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Abstract

The extraction and exploitation of existing knowledge assets for supporting decision making and increasing the
effectiveness of various internal and external interventions is of critical importance for the success of modern
organizations. The use of advanced Operational Research based quantitative methods in combination with high
capabilities information systems can be very useful for this purpose. In this paper we are investigating the use of
Ensemble Random Forests for extracting, codifying and exploiting existing organizational knowledge on gas turbine
blading faults identification, in the form of a large number of decision trees (called a ‘forest’); each of them has
internal nodes corresponding to various tests on features of signals acquired from the gas turbine and leaf nodes
corresponding to classifications to the healthy condition or particular faults. Two heterogeneous kinds of inserting
randomness to the development of these forest trees, based on different theoretical assumptions, have been examined
(Random Input Forests and Random Combination Forests). Using data from a large power gas turbine the
performance of Ensemble Random Forests has been evaluated, and also compared against other machine learning
classification methods, such as Neural Networks, Classification and Regression Trees and K-Nearest Neighbor. The
Ensemble Random Forests reached a level of 97% in terms of precision and recall in engine condition diagnosis
from new signals acquired from the gas turbine, which was higher than the performance of all the other examined
classification methods. These results provide some first evidence that Ensemble Random Forest can be an effective
tool for the extraction, codification and exploitation of the technological knowledge assets of modern organizations,
and contribute significantly to the improvement of organizations’ decision making and interventions in this area.

1. Introduction

It is increasingly recognized that the effective management of the knowledge assets of modern organizations and
their exploitation to the highest possible extent for supporting decision making and increasing the effectiveness of
their internal and external interventions is of critical importance for achieving high organizational performance [1].
Organizations today possess extensive and valuable knowledge assets, which are however in forms that do not allow
their full exploitation (e.g. tacit knowledge in the minds of employees, or buried in large operational datafiles). In
order to exploit them it is necessary to address successfully four main challenges: i) retrieve and store this
knowledge in an appropriate and directly usable form, ii) make it accessible to the employees who need it, iii)
incorporate it into organizational processes and activities, and iv) use it for supporting decision making and for
planning internal and external interventions. The use of advanced Operational Research (OR) based quantitative
methods in combination with high capabilities information systems (IS) can be very useful for this purpose ([1], [2]),
since it allows transforming this knowledge from its initial and not easily exploitable form into compact models
directly meaningful to and usable by employees, and making it accessible to them through appropriate 1S and
networks.

One of the areas in which this approach can be applied is definitely the management and maintenance of complex
equipment. Organizations today are increasingly using various types of highly complex equipment for increasing
their productivity, and there is a growing reliance of their operations on such equipment; even short unscheduled
losses of their availability can result in significant operational problems and economic costs. Also, their maintenance
is becoming increasingly costly, due to their increasing structural and technological complexity. For these reasons
there has been extensive interest and research for long time for the development of ICT-based methods and systems
for ‘Engine Condition Monitoring’ (a good review of them is provided by [3]). The continuous monitoring of the
health condition of complex equipment can offer significant benefits: avoidance of catastrophic failures,
minimization of unscheduled availability losses, optimization of preventive maintenance based on the real condition



of the parts and components of the equipment (instead of performing it at predefined regular intervals, which are
based on general recommendations of the manufacturer not taking into account the specific operational conditions of
each particular engine), and also better planning of preventive maintenance interventions. These can result in
improvements of equipment maintenance and management, and at the same time significant cost reductions. The
development of ICT-based data acquisition systems was a significant driver for the development of Engine
Condition Monitoring, as they allow the collection of data from various types of measurement instruments at several
locations of an engine, and then their storage and processing, easily and at a low cost. The huge amount of data
collected in this way (having usually the form of a large set of digitized signals from a number of measuring
instruments at various time points, together with the corresponding engine condition and possibly the existing faults,
as diagnosed by highly knowledgeable and experienced technical personnel) constitutes a valuable knowledge asset.
This knowledge can be quite useful for exploiting better the new data to be collected in order to assess the health
condition of the engine and identify faults from their early stages with higher levels of reliability; however, it is in a
form that does not allow its full exploitation.

