
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4
Available online at w
journal homepage: www.elsevier .com/locate/cose
From keyloggers to touchloggers: Take the rough with
the smooth
D. Damopoulos*, G. Kambourakis, S. Gritzalis

Info-Sec-Lab Laboratory of Information and Communications Systems Security, Department of Information and Communication Systems

Engineering, University of the Aegean, Samos GR-83200, Greece
a r t i c l e i n f o

Article history:

Received 1 June 2012

Received in revised form

16 September 2012

Accepted 15 October 2012

Keywords:

Behavioural biometrics

Keyloggers

Touchloggers

Smartphones

Malware

iOS

Security
* Corresponding author. Tel.: þ30 22730 8228
E-mail addresses: ddamop@aegean.gr (D.

0167-4048/$ e see front matter ª 2012 Elsev
http://dx.doi.org/10.1016/j.cose.2012.10.002
a b s t r a c t

The proliferation of touchscreen devices brings along several interesting research chal-

lenges. One of them is whether touchstroke-based analysis (similar to keylogging) can be

a reliable means of profiling the user of a mobile device. Of course, in such a setting, the

coin has two sides. First, one can employ the output produced by such a system to feed

machine learning classifiers and later on intrusion detection engines. Second, aggressors

can install touchloggers to harvest user’s private data. This malicious option has been also

extensively exploited in the past by legacy keyloggers under various settings, but has been

scarcely assessed for soft keyboards. Compelled by these separate but interdependent

aspects, we implement the first-known native and fully operational touchlogger for

ultramodern smartphones and especially for those employing the proprietary iOS plat-

form. The results we obtained for the first objective are very promising showing an

accuracy in identifying misuses, and thus post-authenticating the user, in an amount that

exceeds 99%. The virulent personality of such software when used maliciously is also

demonstrated through real-use cases.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction However, at the same time, modern smartphones
Over the last few years, mobile devices have gained increasing

popularity due to the variety of the data services they offer,

such as texting, emailing, browsing the Internet, document

editing, playing games, along with the traditional voice

services. Such devices, commonly referred to as smartphones,

are getting constantly smaller, cheaper, more convenient and

powerful, and are able to provide a plethora of advanced

data input interfaces enabling the user to interact with

the device more productively. Typical examples of such

advanced features include software keyboards displayed on

a touchscreen instead of hard ones, magnetometer and

gyroscope for measuring or maintaining the orientation of the

device etc.
1.
Damopoulos), gkamb@a
ier Ltd. All rights reserve
comprise an attractive target for any potential intruder or

malicious code. On the one hand, such expensive devices are

attracting the attention of occasional or even petty thieves.

Note that the target of such incidents may not only be the

device itself (e.g., sell it for profit) but in some cases the data

stored on it. On the other hand, ultra-portable devices now

represent a promising target for malware developers that

struggle to expose users’ sensitive data, compromise the

device or manipulate popular services (Polla et al., 2012). Also,

as detailed in Section 4, other types of traditional malware

seem to also evolve in an effort to catch up with the so called

mobile era.

Under this prism, it is obvious that with the exception of

a limited number of very expensive devices, the majority of
egean.gr (G. Kambourakis), sgritz@aegean.gr (S. Gritzalis).
d.

mailto:ddamop@aegean.gr
mailto:gkamb@aegean.gr
mailto:sgritz@aegean.gr
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 103
smartphones still use traditional authentication and access

controlmethods such as Personal Identification Number (PIN),

Screen Lock Password (SLP), which in many cases are not

sufficient to offer integral protection against intrusions. To

exemplify this, it is certain that such approaches do not

safeguard the private data on stolen devices after authenti-

cation has been carried out (post-authentication state). In the

simplest case, if a mobile device comes under the possession

of the attacker and is in an unlocked state, private data can be

exploited. In these situations it is desirable to equip the device

with a mechanism able to constantly track and identify its

owner(s) behavior and thus enable it to detect misuses by

itself. Consequently, and as discussed in Section 5, the

research community is increasingly interested in developing

intelligent post-authentication controls based on biometric

technologies for bolstering the security of mobile devices. To

this end, keystroke analysis can be a fruitful means of iden-

tifying (profiling) the legitimate user of a mobile device.

