the performance of the

trip generation process. Results on the performance improvements achieved are given based on

real airline scheduling problems. Supplementary we reference improvements achieved from a

related earlier work that involved the use of parallel processing and present combined results.

Finally, conclusions and future work are discussed in section 5.

2 Businesses Regulations Modeling - the DAYSY Approach

As partners of the ESPRIT project DAYSY (Day-to-day resource management systems), we

were engaged in addressing the problem of stating and managing regulations for scheduling

applications involving human resources. We have researched and suggested a new approach

that is based on an Object-Oriented meta-model and a special purpose rule language called DRL

(DAYSY Rule Language) [5]. The prototype we have developed was further upgraded with

respect to performance and functionality [6, 7] and is currently utilized by the DAYSY resource

management system, which is used in production by Lufthansa Airlines.

DRL represents a modeling language in the scheduling problem domain, designed to express

the regulations involved in a user friendly and declarative manner. This is achieved by using

high-level language constructs with semantics that are close the user terms. The declarative

nature of the language allows the complex data manipulation to be performed transparently to

the user in runtime. Another strong feature of the language is code reusability that is achieved

by a built-in inheritance mechanism.

DRL programs consist of one or more source rule files, each of which contains some of the

text of the program written according to the language’s specifications. A number of such files

can be compiled together to form a rule-set. A rule-set is composed of a set of logically

cohesive rules serving the legality requirements of a particular application and exists at both a

high-level representation (DRL language) and a low-level one that is used by the Legality

Checking System (LCS). The LCS is the integration of any rule-set with the LCS Kernel

providing services such as creation of the aggregation hierarchy, computation of derived

property values, checking the legality of composite activities and on-line manipulation of the

rule parameters (see Figure 1).

160

DRL compiler

On-line Rule

Manipulation

Rule

Checking

Ruleset :
Activities, Rules
Time Windows,

Properties, etc.

Property
Evaluation

Activity
Composition

Aggregation
Hierarchy

Legality

Checking
System

LCS KERNELApplication
Database

Scheduling
Application

Planer

Message
Dispatcher

rule files
Activity Type

Configuration File

Fig. 1. The DAYSY Legality Checking System (LCS)

A rule compiler transforms, in a first step, the source code in C++ classes and then the ANSI

compliant C++ compiler of the target machine translates the intermediate representation to

object code that is finally linked to the runtime system. The exploitation of the code

optimization capabilities, provided by the C++ compiler, as well as the efficiency of the rule

evaluation mechanism described further in this paper, satisfy the performance requirements of

demanding applications. In addition, DAYSY LCS allows easy integration with resource

management applications through a well-defined C++ API [8]. DAYSY LCS provides an

enterprise with a robust rule system for numerous applications that is easy to maintain [9].

3 Trip Generation

3.1 Problem Description

The trip generation process produces a large number of legal trips by combining flights in

different combinations. The total number of possible trips depends on the structure of the flight

network. The long haul fleets have in general few and long flights and can be examined in an

exhaustive manner. A short haul fleet with a reasonable number of planes can produce a huge

number of trips if an exhaustive search is attempted. To reduce the number of trips to a

reasonable level requires an intelligent generation procedure. The required time to produce all

the necessary trips varies between several minutes to several hours, in proportion to the

complexity and amount of regulations, the size of the problem and the control parameters of the

generation process.

A pre-processed connection matrix that shows the acceptable connections between pairs of

flights aids the generation process. The connection matrix represents in mathematical terms a

directed acyclic graph among the flights. A node of the graph corresponds to a flight and an

edge represents a legal pair-wise connection. Nodes corresponding to flights with a departure

station that is a crew home base are identified as start nodes. Similarly, nodes corresponding to

flights with an arrival station used also as a crew home base are identified as terminal nodes.

Any path in the graph starting from a start node and ending to a terminal node represents a crew

trip, possibly illegal. The possible non-zero elements of the connection matrix for a typical fleet

of 1000 flights can be from 10,000 to 100,000.