Especially the airline and power generation industries were among the first adopters of the above ideas for the
condition monitoring and faults identification of the large gas turbines they are heavily using, being highly reliant on
them. The development of effective gas turbine condition monitoring and fault diagnosis methods has been the
target of considerable research for long time, due to the high acquisition and maintenance cost, the complexity, the
sensitivity and the importance for many industries (including the abovementioned ones) of this type of engines.
Most of this research is directed towards the diagnosis of gas turbine blading faults, because of the catastrophic
consequences that these faults can have, if they are not diagnosed in time; even very small blading faults can rapidly
grow due to the high speeds of the rotating components of gas turbines (usually at the order of magnitude of
thousands of rotations per minute) and result in huge destructions ([4], [5], [6]). Blading faults’ diagnosis is regarded
to be a very difficult problem, because of the high levels of noise in all relevant measurements and the high
interaction among the neighboring gas turbine blading rows, and also with the other components. Therefore, it is of
critical importance to take advantage of advanced OR-based methods in combination with the processing power and
the advanced capabilities of modern IS in order to extract, codify and exploit effectively the existing organizational
knowledge on gas turbine blading faults identification, for providing fast and reliable gas turbine blading faults’
identification from available measurements and in general for developing the highest possible level of intelligence
and assistance to the operations and maintenance personnel.

As described in more detail in the following section 2, there has been considerable previous research on the problem
of gas turbine faults’ identification, which has investigated various individual classifiers (whose learning phase
exploits and codifies pre-existing relevant knowledge), and also - to much lesser extent - some forms of combination
(referred to as ‘fusion’) of small numbers of individual classifiers. In the present paper we are investigating for the
first time the combined use of large numbers of individual classifiers (in the order of hundredths) in order to exploit
better the existing organizational knowledge on gas turbine blading faults identification and achieve higher levels of
performance in this critical and at the same time difficult problem. Our study investigates the use of Ensemble
Random Forests for extracting, codifying and exploiting this valuable knowledge. In particular:

- The initial form of this knowledge is a series of digitized signals from a number of measuring instruments at
various time points, together with the corresponding engine condition (healthy or existence of a particular fault), as
diagnosed by highly knowledgeable and experienced technical personnel.

- This knowledge is extracted and codified in the form of a large number of decision trees (called a ‘Forest’); each of
them has internal nodes corresponding to various criteria (tests) on features of signals acquired from the gas turbine
(e.g. F, > v,) and leaf nodes corresponding to classifications to particular classes (e.g. Ca) corresponding to the
healthy condition or particular faults (Figure 1 — providing a simplified illustration, since these threes usually have
many levels), while it can also be expressed as a set of rules.
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Figure 1. Structure of a decision tree codifying organizational knowledge on gas turbine blading faults identification




- This set of decision trees can be exploited for each new signal acquired from the gas turbine in order to assess from
it the engine condition and possibly diagnose the existing fault. For this purpose initially the features are calculated
for this signal, which are then for each tree subjected to its tests, starting from the top root node and proceeding
downwards, leading finally to classification to one of the classes (i.e. to the healthy condition or to one of the faults);
the final classification is determined through majority vote.

It should be noted that the above proposed approach is more computation-intensive than other previous approaches
based on individual classifiers, or combinations of small numbers of individual classifiers, as it involves initially the
construction of a large number of decision trees, and then the combined use of all of them for each new signal
acquired from the gas turbine in order to produce a reliable diagnosis. Therefore its practical application relies on the
use of high capabilities IS, which will provide the necessary infrastructure for performing and integrating all the
above activities quickly and at a low cost: acquisition and digitization of signals from various measuring
instruments, storage of them, batch processing for the extraction of the knowledge they contain on gas turbine
blading faults identification and the construction of this set of decision trees, and finally online processing of each
new signal acquired exploiting this codified knowledge (calculation of features and determination of class).

Two heterogeneous kinds of inserting randomness to the forest trees, based on different theoretical assumptions,
have been examined (Random Input Forests and Random Combination Forests). Using data from a large power gas
turbine the performance of Ensemble Random Forests in engine condition diagnosis from new signals has been
evaluated, and also compared against other machine learning classification methods, such as Neural Networks,
Classification and Regression Trees (CART) and K-Nearest Neighbor.

The paper is organized in 6 sections. In the following Section 2 previous relevant literature is briefly reviewed,
while in Section 3 the implementation and the algorithm of the proposed Ensemble Random Forests approach is
described. In Section 4 the application on which the proposed approach has been validated is described. Then in
Section 5, the results are presented and discussed, followed by concluding remarks in the final Section 6.

2. Literature Review

Considerable research has been conducted on gas turbine faults’ identification from various types of measurements,
both static (e.g. pressure, temperature) and dynamic (e.g. vibrations). Various individual classifiers have been
investigated for this purpose, such as Pattern Recognition ([7], [8], [9]), Expert Systems ([10], [11]), Fuzzy Logic
([12] - [15]), Bayesian Networks ([16]) and Neural Networks ([17] — [19]); these classifiers during their learning
phase incorporate to various extents pre-existing knowledge concerning gas turbine faults identification.