Actually, as detailed further down in Section 5, this option has

been investigated in the past, but for mobile devices equipped

with physical keyboards. This possibility however has hardly

been explored for modern smartphones having a touchscreen

to interact with the user. Note that the data produced when

using such an interface is of great amount and diversity. That

is, the touch data does not solely originate from the soft

keyboard of the device but from all, say, fingermovements the

user makes on the device’s display (e.g., sliding movements

including up/down gestures).

The potential applications of such touch-oriented user

profiling method are numerous and varied. For instance,

touchlogging data can be used to block unauthorized access to

a device; The touchlogger software module running on the

device realizes that the person using the device is not the

owner and reacts by locking it. User personalization is another

field where touchlogging may be proved very handy. Let us

assume, for example, a touchlogger tracking the responses of

a user during their interaction with an application, say,

a game. If the user interacts with the screen aggressively

maybe it is a sign that the game must (automatically) bring

down its difficulty. On the negative side, a touchlogger can be

exploited by attackers to harvest sensitive user information

such as passwords, account numbers, emails, social security

numbers etc.

Our contribution: This work focuses on touchloggers for

modernmobile devices. Our aim is twofold. First, to show that

touchlogging can be a reliable and very accurate means of

profiling the legitimate user(s) of a device. This means, for

example, that the touch events collected by the touchlogger

can be readily utilized by behavioral-based Intrusion (IDS) to

detect misuses and/or intrusions (although the evaluation of

such an IDS remains out-of-scope of this paper). Second, to

demonstrate that when compared to traditional keyloggers,

a touchlogger can be at least equally hazardous to the user(s)

of the device. Toward these goals, we implement a full-fledged

touchlogger for devices on the iOS platform (formerly known

as iPhone Operating System). The log files of the touching

events are then fed to popularmachine learning algorithms to

classify user behavior with the aim to assess the feasibility of

this type of software to be used as the core part of some sort of

user post-authentication mechanism. As far as we are aware
of, this is the first work on touchloggers in literature. Finally,

a side contribution of the paper is to provide a comprehensive

review of the state-of-the-art in this area of research.

The remainder of the paper is organized as follows. The

next section brings into the foreground design challenges and

basic requirements toward realizing touchlogging software.

Particular emphasis is given on the iOS platform. User

profiling based on touchlogging data is assessed in Section 3.

Section 4 gives some preliminary results based on real-use

cases that prove the malevolent potential of this type of

software. Related work is addressed in Section 5. The last

section concludes and outlines future work.
2. Design challenges, requirements, and
implementation guidelines

In practice, several obstacles must be surpassed before one is

able to collect the touch events happening on the display of

a device. This is because smartphone OS restrict privileges

granted to applications. In most cases, an application cannot

acquire touchstrokes unless it is active and receives the focus

on the screen. This alonemakes the collection of touch events

highly difficult. Also, in contrast to the typical mobile device

with a (fixed) hardware keyboard and a small display screen,

a touchscreen mobile device uses all the surface of the screen

to display software views, buttons, check boxes, radio buttons

or soft keyboard as the input data interface to the user.

Nowadays, Google’s Android and Apple’s iOS are domi-

nating the market of touchscreen-equipped smartphones.

Considering these two disparate options, we selected themost

challenging one, that is to implement a touchlogger using the

proprietary iOS platform. In fact, both the aforementioned OS

restrict access to their internal functions. However, in

contrast to iOS, the Android source code is freely available for

download and tinkering.

The primary aim of a touchlogger is to collect every touch

event taking place on the screen. To do so, it needs to fulfill

two fundamental requirements: (a) gain root permissions to

be able to hook and override internal OS methods which are

responsible for the detection and management of touch

events, and (b) run in the background of the OS and constantly

track and collect user’s touch behavior.

Rightly or wrongly, only software signed by Apple’s

Certificate Authority is allowed to run on an iPhone or iPad

device. So, taking into account the first requirement, the only

way to gain root permissions on an iOS device is by exploiting

an existing vulnerability. This process is generally referred to

as Jailbreak (rooting on Android). Jailbreaking allows the

creation and execution of third-party software without an

official SDK from Apple. Moreover, Apple does not offer any

frameworks that override iOS Application Programming

Interface (API) methods. To fill the gap, J. Freeman has created

the MobileSubstrate extension, a framework that allows

developers to deliver run-time patches to system methods

using Objective-C dynamic libraries (dylib) (iDW, 2012). Also, D.

