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Abstract. Trip generation is the most time-consuming phase of the crew scheduling 

process. A large number of trips must be constructed while satisfying a complex set of 

regulations. In this paper, we present an efficient trip generation method that utilizes 

effectively a legality checking system in order to reduce the corresponding search 

space. Special pruning rules are defined using a high-level rule language, which also 

supports the modeling of the business regulations required in the scheduling process. 

In addition, the legality checking mechanism has been tuned to perform efficiently in 

order to cope with the vast amount of the legality checks required by the trip 

generator. The algorithms are tested as a module for a crew re-scheduling application 

satisfying the tight response time requirements of a production system. We present 

experimental results based on problems provided by a major European airline that 

validate the usefulness and applicability of our work. 

 

 

1 Introduction 
 

Scheduling and administering people are difficult and time-consuming processes [1]. The 

situation is further complicated from the fact that the schedules must satisfy intricate opera-

tional constraints. Computer applications that perform the scheduling process are of primary 

importance because of the extremely high cost of human resources. The combinatorial nature 

and the size of large-scale resource management create the need for the solution of large 

problems. Although performance improvements in computer hardware and software are 

happening continuously, airline problems tend to require also faster solution times due in part to 

the recent high competition that occurred after deregulation of the airline industry. 

An important problem in the airline planning process is the construction of legal trips or 

lines of work that cover the entire airline’s flight, at minimal cost [2]. The problem is usually 

confronted in two phases. The first one refers to the generation of a large number of legal trips, 

while the second one to the selection of an optimal set of trips. A trip consists of a sequence of 

flights to be flown by a crewmember that starts and ends at the crewmember’s home base. For 

short haul fleets the lengths of the trips typically range from one to five days (shifts) with up to 

25 flights. Each trip has an associated cost and must satisfy a large number of union, company 

and governmental regulations.  

Trip generation is also used in solutions to crew re-scheduling or recovery problem [3]. 

Namely, during the recovery process, new trips have to be generated in real time in order to 

deal with disruptions in operations. For reasonable disruptions, the biggest problems involve up 

to 15,000 trips. This number would increase considerably for large disruptions like snowstorms 

at major airline hubs. The difficulty of this problem is not the large number of trips to be 

considered but the need to generate them as fast as possible. An efficient trip generation process 

can meet this requirement.  
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In the past, the regulations that define legal trips have been hard coded into the scheduling 

applications, with the exception of some external parameters. European airlines, however, 

frequently wish to modify the rules and these modifications often require more than just a 

parameter change. Consequently, it has been required extensive software changes for the 

maintenance and addition of new rules. Therefore, a high-level domain specific rule language 

would be an ideal solution for the expression and management of rules. Two systems that use a 

special purpose language for the expression and subsequent management of rules are presented 

in [4] and [5].  

The aforementioned rule systems usually present a black box interface to client applications 

(e.g., trip generator) examining simply if a partial or a complete trip is legal or not. 

Experimentations have shown that a different interaction with the rule system could speedup the 

trip generation phase. This is very important, since the trip generation phase takes, depending 

on the type and the size of the problem, 70-85% of the runtime required for the solution of a 

crew-scheduling problem.  

The rest of the paper is organized as follows. In section 2, we are making a brief anaphora in 

the DAYSY regulation handling system since this plays a central role in the trip generation 

process. In section 3, we define the trip generation problem and describe the search algorithm 

that is used. In section 4, we present algorithms and methods to improve the performance of the 

trip generation process. Results on the performance improvements achieved are given based on 

real airline scheduling problems. Supplementary we reference improvements achieved from a 

related earlier work that involved the use of parallel processing and present combined results. 

Finally, conclusions and future work are discussed in section 5. 

 

2 Businesses Regulations Modeling - the DAYSY Approach 
 

As partners of the ESPRIT project DAYSY (Day-to-day resource management systems), we 

were engaged in addressing the problem of stating and managing regulations for scheduling 

applications involving human resources. We have researched and suggested a new approach 

that is based on an Object-Oriented meta-model and a special purpose rule language called DRL 

(DAYSY Rule Language) [5]. The prototype we have developed was further upgraded with 

respect to performance and functionality [6, 7] and is currently utilized by the DAYSY resource 

management system, which is used in production by Lufthansa Airlines. 