One research stream in this area investigates the use of Pattern Recognition techniques for the above purpose.
Loukis et al. [7] developed a method for automated diagnosis of gas turbine compressor blade faults from dynamic
measurement data (casing vibrations, unsteady pressure inside the casing, sound), based on the principles of
statistical pattern recognition; also, they propose a method for formulating the optimal discriminants that can be
calculated from the available data, which maximizes the discrimination between condition classes. Similarly,
Aretakis and Mathioudakis [8] use pattern-recognition techniques for the identification of various faults (inlet
obstruction, obstruction in a diffuser passage, variation of impeller tip clearance and impeller fouling) in a radial
compressor from casing vibration and sound emission. The problem of identification of sensor faults in turbofan
engines is addressed by Aretakis et al. [9] using three different alternative pattern recognition techniques (geometric,
statistical and statistical using optimal directions), in combination with an adaptive performance analysis algorithm,
which calculates a set of component performance modification factors.

Another research stream in this area is dealing with the exploitation of Expert Systems and Fuzzy Logic for the
identification of various types of gas turbine malfunctions. Breese et al [10] developed an expert system for the
diagnosis of efficiency problems in large gas turbines. The system relies on a model-based approach which
combines experts’ probabilistic assessments with statistical data and thermodynamic analysis; it employs a causal
probabilistic graph in order to update the probabilities of alternative faults given information. In the same direction
DePold and Gass [11] propose the development of a new generation of diagnostic systems for gas turbines, which
use artificial intelligence methods in order to automate diagnosis to the highest possible extent and to improve its
quality; this advanced systems should combine neural networks (for trend change detection and classification to
diagnose performance change) with expert systems (to diagnose, provide alerts and to rank maintenance action
recommendations). Siu et al [12] presents an expert system for the diagnosis of vibration problems in
turbomachinery, which is based on incremental forward chaining, and employs both fuzzy logic based approximate
reasoning and traditional certainty factor techniques to deal with uncertainty; also, a simple case-based reasoning
component was incorporated into the system to provide more accurate diagnoses when similar past experience can
be applied. In the same direction Ganguli et al [13] developed a fuzzy system for gas path performance diagnostics,



which can automatically develop its rule base using a linearized performance model of the gas turbine; the
measurements used are deviations in exhaust gas temperature, low rotor speed, high rotor speed and fuel flow from a
base line ‘good engine’; this fuzzy system in order to provide more reliable diagnosis it is combined with a genetic
algorithm (used for tuning the fuzzy sets), and a radial basis neural network (used for measurements’ pre-processing
and noise reduction) (a more detailed description of it is provided by Verma et al [14]). Ogaji et al [15] propose a
method of setting up an ‘intelligent’ fuzzy-logic process for the diagnosis of degradations of single engine-
component in military turbofan engines, using gas-path measurements; the fuzzy rules have been produced by
running an engine performance model for various degraded conditions.

A third research stream investigates the use of various techniques from the area Data Mining for faults identification
in gas turbines. Romessis and Mathioudakis [16] present a method for diagnosis of performance problems in jet
engine gas turbines based on a probabilistic approach through the use of a bayesian belief network, which has been
built using information provided by an engine performance model (so that there is no need of acquiring flight data of
different faulty operations of the engine). Angelakis et al [17] investigate the use of various neural network
architectures, such as multi-layer perceptron (MLP), learning vector quantization (LVQ), modular multi-layer
perceptron and radial basis function (RBF), for gas turbine blading faults diagnosis from dynamic measurement data
(casing vibrations, unsteady pressure inside the casing, sound), coming to positive results. In the same direction
Romesis et al [18] focus on the probabilistic neural networks, and study the effect of several parameters related to
their structure and training, the noise level of measurements, the operating conditions and the severity of fault on the
diagnostic performance for turbofan engines. Joly et al [19] propose a more complex diagnostic structure consisting
of three layers of neural networks for the identification of deteriorations in an aircraft turbofan engine; the top level
distinguishes between single-component and double component faults, while the middle level identifies particular
components, or component pairs, which are faulty, and the final bottom level determines the extent of deterioration.
Palme at al [20] present a method for evaluating gas turbine sensor accuracy, based on training neural networks as
classifiers to recognize sensor drifts, and evaluate it on two types of gas turbines (one single-shaft and one twin-shaft
machine) with positive results.

Although satisfactory diagnostic performance have been achieved using the above individual classifiers, there has
been some research investigating the use of various forms of combination of small numbers of individual classifiers
(usually 2 or 3), which is called ‘fusion’, for achieving higher diagnostic performance. VVolponi et al [21] developed
an information fusion system for fault diagnostics and health management of an aircraft engine, which combines
various types of data (e.g. gas path measurements, vibration signals, oil debris analysis data). Dewallef et al [22]
examined the combination of a bayesian belief network with a soft-constrained Kalman filter for aircraft engine fault
diagnosis using deviations of gas path data. In this study the Kalman filter uses a priori information derived by a
bayesian belief network at each time step, in order to derive estimations of the unknown health parameters. The
resulting algorithm has improved identification capability in comparison to both the stand-alone Kalman filter and
the bayesian belief network. Kyriazis and Mathioudakis [23] proposed a two-step information fusion technique
allowing the combination of both dynamic and static measurements for improving performance of gas turbines faults
diagnosis. Each type of available data is fed to an independent probabilistic neural network, which produces as
output a health condition assessment (in the form of a probability distribution). These outputs are then entered in the
first step of the fusion technique and aggregated in order to derive a probability consensus; finally in the second step
this probability consensus is classified (to a particular fault) using fuzzy set theory and fuzzy logic, which
constitutes final diagnostic decision.