L. Howett has contributed Theos, a cross-platform suite of

programming tools for managing and deploying jailbreak-

oriented iOS development (iDW, 2012). By creating a dylib

and linking it with the MobileSubstrate extension, developers

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4104
are able to build applications capable of hooking internal

system methods.

Considering the second requirement, the touchlogger

needs to run continuously in the background of the under-

lying OS. Until iOS ver. 4, multitasking was not officially sup-

ported. Nevertheless, jailbroken iOS could support

applications that run in the background as daemons or use

Objective-C dylib. Also, iOS, being a Unix-based OS, can

provide multitasking by using launchd, a launch system that

supports daemons and per-user agents as background

services. After iOS has been jailbroken, any installed appli-

cation or shell script is able to behave as daemon by creating

a launch plist and placing it into the iOS “/Library/Launch-

Daemons” folder. Anotherway to supportmultitasking is with

dylib.When launching an application, the iOS kernel loads the

application’s code and data into the address space of a new

process. At the same time, the kernel loads the dynamic

loader, that is “/System/MobileSubstrate/DynamicLibraries”

into the process space and passes control to it. It is also

possible to load a dylib at any time through an Objective-C

method. This is actually the main reason we use this back-

grounding method for implementing our touchlogger. Note

that starting from ver. 4 Apple provided seven APIs that

allowed applications to run in the background. Although these

APIs are the native method for providing multitasking, as it is

explained in (Damopoulos et al., 2011), is not the best way to

create and launch a touchlogger application.

Given the above restrictions, we implement iTL a fully-

fledged touchlogger for iOS devices. iTL is written in

Objective-C and compiledwith Theos for iPhone ARMCPU and

tested to run on iOS ver. 4 and above. As already pointed out,

iTL has been implemented using the unofficial ways for

backgrounding (dylibs), the public and private frameworks

and the MobileSubstrate framework, with the substrate.h

header that overrides iOS methods (The iPhone Wiki, 2012).

Fig. 1 depicts the overall iTL architecture and details how it

interacts with the touchscreen and the iOS. Note that while

the aim of this paper is not to elaborate on implementation

details about the developed prototype, some details about its

internal mechanics should be discussed here for facilitating

the reading of the next sections and for the sake of

completeness.

Themain application that manages the iOS home screen is

SpringBoard (iDW, 2012). The User Interface Kit (UIKit)

framework is responsible for handling user interaction

through the touchscreen with SpringBoard or any other

application. The same framework also includes a set of stan-

dard subclasses a user can utilize, which range from simple

buttons to complex tables. The User Interface View (UIView)

class defines a rectangular area on the screen and the inter-

faces formanaging the content in that area. At runtime, a view

object handles the rendering of any content in its area and

also takes care of any interactions with that content. Because

an application interacts with the user primarily through

UIView objects, these objects have a number of responsibili-

ties such as drawing and animation, management of layout

and subview, and event handling. Each UIView object acts as

a responder that handles touch events also known as User

Interface Events (UIEvent). A UIEvent is defined by the User

Interface Responder (UIResponder), an interface for objects
that is able to detect touch events and at the same time handle

common gestures.

Every time, say, a finger touches, is dragged on, or is lifted

from the screen, the digitizer, a thin film over the device

display, tries to determine the shape of the touch area in order

to calculate the exact location of the touch and instantiate an

UIEvent object (Fig. 1(a)). Then, all UIEvent objects get grouped

(Fig. 1(b)). Each UIEvent object contains User Interface Touch

(UITouch) objects for all the fingers on the screen or just lifted

from it.

The general syntax for UIEvent-handling API methods

(Fig. 1(d)) for managing touch events are (Apple Inc, 2012):

� touchesBegan:withEvent: (one or more fingers touch down

in a view)

� touchesMoved:withEvent: (one or more fingers associated

with an event move within a view)

� touchesEnded:withEvent: (one or more fingers are raised

from a view)

� touchesCancelled:withEvent: (when a system event e such

as a low-memory warning e cancels a touch event)

Overall, the parameters of these methods associate touch

object instances with their events e especially instances that

are new or their field values have changed e and thus allow

UIEvent (responder) objects to track and handle the touches as

the delivered events progress through the phases of a multi-

touch sequence.

This is the phase where iTL intervenes. Normally, after the

UIEvents get grouped, the primary UIEvent-handling methods

for touches inform the UIView object about the detected touch

event or the multi-touch gesture (Fig. 1(f)). The main difficulty

in acquiring touchstrokes is that each application (either

native or custom) has its own UIview object. The direct effect

of this problem is that one cannot collect touch events unless

the application is active and receives the focus on the screen.