161

Formally, let G(V,E) represent the search graph for the trip generation process and HB the

set of crew home bases. Then we define the set of start nodes S, the set of terminal nodes T, the

set of start (terminal) nodes for a specific home base Shb (Thb) and the set of trips P (possibly

illegal) in graph G as follows:

{ }HBuairportdepartureVuS ∈∈=)(_:

{ }HBvairportarrivalVvT ∈∈=)(_:

{ } SHBhbandhbuairportdepartureVu
hb

S ⊆∈=∈=)(_:

{ } THBhbandhbvairportarrivalVv
hb

T ⊆∈=∈=)(_:

{ })(_)(_ : vairportarrivaluairportdepartureandTvandSuvuP =∈∈= a

3.2 Search Algorithm

The most practical and at the same time efficient algorithm, with respect to memory resources,

for the trip generation process is the depth-first-search (Figure 2) in the search graph. The

search always begins from the start nodes of the graph. Every start node is the root of a search

tree that will be examined by the trip generation algorithm. The search algorithm traverses the

tree until a regulation violates. In every step of the depth-first-search, the created sequence is

checked for legality. In case of a rule violation the algorithm backtracks to the previous node

and the next branch is examined. The generator search is limited also by a maximum number of

branches considered in each node of the search graph.

Input: G(V,E) the search graph, S the set of start nodes, R the regula-

tions, SW(p) search width as a function of the working days covered by

p, where p denotes a sequence of nodes

Algorithm:

procedure GENERATE
Work queue WQ← S

while(WQ not empty) do

node← GET_NEXT(WQ)
SEARCH(node)

endwhile

endprocedure

procedure SEARCH(node)

p ← ADD(node)

if CHECK(p, R) then

if p∈P then OUTPUT(p)

while (SW(p) is not violated) do

r ← NEXT_CONNECTION(node,E(G))

SEARCH(r)

endwhile

endif

p ← REMOVE(node)

endprocedure

Fig. 2. Trip generation algorithm

Figure 2 shows the trip generation algorithm. The GENERATE procedure calls for each start

node the SEARCH procedure. The SEARCH procedure implements the depth-first-search

algorithm for the search tree defined for a specific start node. The functions ADD, CHECK and

REMOVE are part of the legality checking application-programming interface.

4 Efficient Trip Generation

4.1 Legality Checking System (LCS)

The efficiency of the trip generation process depends heavily on the performance of the LCS

since the rules are checked very many times. A rule-set may contain a large number of rules and

162

in that case the order of a rule evaluation is very important. The prototype has been using an

algorithm that was based on a static priorities policy. A priority value could be defined for each

constraint in the rule-set by the rule author. The higher the priority is the earlier the rule will be

checked. However, the static priorities scheme was not efficient enough to meet our

requirements. We should have known a priori the statistics of the rule violations for a specific

problem and specific rule-set in order to select the best priority values.

We have changed the legality-checking algorithm to use a dynamic priorities policy. The

algorithm attempts to minimize the number of rules checked, each time a violation happens.

The priorities that were defined by the user at compile time are being adapted in runtime so that

rules violating more frequently are raising their priority values. The algorithm is based on a

multiple queue structure. Figure 3 shows the legality-checking algorithm equipped with the

dynamic priorities policy.

procedure CheckLegality

p← MAXPRI;

while (p >= 1) do

 if (Queue(p) not empty) then

 rule ← get.Queue(p);

 else p--;

 if ((rule.execution violates)) then

 rule.violation_counter++;

 Terminate;

endwhile

if (timer1 expires)

 call PriorityAging;

if (timer2 expires)

 call PriorityDemotion;

endprocedure

procedure PriorityAging

for all rule in ruleset do

rule.priority← rule.priority+floor(rule.violation_counter/

PRIORITY_AGING_LIMIT);

endprocedure

procedure PriorityDemotion

for all rule in ruleset do

 rule.priority ← floor(rule.priority / 2)

endprocedure

Fig. 3. Legality checking algorithm with dynamic priorities policy

The main characteristics of the algorithm are:

• It looks for a queue that is not empty and selects the first rule.

• The legality of the rule is checked. If it is violated the algorithm terminates after updating

the corresponding counter for the specific rule. If there is not a violation, the next rule is

examined.

• Periodically an adaptation of the rule priorities is attempted by calling the procedure

PriorityAging. The priority of a rule is increased taking into account the rule violation

counter and the parameter PRIORITY_AGING_LIMIT.

• Periodically a demotion of all the priority values happens for accounting purposes by

calling the procedure PriorityDemotion.

163

The evaluation of the LCS improvements shows an upgrading of the speed of the legality

checking mechanism up to 2 times with respect to the original prototype. These performance

improvements allow for the use of the LCS system in automatic decision support tools that

require high-speed legality services.