In summary, from the above literature review it has been concluded that for the problem of gas turbines fault
identification several individual classifiers have been investigated, resulting in satisfactory levels of diagnostic
performance. All these classifiers have a learning phase which exploits to some extent (varying among different
classifiers) and codifies pre-existing relevant knowledge. Also, to much lesser extent have been investigated some
forms of combination (‘fusion’) of small numbers of individual classifiers, with each of them providing an
independent classification (usually as a probability distribution), and the final diagnostic decision being produced
through an aggregation of these individual classifications. Taking into account that each individual classifier
performs some exploitation of pre-existing relevant knowledge, this combination results in a better exploitation of
this knowledge. However, the combined use of larger numbers of individual classifiers (e.g. in the order of
hundredths), such as Random Forests (described in more detail in the following section 3), which might result in an
even better exploitation pre-existing relevant knowledge for achieving even higher levels of performance, has not
been investigated. This paper contributes in filling this research gap.



3. Random Forests

Random Forests are founded on Breiman’s Classification and Regression Trees and Bagging Predictors [24], [25]),

which have been successful in several classification and regression tasks. Based on them there have been many

research efforts for constructing various kinds of ensemble classifiers towards increasing the performance of the
classification task ([26], [27], [28]). Several of them have exhibited promising results in various classification
problems, such as Adaboost, Bagging and Random Forests [29]. Random Forests are a mixture of robust decision
tree classifiers, such that each tree is constructed based on a set of records, each of them including values of the
features and a class characterization (learning data), and has the form shown in Figure 1; also, for the construction of
each tree are taken into account the values of a random vector sampled independently (e.g. see the ways of
introducing randomness described below in 3.1 and 3.2) and with the same distribution for all trees in the forest. The
generalization error of such a set of decision tree classifiers (known as ‘forest’) depends on the strength of the
individual trees within the forest and their inter-correlation. The use of a random choice of features in order to split
each node yields output error rates comparable to the ones of the Adaboost, which is its main ensemble rival. While
previous generation tree algorithms devote significant resources for choosing how to split at a node (i.e. which
feature will be used for this person), Random Forests algorithm perform this task with little computational effort.

Compared with Adaboost, Random Forests have the following advantages:

e the accuracy is as good as Adaboost and sometimes better.

o they are relatively robust to outliers and noise.

o they are faster.

o they provide useful internal estimates of error, strength, correlation and variable importance.

o they are simple and easily parallelized.

In particular, a Random Forest classifier ®(x) consists of a number of decision trees, where x is an input instance,

with each tree grown using some form of randomization [30]. In particular, the process of building each decision

tree consists of the following steps:

I. If the number of instances of the training set is N, sample N cases at random, but with replacement, from the
original data; this sample will be the training set for building the tree.

Il. If there are M input features, a number m<<M is specified, such that at each node m variables are selected at
random out of the M, and the best split on these m features is used to split the node; the value of m is held
constant during the forest growing.

I11. Each tree is grown to the largest extent possible, so no pruning is applied.

The leaf nodes of each tree are labeled by class estimates (= the posterior distribution over the data class labels).

Each internal node contains a criterion (test) that best splits the space of data to be classified. A new instance is

classified by propagating it down every tree and aggregating the reached leaf distributions (e.g. through majority

vore). The classification process for a new instance is shown in Figure 2.
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Figure 2. Hierarchical decomposition of a Random Forests classifier on a data set

The overall error rate of the Random Forests is influenced by two factors:



. Robustness (strength) of each individual tree within the forest: higher strength results in lower error rates.