The novelty of our implementation is that we intervene and

hook against the UIView class, thus managing to collect all

touch events regardless if the application UIView focus is on

the screen or not (Fig. 1(c)). Also, we override the primary

UIEvent-handling methods for touches toward defining the

exact location of the touch which drags, lifts, moves or gets

canceled from the screen. Furthermore, as depicted in Fig. 1,

iTL hooks against: (a) the UIKeyBoard class by overriding the

activate/deactivate method to detect when the virtual

keyboard is activated or deactivated, and (b) the Springboard

SBApplicationIcon class by overriding the launch method to

detect which application is activated by the user each time.

Recall, that a touchlogger can be used both defensively and

offensively. So, iTL has been designed in line with this goal. It

consists of two modules namely iGestureLogger (iGL) and

iKeylogger (iKL). The first one is responsible to track every

touch event or gesture happening on the device’s display in an

effort to collect enough data to build the user’s profile for use

by, say, an IDS. The other, tries to identify touch events that

occur inside the area of a pre-defined soft keyboard. Then, it

attempts to translate every touch to the corresponding

(actual) key. If not, the corresponding touch event is dis-

carded. These twomodules are depicted in Fig. 1 (as (d) and (e)

respectively) and as we can observe, they trigger different

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

Fig. 1 e iTL high-level architecture (note that all classes are being hooked while the class methods are being overridden).

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 105
methods but one. Also note that these modules can operate

either in tandem or independently.
3. User profiling based on touch patterns

Still today, the majority of mobile devices consist of a hard-

ware keypad and a small screen as the I/O interfaces for the

user. In most cases, to interact with the OSmenu a user needs

to utilize specific hardware buttons (e.g., up, down, right, left).

Additionally, the user employs the hardware keyboard to

write text messages, emails etc. Based on this fact, so far, all

keystroke analysis systems but one presented in the literature

capitalize on physical keyboard data and more specifically

those collected during texting or other text entering activities
to authenticate the user. As detailed in Section 5, Cai and Chen

do consider touchlogging but in an indirect way demon-

strating that motion is a significant side channel, which may

leak confidential information on smartphones (Cai and Chen,

2011).

So, we can argue that iTL reinvents and expands keystroke

logging but for touch-based surfaces and sets new directions

on the data and features need to be used to (post)authenticate,

say, a smartphone user. Putting it another way, post-

authentication requires building the profile of the legitimate

user based on touch (behavioral) patterns. The iGL module

accomplishes this by detecting and logging every touch event

generated by the user the exact same time that they interact

with the OS, e.g., whenwritingmessages or using applications

in general. Therefore, the output produced by such a system

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4106
can be fed to an IDS to detect misuses. However, before

everything else, we need to assess the effectiveness of such

system in correctly classifying user’s touching behavior. This

is achieved with the help of machine learning techniques.

This process would provide evidences of the potentiality of

touchlogging to be used as the core part of any post-

authentication scheme or mechanism. The following two

sections discuss our methodology and present the results.

3.1. Methodology and data structure

We used iGL to collect touch events generated by eighteen

participants (iPhone owners) in the age range of 22e36 years.

Each person used their own device for 24 h performing their

usual everyday activities. After the data collection process

ended, the behavioral log fileswere retrieved from the devices.

To ease the data collection and acquisition process we

implemented an application shell for iGL (Damopoulos et al.,

2012). Once downloaded and installed by the user, the appli-

cation collects touch data for 24 h. Then, it will automatically

try to connect via Wi-Fi to the Internet to transmit anony-

mously the log file to our server.

Each file contains an arbitrary number of records where

each of them corresponds to a vector of related features per

touch event as described in Fig. 2. For the classification

process to take place, each file contains the data of the cor-

responding legitimate user and the data of the rest seventeen

users that represent the potential intruders. This means that

for each user in the dataset, the corresponding data file

contains: (a) the user’s data, referred to as normal behavior

data, and (b) all other users’ data that represent potential

intrusive behaviors. Every record of the touch data file is

composed of collected features represented by the following

quintuplet: {Type, X, Y, Timestamp, Intruder/Legit}. Where Type

refers to the type of the event,X, Y correspond to the Cartesian

coordinates where the event took place, Timestamp refers to

a UNIX timestamp (based on seconds since the standard

epoch of 1/1/1970) representing the date and time a touch

event occurred, and Intruder/Legit is the binary representation

of the two nominal classes, i.e., if this piece of data belongs

to the legitimate user (no) or the intruder (yes). An example

of such a record is given by the following quintuplet

{B, 289.000000, 315.000000, 1338039343.262504, no}.
Fig. 2 e iGL log file example records (B[Begin, M [Move, E [