4.2 Enhanced Search Graph

In an attempt to improve, further the performance of the trip generator we have implemented a

method that tries to reduce the search space of legal trips by enhancing the search graph with

auxiliary information and exploiting, in advance, the services of the legality checking system.

The method involves the definition of special pruning rules and scheduling domain properties

that can be examined during the traversal of the search graph.

By profiling analysis, it was detected that in several cases the total number of the legality

checks performed was excessively larger than the number of the generated trips. This was

indicating a frequent trip searching activity in unproductive areas of the search graph. In other

words, partial trips in those areas were never developing to complete legal trips. Thereby, the

main idea of the method is to predict as soon as possible, the unproductive branches of the

search graph and thus to save the unnecessary work and execution time. This method resembles

the branch and bound technique that is commonly used to solving integer linear programming

problems. In our case, a limit is calculated in every branch of the search graph before the

execution of the search algorithm. This auxiliary information is exploited during the traversal of

the graph through a specified pruning rule.

We have had first to answer the question of what kind of a limit to calculate in every node of

the graph. Given that in the airline domain there are rules that restrict properties of the trip

activity to a maximum/minimum value, it is possible to calculate for each node a limit related to

these rules. Examples of such rules are the maximum flight and/or work time, the minimum rest

time and the maximum number of calendar days allowed in a trip. In general, any constrained

property of the trip activity that can be interpreted as available resource running out as a partial

trip develops to a complete trip could be used to enhancing the search graph. For instance, if the

sum of the accumulated work time of a partial trip and the minimum work time to complete that

partial trip is greater than the allowed, it is concluded that this partial trip will never develop to

a complete legal trip.

To enhance the search graph with the auxiliary information we apply an extension of the

well-known Dijkstra algorithm [10]. Dijkstra’s algorithm applies to a directed graph with

positive weights and calculates the shortest path from a source node to every other node in the

graph. In our case, the weight of every edge in the graph equals to a domain-specific calculated

property value and we consider as source nodes every terminal node in the graph.

Figure 4 shows Dijkstra’s algorithm with the necessary extensions (marked with the symbol

>) for calculating the limit values in every node of the graph. A new procedure with name

DRIVER is introduced calling the procedure BOUND for each terminal node of a specific home

base. The functions ADD, REMOVE and EVALUATE are part of the legality checking

application-programming interface. In particular, the function EVALUATE calculates a property

value for each node in the graph. The PROPERTY parameter specifies the identifier of the

calculation rule that is triggered for the evaluation. Also, for each node v ∈ V of the graph G(V,

E) we keep the structure d[v] for storing the calculated value and the structure π[v] for storing

the precedent node of v in order to keep the right track of the sequence p that is passed to the

legality checking system for the evaluations.

164

Input: G(V, E) the search graph, Thb the set of terminal nodes for a

specific home base. p stores a sequence of nodes.

procedure INITIALIZE(G, s, p)

 for each node v in V[G] do

> π[v] ← ΝULL

 endfor

> p ← ADD(s)

> d[s] ← EVALUATE(p, PROPERTY)

endprocedure

procedure RELAX(u, v, p)

> p ← ADD(v)

> temp ← EVALUATE(p, PROPERTY)

 if d[v] > temp then

 d[v] ← temp

> π[v] ← u

 endif

> p ← REMOVE(v)

endprocedure

>procedure DRIVER(G, Thb)

 for each node v in V[G] do

 d[v] ← infinity

 endfor

 for each node s in Thb do

 BOUND(G, s)

 endfor

endprocedure

procedure BOUND(G, s)

 INITIALIZE(G, s, p)

 D← {empty set}

 Q← V[G]

 while (Q not empty) do

 u← EXTRACT-MIN(Q)

 D← D∪ {u}

> p ← ADD(π(u))

 do

 v ← NEXT_BWD_CONNECTION(u, E(G))

 RELAX(u,v, p)

 until (all connections have been used)

 endwhile

> for each node k in p do

 p ← REMOVE(k)

 endfor

endprocedure

Fig. 4. Dijkstra’s algorithm used to enhancing the search graph

As mentioned before, a constrained property that can be used for the pruning of the search

graph is the work time allowed in a trip. The PROPERTY (work_time) that is calculated in

every node of the graph has the following top-down definition in DAYSY Rule Language

notation:

PROPERTY work_time OF crr

RULE: (sum over shift (duty_end – duty_begin));

END

PROPERTY duty_end OF shift

RULE: (of last leg arrival) + TERMINATING_ACTIVITY;

END

PROPERTY duty_begin OF shift

RULE: (of first leg departure) – PREPARING_ACTIVITY;

END

A trip (crr activity) consists of one or more shifts. The aggregation operator ‘sum’ adds

the work time of all the shifts. The keywords ‘arrival’ and ‘departure’ are data providers

while the reserved words ‘last’/ ‘first’ are special reference operators of the rule language.

The pruning rule that must be defined in order to exploit the enhanced search graph will

have the following form in DAYSY Rule Language notation:

CONSTRAINT MRA_pruning_rule OF leg

 PRIORITY: MAXSETPRI;

 RULE:(of parent crr (work_time)) + bound <= MAX_CRR_WORK_TIME;

END

165

The pruning rule is defined for every flight (leg activity) and is checked with the highest

priority. The ‘work_time’ property accumulates the work hours for the so-far created trip

(parent crr activity). The keyword ‘bound’ is a primitive property of the leg activity

defined in the rule language. This keyword serves as an interface between the high-level rule

modelling process and the low-level calculations performed by Dijkstra’s algorithm. The

parameter MAX_CRR_WORK_TIME specifies the maximum work time allowed in a trip.

Figure 5 depicts a simplified application of the above pruning rule. A partial trip has been

constructed with 20 hours of accumulated work time. The minimum work time values to

complete a trip (i.e., to return to the home base) for every unexplored node are shown in the

figure. We assume also that the maximum work time allowed in a trip is 36 hours. As it is

shown, the rule prunes two of the three possible branches for the partial trip expansion and thus

speedups the trip generation process.

start node
Terminal

node

1420

14

∞

7

20+ ∞ >36

20+20 >36

partial trip
(work time = 20h)

candidate connection

start node
Terminal

node

1420

14

∞

7

20+ ∞ >36

20+20 >36

partial trip
(work time = 20h)

candidate connection

Fig. 5. Example of a pruning rule

The performance improvement of the trip generation process with the enhanced search

graph depends on the choice of the PROPERTY that is calculated and the frequency of the

pruning rule violation. We have seen an improvement of up to 230% in the speed of the trip

generator for some problems. In some other problems, mostly when large trips are allowed, it

was noticed that the rule has difficulties to prune branches early in the search process. Thus, in

this case the method is less effective. Finally, the enhancing overhead for a typical problem

with 10
3
 nodes and 10

5
 edges is approximately 0.1% of the total generation time.

4.3 Parallel Processing

As partners of the European ESPRIT/HPCN project PAROS (Parallel Large Scale Automatic

Crew Scheduling) we were faced with the challenge of improving the performance and

extending the functionality of an automatic crew scheduling process with the use of high

performance computing and modeling techniques on a network of workstations (NOW).

Lufthansa German Airlines was the coordinating partner of the project and supplied important

large problems and optimization requirements. In [11, 12] we have presented successful parallel

algorithms and techniques that were developed to solve the airline crew scheduling problem on

the NOW architecture. In particular, the parallel trip generator component of the crew

scheduling process achieves a linear speedup on the number of processors and it can be

efficiently scaled to a large number of processors.

4.4 Combined Results

The performance improvements on the serial trip generation phase presented in this paper have

a multiplicative effect on the speedup achieved when parallel processing is used. Figure 6

166

shows these performance improvements when algorithmic enhancements and parallel

processing on a network of 10 workstations are combined. Four typical Lufthansa problems of

various sizes (we note in parenthesis the number of trips generated) and the Lufthansa

production rule-set consisting of 55 rules were used for the experiments. The legality checking

mechanism performance improvements and the trip generation with the use of pruning rules on

the enhanced search graph yield an average speed gain of 3.5 times with respect to the original

time. This means that the trip generation runs approximately 35 times faster when 10

processors are used.