DRL represents a modeling language in the scheduling problem domain, designed to express 

the regulations involved in a user friendly and declarative manner. This is achieved by using 

high-level language constructs with semantics that are close the user terms. The declarative 

nature of the language allows the complex data manipulation to be performed transparently to 

the user in runtime. Another strong feature of the language is code reusability that is achieved 

by a built-in inheritance mechanism.  

DRL programs consist of one or more source rule files, each of which contains some of the 

text of the program written according to the language’s specifications. A number of such files 

can be compiled together to form a rule-set. A rule-set is composed of a set of logically 

cohesive rules serving the legality requirements of a particular application and exists at both a 

high-level representation (DRL language) and a low-level one that is used by the Legality 

Checking System (LCS). The LCS is the integration of any rule-set with the LCS Kernel 

providing services such as creation of the aggregation hierarchy, computation of derived 

property values, checking the legality of composite activities and on-line manipulation of the 

rule parameters (see Figure 1). 
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Fig. 1. The DAYSY Legality Checking System (LCS) 

A rule compiler transforms, in a first step, the source code in C++ classes and then the ANSI 

compliant C++ compiler of the target machine translates the intermediate representation to 

object code that is finally linked to the runtime system. The exploitation of the code 

optimization capabilities, provided by the C++ compiler, as well as the efficiency of the rule 

evaluation mechanism described further in this paper, satisfy the performance requirements of 

demanding applications. In addition, DAYSY LCS allows easy integration with resource 

management applications through a well-defined C++ API [8]. DAYSY LCS provides an 

enterprise with a robust rule system for numerous applications that is easy to maintain [9].  

 

3 Trip Generation 
 

3.1 Problem Description 

The trip generation process produces a large number of legal trips by combining flights in 

different combinations. The total number of possible trips depends on the structure of the flight 

network. The long haul fleets have in general few and long flights and can be examined in an 

exhaustive manner. A short haul fleet with a reasonable number of planes can produce a huge 

number of trips if an exhaustive search is attempted. To reduce the number of trips to a 

reasonable level requires an intelligent generation procedure. The required time to produce all 

the necessary trips varies between several minutes to several hours, in proportion to the 

complexity and amount of regulations, the size of the problem and the control parameters of the 

generation process. 

A pre-processed connection matrix that shows the acceptable connections between pairs of 

flights aids the generation process. The connection matrix represents in mathematical terms a 

directed acyclic graph among the flights. A node of the graph corresponds to a flight and an 

edge represents a legal pair-wise connection. Nodes corresponding to flights with a departure 

station that is a crew home base are identified as start nodes.  Similarly, nodes corresponding to 

flights with an arrival station used also as a crew home base are identified as terminal nodes. 

Any path in the graph starting from a start node and ending to a terminal node represents a crew 

trip, possibly illegal. The possible non-zero elements of the connection matrix for a typical fleet 

of 1000 flights can be from 10,000 to 100,000. 
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Formally, let G(V,E) represent the search graph for the trip generation process and HB the 

set of crew home bases. Then we define the set of start nodes S, the set of terminal nodes T, the 

set of start (terminal) nodes for a specific home base Shb (Thb) and the set of trips P (possibly 

illegal) in graph G as follows: 

{ }HBuairportdepartureVuS ∈∈= )(_:  

{ }HBvairportarrivalVvT ∈∈=  )(_:  

{ } SHBhbandhbuairportdepartureVu
hb

S ⊆∈=∈=     )(_:  

{ } THBhbandhbvairportarrivalVv
hb

T ⊆∈=∈=     )(_:  

{ })(_)(_    : vairportarrivaluairportdepartureandTvandSuvuP =∈∈= a  

3.2 Search Algorithm 

The most practical and at the same time efficient algorithm, with respect to memory resources, 

for the trip generation process is the depth-first-search (Figure 2) in the search graph. The 

search always begins from the start nodes of the graph. Every start node is the root of a search 

tree that will be examined by the trip generation algorithm. The search algorithm traverses the 

tree until a regulation violates. In every step of the depth-first-search, the created sequence is 

checked for legality. In case of a rule violation the algorithm backtracks to the previous node 

and the next branch is examined. The generator search is limited also by a maximum number of 

branches considered in each node of the search graph.  