between the fields).
The analysis procedure takes into account and cross-

evaluates four supervised machine learning algorithms, i.e.,

Bayesian Networks, Radial Basis Function (RBF), K-Nearest

Neighbor (KNN) and Random Forest. Also, for all the experi-

ments, the k-fold cross-validation method e and more

specifically a 10-fold one (this option provides us with more

chunks of data to work with) e has been employed to divide

the dataset into different sub-samples. This means that the

original sample is randomly divided into k equally (or nearly

equally) sized sub-samples, and the cross-validation process

is repeated k times (the folds). Each time, one of the k sub-

samples is used as the test set while the other k-1 sub-

samples are put together to form the training set. Finally,

the average error across all k trials is computed.

The analysis of the collected data has been performed on

a laptopmachinewith an 2.53 GHz Intel Core 2 Duo T7200 CPU

and 8 GB of RAM. The OS of this machine is OS X Mountain

Lion. The experiments have been carried out using the well

known machine learning software package namely Waikato

Environment for Knowledge Analysis (Weka, 2012). The upper

memory bound has been set to 1 GB aiming to resemble the

memory reserves of a modern smartphone.

3.2. Results

Legacy keystroke analysis uses two error rates, namely False

Acceptance Rate (FAR), in which an intruder is accepted by the

system, and False Rejection Rate (FRR), in which the autho-

rized user is rejected by the system (Bergadano et al., 2002). A

third metric known as Equal Error Rate (EER) is also employed

in literature to assess the potential of a keystroke system.

Specifically, EER is a kind of percentage rate which both

accepts and rejects errors as equals (EER¼ (FARþ FRR)/2). That

is, the lower the error rate value, the higher the accuracy of the

system. In our analysis, we consider all three aforementioned

metrics to estimate the effectiveness of touchstroke-based

classification.

Fig. 3, summarizes the FAR% and FRR% metrics logged per

participant, per classifier. Also, Table 1 contains the

maximum and minimum as well as the average and standard

deviation values of each of the aforementioned metric per

classifier, but this time calculated for all the participants. We

easily observe that Bayesian Networks and Random Forest
End, C[Cancel. The character & is used as a separator

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

Fig. 3 e FAR% and FRR% metrics per participant per classifier.

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 107
obtained very competitive results when compared to those

scored by RBF and KNN. Specifically, themaximum FAR%, FRR

% value pairs for Bayesian Networks and Random Forest are

{0.1, 1.9} and {0.1, 0.8} correspondingly. This means that in the

worst case, an intruder is rejected by the system in a percent

equal to 99.9%. Also, taking into account the percentages

scored by Random Forest, the system accepts the legitimate

user in 99.2% of the cases. Overall, Random Forest seems to be

the best choice as the results it produced are optimal across all

the metrics. This observation is further validated by the

calculated standard deviation values, that is, 0.05% and 0.26%

for the FAR and FRR metrics respectively. As a consequence,

the EER% for this algorithm is the lowest (0.205%) when

compared to those scored by Bayesian Networks (0.475%),

KNN (3.005%), and RBF (17.67%). These results clearly illustrate

the adequacy of the proposed touchlogging scheme to be used

toward identifying misuses.

To further exemplify the above findings, in Fig. 4 we cross-

projected the touch profiles of three different, randomly

selected, participants. Bear in mind that each profile -

compiling the touch events of a whole day - is actually a series
Table 1 e Aggregated classification results (all participants).

Random Forest Bayesian Netwo

%FAR %FRR %FAR %

Mean 0.03 0.38 0.03

Min 0.00 0.00 0.00

Max 0.10 0.80 0.10

St. Dev 0.05 0.26 0.05
of Cartesian coordinates as recorded by iGL in the corre-

sponding behavioral log file for that user. From the figure, it

becomes apparent that each behavioral profile is too far from

being characterized as similar to the others. In fact, when

examining thedataset, there is no touchprofile that canbe said

to be close to one another. Of course, this is quite plausible

because, each user employs and personalizes very differently

their smartphone. For example, theyput theapplications icons

in different places on the screen (or inside different folders),

create variant interfaces for their applications, and have their

own repertoire of sliding movements/gestures etc.