-100

100

300

500

700

900

1100

1300

1500

T
im

e
 (

m
in

)

Original 461,55 986,1 1146,6 1443,48

Trip Generation on ESG 271,5 519 573,3 627,6

LCS Improvements 181 324,38 337,24 369,18

Parallel Processing (10 PΕ) 18,5 36,35 34 38,8

lh_dl_kopt

(159.073)

lh_dl_slimp

(318.938)

lh_dl_gg

(396.908)

lh_w k_gg

(594.560)

Fig. 6. Performance improvements combining algorithmic enhancements and parallel processing

5 Conclusions

An efficient trip generation component allows for the better confrontation of time-consuming

problems like the airline crew scheduling and day-to-day rescheduling problems. We have

presented improvements to a prototype trip generator. A legality checking system is utilized

effectively in order to reduce the trip search space. Further, the legality checking mechanism

has been tuned to perform efficiently in order to cope with the vast amount of the legality

checks required by the trip generator. The performance improvements gained from this work

allow for the use of the system in automatic decision support tools in the scheduling/

rescheduling domain.

The improvements in performance translate immediately in significant benefits for the

airline. Faster solution times translate to higher productivity of the airline crew-management

department since crew schedules can be created closer to the actual day of operation, which is

very important in the new deregulated environment in Europe and elsewhere.

Profiling on a typical level rule-set revealed that 40-60% of the rule evaluation time is spent

on the evaluation of constraints expressed over moving time windows. This is a basic feature of

the DAYSY rule handling system. Future work includes an investigation to improve the time

window handling mechanism. An early study of applying range search techniques, often used in

computational geometry algorithms, and a pre-processing phase to identify the critical areas

167

where a constraint is more probable to fail, shows that is possible to achieve a significant

reduction in the computation time.

References

1. Nanda, R., and J. Browne, Introduction to Employee Scheduling, John Wiley & Sons, New York, June

1992.

2. Anderson, E., Housos, E., Kohl N., and Wedelin D., Crew Pairing Optimization, Operations Research

in the airline industry, G. Yu (editor) Kluwer Academic Publishers, Boston, London, Dordrecht, pp.

228-258, 1997.

3. Letovsky, L., Airline Operations Recovery: An Optimization Approach, Ph.D. thesis, Georgia Institute

of Technology, Atlanta, 1997.

4. Carmen Systems AB, Carmen PAC 5.0 – User’s Reference Manual, Carmen Systems AB,

Gothenburg, Sweden, November 1996.

5. Thrampoulidis, K., Goumopoulos, C., and Housos, E., Rule Handling in the day-to-day Resource

Management problem: an Object-Oriented approach, Information and Software Technology, vol 39,

pp. 185-193, Elsevier Science, 1997.

6. Alefragis, P. and Housos, E., Performance Improvements of the DAYSY Legality Checking System

for Real Time Rescheduling Applications, Proc. of the fifth International Conference of the Decision

Sciences Institute (DSI’99), vol. I, pp. 216-218, Athens, Greece, July 4-7, 1999.

7. Goumopoulos C., Automatic crew scheduling involving high-level modeling of the regulations and

use of parallel/distributed processing, Ph.D. thesis, Electrical and Computer Engineering Department,

University of Patras, Greece, June 2000.

8. Goumopoulos C., and Alefragis, P., Legality Checker C++ Application Programming Interface

version 1.1, ESPRIT PROJECT EP8402 – DAYSY, Patras, Greece, Jan 1997.

9. Goumopoulos, C., Alefragis, P., Thrampoulidis, K., and Housos E., A Generic Legality Checker and

Attribute Evaluator for a Distributed Enterprise Environment, Proc. of the third IEEE International

Symposium on Computers and Communications (ISCC’98), IEEE CS PR08538, pp. 286-292, Athens,

Greece, June 30 - July 2, 1998.

10. Cormen, TH., Leiserson, CE., and Rivest, RL., Introduction to Algorithms, MIT Press, Cambridge,

Mass, pp. 520-527, 1990.

11. Alefragis, P., Goumopoulos C., Housos E., Sanders, P., Takkula, T., and Wedelin, D., Parallel Crew

Scheduling in PAROS, Proc. of the fifth International Euro-Par’98, LNCS 1470, pp. 1104-1113,

Southampton, England, September 1-4 1998.

12. Goumopoulos C., Alefragis, P., and Housos E., Parallel Algorithms for Airline Crew Planning on

Networks of Workstations, Proc. of the 27th International Conference on Parallel Processing

(ICPP’98), IEEE CS PR08650, pp. 70-78, Minneapolis Minnesota, USA, August 10-14 1998.