. Tree inter-correlation: highly correlated trees result in high error rate.
In order to make the classification process more formal, suppose that the joint classifier ®(x) contains x individual
classifiers ©1(x), Oy(x),...,04(X). Let us also assume that each data instance is a pair (x,y), where x denotes the input
attributes (i.e. feature values), taken from a set A;, i=1,...,M, and y symbolizes the set of class labels L;, j=1,...,c (C is
the number of class values). For reasons of simplicity, the correct class will be denoted as y, without any indices.
Each discrete attribute A; takes values from a set V;, i=1 to m; (m; is the number of values attribute A; can take).
Finally, the probability that an attribute A; has value vy is denoted by p(v;,k), the probability of a class value y; is
denoted by p(y;) and the probability of an instance with attribute A; having value vy and class label y; is symbolized
by p(yjlvi,K).
Each (;f the N instances (records) of training set can be picked at random with replacement. By this procedure, called
“bootstrap replication”, it is mathematically proven [11]?? that a subset of 36.6% of the training examples will not
be taken into account during the tree construction phase. These out-of-bag (oob) instances allow for computing the
degree of strength and correlation of the forest structure; therefore, no k-fold cross validation techniques are needed
in Random Forests. Suppose that Ok(x) is the set of oob instances of classifier @,(x). Furthermore, let Q(x, y;) denote
the subset of oob samples which were voted to have class y; at input example x. An estimate of p(@(x) = y;) is given
by the following equation pnmog Bo énpene va givar p(O(x) = y;) kar oxt Q(X, Y;) T0 apioTePd NEAOG TOV TAPUKATO:

D HO(X) = y;i(x%y) € O)
Q(nyj) = K
ZI(®k(X);(X’ y)€O,)

where I(-) is the indicator function??. - EEHI'HXE KAAYTEPA THN ITAPAITANQ XXEXH
The margin function which measures the extent to which the average vote for the right class y exceeds the average
vote for any other class labels is computed by:

margin(x,y) = P(®(x)=y)-

max’_, .., (P(®(x) =y;)

Since strength is defined as the expected margin, it is computed as the average over the training set: EEHTHZE
KAAYTEPA THN ITAPAKATQ IXEXH-MHIIQX @A EITPEITE NA EXEI IIIOANOTHTEZ P KAI OXI Q SYNOAA

s - %i@(xi,y) -max, ,, Q(x, ¥,))

The average correlation is given by the variance of the margin over the square of the standard deviation of the forest:
— _ Var(margin)

a(00)’
In accordance to Breiman’s suggestion, we examined the Random Input Forests and the Random Combination
Forests randomness algorithms; for both of them the evaluation metric on which tree nodes are chosen to split is the
Gini index, taken from the CART algorithm. Other similar metrics presented by researchers are Gain ratio [31],
MDL [32] and Relief-F [33]. The formula for calculating the Gini index is as follows [22]:

Gini(A) =—_ch p(Y:)* —ip(vi,,-)—zcl m%j)2

EEHI'HZE KAAYTEPA THN ITAPAITANQ XXEXH
3.1. Random Input Forests
The simplest kind of Random Forests is formed by selecting at each node at random a small set of input variables
(features) to split on. Each tree is grown using CART methodology to maximum size and is not pruned. The steps
we follow are shown below in a form of pseudo-code:
For building K trees:
Build each tree by:
e Selecting, at random, at each node a small set of features (F) to split on (given M features in total). Common
values of F are:
F=1.
F=log,(M) + 1.

, is estimated for every input example x in the training set Q(X, y;).



e For each node split on the best of this subset (using oob instances) that maximizes the Gini index.
e  Grow tree to full length.

3.2. Random Combination Forests

This alternative approach consists of defining more features by taking random linear combinations of a number of
the input variables. That is, a feature is generated by specifying L, the number of variables to be combined. At a
given node, L variables are randomly selected and added together with coefficients that are uniform random
numbers on [-1,1]. In this way F linear combinations are generated, and then a search is made over them for the best
split that maximizes the Gini index. The steps we follow are shown below in a form of pseudo-code:

For building K trees:

Build each tree by:

e Create F random linear sums of L variables:

L
A = bej X , where by = uniform random number in [-1,+1]
i=L

e At each node split on the best of these linear boundaries.
e  Grow tree to full length

4. Application

4.1. Data

The present study is based on data acquired from dynamic measurements on an industrial power production gas
turbine into which different faults were artificially generated in blades of the first stage of the compressor. Four
distinct categories of dynamic measurements were performed simultaneously:

1. Unsteady internal wall pressure (using fast response pressure transducers P2 to P5 located at positions facing the
first four rotors of the compressor in which the artificial blade faults were generated).

2. Casing vibration (using accelerometers Al to A6 mounted on the outside surface of compressor casing at
locations near the above pressure transducers).

3. Shaft displacement at compressor bearings (using transducer B).

4. Sound pressure levels (using double layer microphone M facing the casing at a position corresponding to the first
compressor stage).

A schematic illustration of the gas turbine setting, showing the measuring instruments’ arrangement, is provided in
Figure 3.

P1 P2 P3 P4 Ps

T
i

A1,A4 A2, A5 A3, A6
Om

Figure 3. Arrangement of the measuring instruments (accelerometers A1 and A4 are at the same position horizontally, with the
latter being rotated by 90 degrees; similar hold for A2 and A5, and also for A3 with A6).