Taking into account the above findings, we can safely argue

that touch-based behavior classification presents significantly

better results compared to keystroke studies for mobiles

devices presented in literature so far (see Section 5 for details

on these works). This naturally stems from the fact that iGL

collects every touch event happening on the screen and not

just those associated with the virtual keypad. So, even for

relatively short-term interactions with a device (as in this

study), touchlogging seems to be able to profile the user with

very high accuracy.
rks KNN RBF

FRR %FAR %FRR %FAR %FRR

0.92 1.95 4.06 4.01 31.32

0.00 0.69 0.80 0.20 5.30

1.90 3.80 7.60 8.50 69.80

0.60 0.99 1.71 2.53 17.76

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

Fig. 4 e Cross-projection of 24-h touch profiles corresponding to 3 different users (the plot area recreates the iPhone screen

resolution 320 3 480).

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4108
It is also to be noted that while these results provide strong

evidences that touchstroke-based classification may be a very

accurate means of profiling the user, more research is needed

to better assess its potential. For example, iGL can be used to

create the profile of a given user based solely on touch events

collected when the user interacts with a particular applica-

tion(s), say, the SpringBoard. Also, extended experimentation

could take into account more participants using their devices

for longer periods of time, e.g., a week, or augment the sample

to include subjects of different age, sex etc. Clustering could

also be an interesting research direction, e.g., perform classi-

fication based on touch events collected during particular

periods of time when using certain types of applications.

Nevertheless, as already pointed out, this is the first work on

touchlogging. So, its scope is narrowed down to analyze basic

touchlogger implementation aspects and thus bound to make

an initial assessment of the competence of such software.
4. The flip side of the coin: turning malware

Keyloggers can be classified into hardware keyloggers, where

a tiny electronic device is used to log the data between

a keyboard and the I/O port, and software keyloggers where

a software programhooks themethods of thekeypad inorder to

monitor the pressed keys (Sagiroglu and Canbek, 2009). The

focusof this paper is onsoftware keyloggerswhich are variously

known as tracking software, keystroke monitor systems,

keyboard sniffers etc. This kind of software is also embedded in
seemingly innocuous and useful applications in the form of

spyware (Sipior and Ward, 2008; Zaitsev, 2010). In any case, the

primary aim of a keylogger is to share system resources with

legitimate programs remaining hidden while recording pass-

words, private conversations or e-mails (Sreenivas and Anitha,

2011). In a nutshell, keyloggers for both fixed computers and

mobiledevicesareexpected toshare thesamebasicarchitecture

with the only difference that the first hook the keyboard

methods from a hardware keyboard while the latter from

a software one. Very recently, we have witnessed a limited

number of touchlogging commercial software even for (jail-

broken) iPhone devices (iKeyGuard, 2012). However, these solu-

tions are able tomonitor only the native soft keyboard of the iOS

and therefore incapable of recording touches that occur in

custom-made virtual keyborads used by many websites (e.g.,

those used by mobile banking websites). This means that in

contrast to what is propossed in (Cai and Chen, 2011) and other

keyloggingschemesforhardorsoftkeyboards, iKLdoesnothook

any keyboardmethods to log the pressed key. Instead, it locates

the touched point (actually, a small rectangular surface) on the

screen and translates that location to the actual key pressed on

the virtual keypad, based on a pre-definedmodule as explained

in the following. More specifically, iKL hooks against SBAppli-

cationIcon, UIKeyboard, Application, and UIView classes and

overrides the corresponding class methods which are (Fig. 1(e)):

� -(void)launch; launches an application

� -(void)touchesBegan:withEvent:; detects the beginning of

a touch event

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 109
� -(BOOL)pointInside:withEvent:; returns true on a touch event

and false otherwise

� -(void)active; activates the soft keyboard

� -(void)deactive; deactivates the soft keyboard

� -(int)orientation; returns 0 if portrait or 1 otherwise

(landscape)

� -(id)activeURL; returns the URL loaded in Mobile Safari

� -(void)applicationWillTerminate; terminates the Mobile Safari

application

The iTL routine constitutes of two main parts; the Location

Module Manager (LMM) and the Location Module(s) (LM). The first

is responsible for deciding which LM is appropriate to capture

key-touch events depending on the case, while the second is

in charge of detecting a touch event and translating it to the

pre-defined key. iTL is developed as a dylib able to run

continuously in the background of the OS staying hidden from

the legitimate user. Because of that, it can easily fuse with

other malware like iSAM (Damopoulos et al., 2011) and be part

of a botnet. Also, iKL can be programmed so as to automati-

cally “tweet” the intercepted data (log files, images) to

a private Twitter account (e.g., by using the native SDK

provided by Twitter) or to a server that is under the control of

the attacker.