Input: G(V,E) the search graph, S the set of start nodes, R the regula-

tions, SW(p) search width as a function of the working days covered by 

p, where p denotes a sequence of nodes  

Algorithm: 
 

procedure GENERATE 
Work queue WQ← S 

while(WQ not empty) do 

node← GET_NEXT(WQ)  
SEARCH(node) 

endwhile 

endprocedure 

procedure SEARCH(node) 

p ← ADD(node) 

if CHECK(p, R) then 

if p∈P then OUTPUT(p) 

while (SW(p) is not violated) do 

r ← NEXT_CONNECTION(node,E(G)) 

SEARCH(r) 

endwhile 

endif 

p ← REMOVE(node) 

endprocedure 

Fig. 2. Trip generation algorithm 

Figure 2 shows the trip generation algorithm. The GENERATE procedure calls for each start 

node the SEARCH procedure. The SEARCH procedure implements the depth-first-search 

algorithm for the search tree defined for a specific start node. The functions ADD, CHECK and 

REMOVE are part of the legality checking application-programming interface. 

 

4 Efficient Trip Generation 
 

4.1 Legality Checking System (LCS) 

The efficiency of the trip generation process depends heavily on the performance of the LCS 

since the rules are checked very many times. A rule-set may contain a large number of rules and 



162 

 

in that case the order of a rule evaluation is very important. The prototype has been using an 

algorithm that was based on a static priorities policy. A priority value could be defined for each 

constraint in the rule-set by the rule author. The higher the priority is the earlier the rule will be 

checked. However, the static priorities scheme was not efficient enough to meet our 

requirements. We should have known a priori the statistics of the rule violations for a specific 

problem and specific rule-set in order to select the best priority values. 

We have changed the legality-checking algorithm to use a dynamic priorities policy. The 

algorithm attempts to minimize the number of rules checked, each time a violation happens. 

The priorities that were defined by the user at compile time are being adapted in runtime so that 

rules violating more frequently are raising their priority values. The algorithm is based on a 

multiple queue structure. Figure 3 shows the legality-checking algorithm equipped with the 

dynamic priorities policy.  

procedure CheckLegality  

p← MAXPRI; 

while ( p >= 1 ) do 

 if ( Queue(p) not empty ) then 

  rule ← get.Queue(p); 

 else p--; 

 if ( (rule.execution violates)) then 

  rule.violation_counter++; 

  Terminate; 

endwhile 

if ( timer1 expires) 

 call PriorityAging; 

if ( timer2 expires) 

 call PriorityDemotion; 

endprocedure 

procedure PriorityAging  

for all rule in ruleset do 

rule.priority← rule.priority+floor(rule.violation_counter/ 

PRIORITY_AGING_LIMIT); 

endprocedure 

procedure PriorityDemotion 

for all rule in ruleset do 

 rule.priority ← floor(rule.priority / 2) 

endprocedure 

Fig. 3. Legality checking algorithm with dynamic priorities policy 

The main characteristics of the algorithm are: 

• It looks for a queue that is not empty and selects the first rule. 

• The legality of the rule is checked. If it is violated the algorithm terminates after updating 

the corresponding counter for the specific rule. If there is not a violation, the next rule is 

examined. 

• Periodically an adaptation of the rule priorities is attempted by calling the procedure 

PriorityAging. The priority of a rule is increased taking into account the rule violation 

counter and the parameter PRIORITY_AGING_LIMIT.  

• Periodically a demotion of all the priority values happens for accounting purposes by 

calling the procedure PriorityDemotion. 
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The evaluation of the LCS improvements shows an upgrading of the speed of the legality 

checking mechanism up to 2 times with respect to the original prototype. These performance 

improvements allow for the use of the LCS system in automatic decision support tools that 

require high-speed legality services. 

 

4.2 Enhanced Search Graph 

In an attempt to improve, further the performance of the trip generator we have implemented a 

method that tries to reduce the search space of legal trips by enhancing the search graph with 

auxiliary information and exploiting, in advance, the services of the legality checking system. 

The method involves the definition of special pruning rules and scheduling domain properties 

that can be examined during the traversal of the search graph.  

By profiling analysis, it was detected that in several cases the total number of the legality 

checks performed was excessively larger than the number of the generated trips. This was 

indicating a frequent trip searching activity in unproductive areas of the search graph. In other 

words, partial trips in those areas were never developing to complete legal trips. Thereby, the 

main idea of the method is to predict as soon as possible, the unproductive branches of the 

search graph and thus to save the unnecessary work and execution time. This method resembles 

the branch and bound technique that is commonly used to solving integer linear programming 

problems. In our case, a limit is calculated in every branch of the search graph before the 

execution of the search algorithm. This auxiliary information is exploited during the traversal of 

the graph through a specified pruning rule. 