Based on the above setting, five experiments were carried out, the first in a healthy condition and the other four in
operation with the following four typical small and therefore not easily diagnosable blade faults (which however are
rapidly growing due to the high speeds of the rotating components, so they can result in catastrophic failures) in the
first stage of the compressor (which is the most vulnerable to blading faults):

e  Fault 1: rotor fouling.

e  Fault 2: individual rotor blade fouling.

e Fault 3: individual rotor blade twisting (by approximately 8 degrees).

o  Fault 4: stator blade re-staggering (change of its angle).
Trials were performed at four different engine loads (full load, half load, quarter load and no load) both for the
healthy operation and for the operation with above four faults. At each engine load four series of time domain data
were acquired for each instrument (two series at a sampling frequency | = 13 kHz and two series at a higher
sampling frequency of m = 32 kHz); in the healthy operation only one data series was acquired for each sampling
frequency. Consequently, for every measuring instrument we have 72 different series of time domain data: 8 healthy
data series (=4 loads x 2 frequencies) and 64 faulty data series (=4 faults x 4 loads x 2 frequencies x 2 series). By
performing fourier analysis in each of these time series data we remarked that the main components are at the rotor’s
shaft rotational frequency and its harmonics, while in all the other frequencies it is noise. For this reason in all these
signals we focused on the rotor’s shaft rotational frequency harmonics, and in particular on the first 27 harmonics
which are strong enough so that there are not buried in the noise. Therefore our data had a tabular form, consisting
for each measuring instrument of 72 instances described by 27 attributes.

4.2. Calculation of Features
In order to calculate the features for each time series (signal) its ‘spectral difference pattern’ was calculated using

the following equation:
P(f) = 20[log(sp(f)) - log(sph(f))]

where P(f) is the spectral difference pattern, which is a function of frequency f, sp(f) is the power spectrum of the
signal, and sph(f) is the spectrum signal of the ‘corresponding’ healthy signal, coming from healthy operation at the
same load and sampling frequency. Furthermore, since as mentioned above the most valuable diagnostic information
is contained at the harmonics of the shaft rotational frequency, were filtered out the values of P(f) at frequencies
other than the shaft rotational frequency harmonics. The resulting pattern from this filtering, Pr(f), is referred to as
“reduced spectral difference pattern” (and for simplicity “pattern” in the following text), and is calculated by the
following equation:

Pr(f) = P(f) * H(f)
where H(f)=1 if f is a rotational harmonic, and H(f)=0 for all other frequencies. An example of the patterns
calculation procedure described above is shown in the following Figure 4 for the unsteady pressure transducer P2.
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Figure 4. Pattern calculation procedure for power spectra of unsteady pressure transducer P2.

4.3. Preprocessing
Due to the fact that a plethora of sensors has been used, feature selection and outlier identification issues had to be



addressed, in order for the classification model to be robust and effective. In order to perform feature selection, we
estimated the importance of each variable using the Information Gain criterion and arranged them in descending
order. The Information Gain metric for a particular feature F is based on a statistical view of modeling uncertainty
and is expressed as the difference of total Entropy (i.e. of the whole dataset) minus the sum of the Entropies of the
subsets corresponding to feature’s values. In particular, the Information Gain (IG) of a feature F with V different
values within a dataset D of np instances is given by:

IG(F, D) = Entropy(D) — Z&Entropy(D\,)
VeF nD

The feature importance graph?? provided important information regarding the significance of each variable to the
classification process; these results were verified through correlation tests.

Finally, noisy data were removed from the dataset using the CURE [29] (Clustering Using Representatives)
clustering algorithm. Even though Random Forests are relative robust to outliers and noise, in order to achieve
higher levels of performance we decided to perform a pre-processing noise removal process. The CURE algorithm
consists of a hierarchical and a partitioning part and operates as follows: initially, a constant number of
representative points c, is selected from each cluster (in our case as clusters we consider our 5 classes: the healthy
signals, signals from fault 1, signals from fault 2, signals from fault 3, signals from fault 4). These well-partitioned
data are shrunk to approach the cluster centroid, by applying a shrink factor « (when o equals 1, all the points meet
to a single point, the centroid). These multiple points are better representatives of a cluster than traditional methods
which make use of only a single point per cluster. Furthermore, using several points per cluster could result in
clusters that are not necessarily spherical shaped offering a better representation of them. As mentioned before,
CURE also used a hierarchical phase where clusters with nearest pairs of representative points are merged to form a
single cluster. Figure 5 depicts the basic idea of CURE in four distinct phases. Firstly, from a given dataset (a)
clusters along with representative points are being formed (b) (these points are selected in order to be far from each
other and far from the middle of each cluster); then (c) two of the clusters are being merged and two new
representative points are chosen; finally, in phase (d) these points shrunk towards to middle of this cluster. Note that
if a single point was used for each cluster as a representative, the small cluster would have been merged with the
lowest cluster rather than the upper one.
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Figure 5. The CURE algorithm for outliers removal