Based on the loaded application, the LMM attempts to

definewhich LMwill be dynamically loaded. After that, it is up

to that LM to realize which (virtual) key has been pressed. LMs

are dylibs which map pre-defined touch locations to the

virtual keys of the (soft) keyboard. It is therefore deduced that

LMs can be created and added by the attacker based on the

keyboard interfaces they desire to trace. By default, iKL has

two LMs, namely KeyLandscape (key_land.dylib) and Key-

Portaint (key_port.dylib). That is, the KeyLandscape module

contains pre-defined key locations for the native landscape

virtual keyboard, while KeyPortaint contains the same infor-

mation but for the native portrait virtual keyboard.

First off, the SBApplicationIcon, Application, and UIKey-

board API class methods have been hooked by the LMM. To

successfully hook the methods of the first two aforemen-

tioned private classes, it was necessary to class-dump both

the SpringBoard and Mobile iOS applications and retrieve the

class headers. Based on the loaded application the LMM tries

to perceive if the virtual keyboard is active or not (by default

all iOS applications use the native virtual keypad). Therefore,

if the virtual keyboard pops up, the LMM checks the orienta-

tion (landscape or portrait) of the device and loads KeyLand-

scape, if landscape, or KeyPortaint otherwise. Once the LM is

loaded, iTL attempts to define if the location of the touch point

is within the rectangular area that confines a virtual key. This

area is defined by four Cartesian coordinates per key. If true,

then the corresponding key will be logged into a text file. Keep

in mind that native iOS soft keyboard consists of four levels.

That is, lowercase alphabetic keys, uppercase alphabetic keys,

numeric keys and symbol keys corresponding to levels 0, 1, 2,

and 3. Both the KeyPortaint and KeyLandscape modules are

able to perceive to which level of the iOS keyboard the user is

touching and hence log the correct key.

To test iTL, we conducted three real use-cases which are

described further down. It is stressed that all experiments had

100% accuracy in logging the keys (usernames, passwords etc),
thus bypassing any security mechanisms such as https

sessions or custom virtual keyboards presented by websites.
4.1. Scenario I: a sitting target

According to this scenario, we used an iOS proprietary appli-

cation for m-banking transactions developed by (EFG, 2012).