We have had first to answer the question of what kind of a limit to calculate in every node of 

the graph. Given that in the airline domain there are rules that restrict properties of the trip 

activity to a maximum/minimum value, it is possible to calculate for each node a limit related to 

these rules. Examples of such rules are the maximum flight and/or work time, the minimum rest 

time and the maximum number of calendar days allowed in a trip. In general, any constrained 

property of the trip activity that can be interpreted as available resource running out as a partial 

trip develops to a complete trip could be used to enhancing the search graph. For instance, if the 

sum of the accumulated work time of a partial trip and the minimum work time to complete that 

partial trip is greater than the allowed, it is concluded that this partial trip will never develop to 

a complete legal trip.  

To enhance the search graph with the auxiliary information we apply an extension of the 

well-known Dijkstra algorithm [10]. Dijkstra’s algorithm applies to a directed graph with 

positive weights and calculates the shortest path from a source node to every other node in the 

graph. In our case, the weight of every edge in the graph equals to a domain-specific calculated 

property value and we consider as source nodes every terminal node in the graph.  

Figure 4 shows Dijkstra’s algorithm with the necessary extensions (marked with the symbol 

>) for calculating the limit values in every node of the graph. A new procedure with name 

DRIVER is introduced calling the procedure BOUND for each terminal node of a specific home 

base. The functions ADD, REMOVE and EVALUATE are part of the legality checking 

application-programming interface. In particular, the function EVALUATE calculates a property 

value for each node in the graph. The PROPERTY parameter specifies the identifier of the 

calculation rule that is triggered for the evaluation. Also, for each node v ∈ V of the graph G(V, 

E) we keep the structure d[v] for storing the calculated value and the structure π[v] for storing 

the precedent node of v in order to keep the right track of the sequence p that is passed to the 

legality checking system for the evaluations. 
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Input: G(V, E) the search graph, Thb the set of terminal nodes for a 

specific home base. p stores a sequence of nodes. 

procedure INITIALIZE(G, s, p) 

  for each node v in V[G] do 

>   π[v] ← ΝULL 

  endfor 

> p ← ADD(s) 

> d[s] ← EVALUATE(p, PROPERTY) 

endprocedure 

procedure RELAX(u, v, p) 

> p ← ADD(v) 

> temp ← EVALUATE(p, PROPERTY) 

  if d[v] > temp then 

    d[v] ← temp 

>   π[v] ← u 

  endif 

> p ← REMOVE(v) 

endprocedure 

>procedure DRIVER(G, Thb) 

  for each node v in V[G] do 

    d[v] ← infinity 

  endfor 

  for each node s in Thb do 

    BOUND(G, s) 

  endfor 

endprocedure 

 

 

 

procedure BOUND(G, s) 

  INITIALIZE(G, s, p) 

  D← {empty set} 

  Q← V[G] 

  while (Q  not empty) do 

    u← EXTRACT-MIN(Q) 

    D← D∪ {u} 

>   p ← ADD(π(u))  

    do 

       v ← NEXT_BWD_CONNECTION(u, E(G)) 

       RELAX(u,v, p) 

    until (all connections have been used) 

   endwhile 

>  for each node k in p do   

     p ← REMOVE(k)  

   endfor 

endprocedure 

  

Fig. 4. Dijkstra’s algorithm used to enhancing the search graph 

As mentioned before, a constrained property that can be used for the pruning of the search 

graph is the work time allowed in a trip. The PROPERTY (work_time) that is calculated in 

every node of the graph has the following top-down definition in DAYSY Rule Language 

notation: 

PROPERTY work_time OF crr 

RULE: (sum over shift (duty_end – duty_begin)); 

END 

PROPERTY duty_end OF shift 

RULE: (of last leg arrival) + TERMINATING_ACTIVITY; 

END 

PROPERTY duty_begin OF shift 

RULE: (of first leg departure) – PREPARING_ACTIVITY; 

END 

A trip (crr activity) consists of one or more shifts. The aggregation operator ‘sum’ adds 

the work time of all the shifts. The keywords ‘arrival’ and ‘departure’ are data providers 

while the reserved words ‘last’/ ‘first’ are special reference operators of the rule language. 