CURE algorithm used memory resources efficiently since the initial cluster assignment is performed based on a
random data sample. This dataset is partitioned and each part is being clustered. The resulting clusters are fully
clustered in a second pass. Both sub-sampling and partitioning are performed isolated, in order to ensure that all data
are fit to the memory. The time complexity of this algorithms is O(n’logn) [30] while space complexity is only O(n),
in the worst case. From a technical point of view spatial accessing methods such as R+-trees [31] or R*-trees [32]



are used. Furthermore, a stack is kept, where the number of representative points of each cluster, along with the
centroid and the closest cluster are stored. CURE uses the stack to find the closest candidate clusters for the merging
process [33]. The complete algorithm is shown in more detail in Table I.

TABLE I. CURE ALGORITHM

Input: D=(X1,X2,...,Xn); //Dataset

K; //Number of Clusters

Output : S=(<x1,Ki><x2,Kj>,...,<xN,Km>),

i,j,m € K// Heap containing each example assigned to a
cluster

MAIN BODY:

T=build_k_D_tree(D);
Q=create_heap(D;//initially one entry per item
while nodes(Q) != K
{
u=min(Q); //finds the smallest heap item
delete(Q,u.closest);
w=merge(u,v);
delete(T,v); //delete from heap
insert(T,w); //insert from heap

for each xeQ do
x.close=find_nearest_cluster(x);
if X is_closest_to(w) then
w.close(x);

insert(Q,w);

5. Results

The abovementioned two variations of Random Forests, Random Input (RI) Forests (described in 3.1) and Random
Combination (RC) Forests (described in 3.2), were applied on the above dataset, using oob estimates. As
performance evaluation metric we considered per-class Precision and Recall, which are common metrics used to
validate the classification performance in the information retrieval domain. In particular, as Precision for a class is
defined the percentage of correctly classified in it instances among those that the algorithm classifies in this class.
As Recall for a class is then defined the fraction of correctly classified in it instances among all instances that
actually belong to this class. These definitions are illustrated in the following Table Il showing a “confusion matrix”
which tabulates for a binary classification problem (classes A and C) the actual class distribution (vertically) against
the assigned class distribution (the columns of the table). From these definitions it is clear that both these metrics
assess the effectiveness of the proposed Random Forest approach in extracting, codifying and exploiting the
knowledge on gas turbine blading faults identification contained in the maintenance files of the organization (in the
form of digitized signals from a number of measuring instruments at various time points, together with the
corresponding engine condition as diagnosed by highly knowledgeable and experienced technical personnel).

TABLE II. CONFUSION MATRIX AND RECALL AND PRECISION METRICS FOR EACH CLASS (A AND C).

Assigned Class

A C
A a b
Actual Class C c d

precision A= 2 | recall A= precision C=i recall C:i
a+c atb b+d c+d

Additionally we compared the classification performance of the above two Random Forests algorithms against three
other widely used classification algorithms: the Multilayer Perceptron Neural Networks, the Classification and
Regression Trees (CART) and the K-Nearest Neighbor (for which cross-validation was performed).

The preprocessing phase of eliminating noisy instances using the abovementioned CURE clustering algorithm did
not change the set of the initial 72 instances for all measuring instruments, as they were all found to be close to each
cluster’s centroid (note that each class was considered to form a separate cluster). With regard to the Random



Forests, the best results were obtained by using 450 trees and 7 input features. The results - Precision and Recall per
class for each classifier - are shown in Figures 6 and 7 (F1 to F4 denote the 4 faults’ categories and OK denotes the
healthy one). We remark that both Random Forests variations have a good classification performance, which is at an
average level of 97.5% for both Precision and Recall; this is quite satisfactory, taking into account that all four faults
were small, so the proposed Random Forest approach can diagnose these faults from their very early stages. Also,
they both outperform the other three examined alternative classification algorithms for all classes. We can see that
RC is slightly better that RI, however the difference is very small, so we can conclude that they have similar
performances. These results indicate that the proposed Random Forest approach has a good potential in extracting,
codifying and exploiting the knowledge on gas turbine blading faults identification contained in the maintenance
files of the organization, exceeding clearly the potential of the other three widely used alternative classifiers.
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Figure 6. Precision per class for all classifiers using data from all measuring instruments.
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Figure 7. Recall per class for all classifiers using data from all measuring instruments.

Furthermore, we examined the classification performance achieved if only a subset of these measuring instruments
is used. We have focused on the signals only of the 6 Accelerometers (A1-A6), which are located near the examined
faults, and at the same time are much more convenient to be installed than the pressure transducers (P2-P5), which
necessitate the laborious task of drilling holes in the compressor casing. The following Figures 8 and 9 show the
precision and the recall achieved per class for each classifier from this reduced dataset.
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Figure 8. Precision per class for all classifiers using data from accelerometers A1-A6.
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Figure 9. Recall per class for all classifiers using data from accelerometers A1-A6.

We can see that the results are similar to the previous ones. Again Random Forests exhibit higher precision and
recall outcomes than the three examined alternative classifiers, with RC appearing to be the best performing among
all classifiers. However, the use of only this type of instruments (accelerometers) results in a decrease of the
performance of all classifiers in both metrics, which ranges from 2% to 3.5%, depending on the classifier. This
reduction is of course expected since less information (and therefore less knowledge) is given to the inference
models of each algorithm, however it is counterbalanced by the fact that accelerometers are relatively easy to be
acquired and installed.

6. Conclusion

In the previous sections we have presented an Ensemble Random Forests based method for the extraction and
exploitation of existing knowledge in organizations, concerning a difficult and at the same time critical problem: the
identification of a very dangerous kind of faults (blading faults) in an important category of equipment (gas
turbines), which are of critical importance in many industries, such as the airline and power generation industries.
The proposed method uses the existing knowledge on blading faults’ identification in gas turbine user organizations;
this knowledge has the form of several instruments’ digitized signals at many different points in time (acquired
through the increasingly adopted data acquisition systems) and also the corresponding health condition of the engine
(healthy or existence of a particular fault). This knowledge is extracted and codified in the form of a highly
sophisticated model: a large number of decision trees (i.e. a Random Forest). Each decision tree has internal nodes
corresponding to various criteria (tests) on features of signals acquired from the gas turbine (e.g. Fn > vn) and leaf
nodes corresponding to classifications to particular classes (e.g. C,) corresponding to the healthy condition or
particular faults, while it can also be expressed as a set of rules. This model can be accessible through appropriate 1S
and networks and exploited by by the operations and maintenance personnel, who can use it for newly acquired data
from the gas turbine in order to diagnose its current health condition.



Our results indicated that the proposed approach (for both examined methods of injecting randomness to the
decision trees of the forest) shows a very good performance in gas turbine blade faults identification, and
outperforms all the three examined widely used alternative classification approaches in terms of precision and recall.
In particular, both Random Input Forests and Random Combination Forests appeared to achieve higher classification
performance than Neural Networks, Classification and Regression Trees and k-Nearest Neighbor classifiers.
Therefore this proposed combination of large number of decision tree classifiers, which is for the first time
investigated for this critical and difficult problem (as previous research on it was focusing mainly on individual
classifiers, and to a lower extent on fusion of 2-3 individual classifiers, as outlined in section 2), seems to be a
highly effective mechanism of extracting, codifying and exploiting knowledge on gas turbines faults’ identification,
outperforming in this respect the other three widely used alternative classifiers. For this reason it can increase the
effectiveness of engine condition monitoring, and through it the effectiveness of complex equipment maintenance
and management: having a reliable picture of the condition of our equipment allows us to make timely and
appropriate maintenance interventions, avoid catastrophic failures, replace parts and components based on their real
condition (and not at predefined regular intervals, based on general manufacturer’s recommendations) and make
more effective maintenance plans. These can contribute to reduction of the costs of maintenance, and at the same
time improvements of its effectiveness.

It should be mentioned that the price we have to pay for this higher classification performance provided by the
proposed approach is the higher computational effort required for the initial training of the decision trees forest;
however, taking into account that for each node it is among a limited number of input features that we search for the
one to be used for the split (which reduces the required computational effort), and also that this training takes place
only once in the beginning in offline mode, we do not expect that this will be a problem for the practical application
of the approach. However, due to the above characteristics and requirements of the proposed approach its practical
application relies critically on the use of high capabilities IS, which will provide the necessary infrastructure for
performing and integrating all its basic knowledge management stages: a) acquisition and digitization of signals
from various measuring instruments (which contain valuable knowledge), b) organization and storage of them, c)
batch processing of them for the extraction of the knowledge they contain on gas turbine blading faults identification
and construction of a set (forest) of decision trees (codification of the knowledge), and finally d) online processing
of each new signal acquired from the engine and classification of it in the appropriate health condition class
(exploitation of this codified knowledge).

Closing, we believe that such ensemble approaches, like the one at hand, can be successfully applied in problems of
knowledge extraction, codification and exploitation of other organizational functions as well (e.g. in sales,
procurement, financial management, human resources management, etc). So further research is required for
investigating their performance in other types of such problems, and making the required adaptations and
improvements.
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