The pruning rule that must be defined in order to exploit the enhanced search graph will 

have the following form in DAYSY Rule Language notation: 

CONSTRAINT MRA_pruning_rule OF leg 

  PRIORITY: MAXSETPRI; 

  RULE:(of parent crr (work_time)) + bound <= MAX_CRR_WORK_TIME; 

END 
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The pruning rule is defined for every flight (leg activity) and is checked with the highest 

priority. The ‘work_time’ property accumulates the work hours for the so-far created trip 

(parent crr activity). The keyword ‘bound’ is a primitive property of the leg activity 

defined in the rule language. This keyword serves as an interface between the high-level rule 

modelling process and the low-level calculations performed by Dijkstra’s algorithm. The 

parameter MAX_CRR_WORK_TIME specifies the maximum work time allowed in a trip. 

Figure 5 depicts a simplified application of the above pruning rule. A partial trip has been 

constructed with 20 hours of accumulated work time. The minimum work time values to 

complete a trip (i.e., to return to the home base) for every unexplored node are shown in the 

figure. We assume also that the maximum work time allowed in a trip is 36 hours. As it is 

shown, the rule prunes two of the three possible branches for the partial trip expansion and thus 

speedups the trip generation process. 
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Fig. 5. Example of a pruning rule 

The performance improvement of the trip generation process with the enhanced search 

graph depends on the choice of the PROPERTY that is calculated and the frequency of the 

pruning rule violation. We have seen an improvement of up to 230% in the speed of the trip 

generator for some problems. In some other problems, mostly when large trips are allowed, it 

was noticed that the rule has difficulties to prune branches early in the search process. Thus, in 

this case the method is less effective. Finally, the enhancing overhead for a typical problem 

with 10
3
 nodes and 10

5
 edges is approximately 0.1% of the total generation time. 

 

4.3 Parallel Processing 

As partners of the European ESPRIT/HPCN project PAROS (Parallel Large Scale Automatic 

Crew Scheduling) we were faced with the challenge of improving the performance and 

extending the functionality of an automatic crew scheduling process with the use of high 

performance computing and modeling techniques on a network of workstations (NOW). 

Lufthansa German Airlines was the coordinating partner of the project and supplied important 

large problems and optimization requirements. In [11, 12] we have presented successful parallel 

algorithms and techniques that were developed to solve the airline crew scheduling problem on 

the NOW architecture. In particular, the parallel trip generator component of the crew 

scheduling process achieves a linear speedup on the number of processors and it can be 

efficiently scaled to a large number of processors. 

 

4.4 Combined Results 

The performance improvements on the serial trip generation phase presented in this paper have 

a multiplicative effect on the speedup achieved when parallel processing is used.  Figure 6 
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shows these performance improvements when algorithmic enhancements and parallel 

processing on a network of 10 workstations are combined. Four typical Lufthansa problems of 

various sizes (we note in parenthesis the number of trips generated) and the Lufthansa 

production rule-set consisting of 55 rules were used for the experiments.  The legality checking 

mechanism performance improvements and the trip generation with the use of pruning rules on 

the enhanced search graph yield an average speed gain of 3.5 times with respect to the original 

time. This means that the trip generation runs approximately 35 times faster when 10  

processors are used. 
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Fig. 6. Performance improvements combining algorithmic enhancements and parallel processing 

5 Conclusions 
 

An efficient trip generation component allows for the better confrontation of time-consuming 

problems like the airline crew scheduling and day-to-day rescheduling problems. We have 

presented improvements to a prototype trip generator. A legality checking system is utilized 

effectively in order to reduce the trip search space. Further, the legality checking mechanism 

has been tuned to perform efficiently in order to cope with the vast amount of the legality 

checks required by the trip generator. The performance improvements gained from this work 

allow for the use of the system in automatic decision support tools in the scheduling/ 

rescheduling domain.  

The improvements in performance translate immediately in significant benefits for the 

airline. Faster solution times translate to higher productivity of the airline crew-management 

department since crew schedules can be created closer to the actual day of operation, which is 

very important in the new deregulated environment in Europe and elsewhere. 

Profiling on a typical level rule-set revealed that 40-60% of the rule evaluation time is spent 

on the evaluation of constraints expressed over moving time windows. This is a basic feature of 

the DAYSY rule handling system. Future work includes an investigation to improve the time 

window handling mechanism. An early study of applying range search techniques, often used in 

computational geometry algorithms, and a pre-processing phase to identify the critical areas 
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where a constraint is more probable to fail, shows that is possible to achieve a significant 

reduction in the computation time. 
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