To login into their bank account, the user needs to type their

credentials using the native iOS keyboard. Once a finger

touches on a text entering box, the virtual keyboard gets

activated and at the same time the LM loads the KeyPortaint

module. Since then, all pressed keys will be logged. In case the

user changes the orientation of the device to landscape the

KeyLandscape module is automatically loaded. Using Safari

mobile we visit a bank website (EFG Eurobank, 2012) to make

some m-banking transactions. Once more in order for a user

to login into their account, they need to type their credentials

using the iOS native keyboard. Depending on the orientation

of the device, the KeyPortaint or KeyLandscape will log again

the credentials.
4.2. Scenario II: dealing with zooming

In this second scenario we developed another, but this time

more intelligent LM, namely KeyVirtual (keyvirtual.dylib) that

works only with a specific bank website (Syndicate Bank,

2012), and is able to detect the keys from any virtual custom

keyboard presented by this website. Once the LMM detects

Mobile Safari and (Syndicate Bank, 2012) as the loaded URL,

loads the KeyVirtual module. This time, the module contains

the pre-defined location of all virtual keys presented by the

website when: (a) the zoom level is set to zero, and (b) the page

is aligned to the center of the device’s display. Every time the

user performs a zoom in or out to the webpage or tries to

relocate the position of the website view, the module recal-

culates on-the-fly the pre-defined key locations based on the

new zoom level and the new webpage view position. So, to

prepare for the attack, the aggressor must first perform

a degree of reconnaissance to record the layout of the virtual

keyboad the website of interest uses. The Hovering keyboard is

another retaliatory tactic used against keylogging when

a mouse is available. Specifically, this method enables the

user to enter their private information (e.g., a password) by

just pointing the mouse on the relevant characters. This is

also known as “MouseOver”. However, as it is obvious, in our

case this method does not prohibit adversaries from spying

because of the touchscreen.
4.3. Scenario III: evading scrambled keyboards

In this last scenario we developed an even smarter LM able to

bypass the state-of-the-art security mechanism, namely

Scrambled keyboard employed usually by bank websites as

a last resort protection against keylogging. The Scrambled

keyboard is a server-side script that implements a keyboard

that is both virtual and dynamic in nature. This means that

the position of characters displayed on the virtual keyboard

changes every time the user touches on a key. Once again, the

LM must be designed especially for the target-website.

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4110
To demonstrate this situation we implemented an LM,

namely KeyScram (keyscram.dylib) that works only with

mobile banking services offered by a specific bank

(PanCaribbean Bank, 2012). More precisely, once the LMM

detects Mobile Safari and (PanCaribbean Bank, 2012) as the

URL, it automatically loads the aforementioned virtual

module. Recall from the previous subsection that normally an

LM stores the static location for the website’s virtual keys

alongwith their names. For instance, if the user touches on an

area of the screen defined by four Cartesian coordinates, i.e.,

(x1, y1), (x2, y2), (x3, y3), (x4, y4) the module automatically

translates it to the corresponding key, say, ‘a’. However, in this

case, it is practically impossible to pre-define the position of

each key and then associate it with its name (character)

because their position changes randomly every time the user

touches on a key. So, this time, the module contains the

Cartesian coordinates of all virtual keys presented by the

keyboard (when the zoom level is set to zero and the page is

aligned to the center of the device’s display) but it assigns to

all of them the null value.

First, iKL detects if the touch event corresponds to a key

location. If true, themodule instantly captures a screenshot of

the area defined by the four Cartesian coordinates of that key

and saves this tiny image using a name in the form {devi-

ce_unique_ID, serial_number, time_in_msecs}. Again, every time

the user performs a zoom in or out on the webpage or tries to

relocate the position of the website view, the module recal-

culates on-the-fly the actual positions of all virtual keys based

on the new zoom level and the orientation of the mobile

device.

Taking into account the above discussion, and setting aside

user discontent, the only way to temporarily evade such

a touchlogger is having the virtual keyboard to constantly

change the size of the virtual keys as well. But even in this

case, the malware can capture a screenshot of all the screen

area after placing a small transparent dot on the point the user

touched the screen. Of course, this can lead to several images

that occupy a considerable amount of memory in the device’s

permanent storage space which in turn may eventually

expose the malware.
5. Related work

Over the last few years, face recognition, fingerprints and iris

biometric data have been employed as an authentication

method for improving the security of smartphones. One of the

most prominent and at the same time cheap and efficient

biometric method used in the security field for user (post)

authentication and verification is keystroke dynamics.

According to (Ahmed et al., 2008), keystroke dynamics is

considered as a strong behavioral biometric-based authenti-

cation method, where the system monitors the keyboard as

the user types in an effort to identify the authenticity of the

user based on habitual patterns. Actually, it comes as no

surprise that the way an individual interacts with a device is

very specific to this person. The pioneering work by Bryan and

Harter showed that telegraph operators had very individual

patterns of entering messages over telegraph lines (Leggett

et al., 1991).
Biometric keystroke authentication systems have been

classified, according to the Verification or Identification mode,

where the system each time is set to one of these modes, and

pattern classification techniques are employed to analyze the

keystrokes (Bergadano et al., 2002). According to the Verifica-

tion mode, the system attempts to validate user’s identity

profile by comparing the user’s input sample against

a previous reference template. When using the Identification

mode, the system attempts to match a user input pattern

against a collection of a priori known profiles so as to identify

the legitimate user. Keystroke authentication can be also

classified as either static, where the classification analysis is

conducted only at specific time (e.g., login process), or

continuous, where the classification analysis is performed

repeatedly after a successful login (post-authentication).

Normally, keystroke systems try to classify a pattern using

either machine learning techniques, which have been

successfully employed in anomaly IDS, or common statistical

methods.

So far, several research works have been devoted to

keystroke analysis for mobile devices. In this section we

categorize them at a high level into keystroke proposals that

have been conducted for mobile devices equipped with

a hardware keyboard, and others that directly or indirectly

consider virtual keyboards used by modern smartphones.

Also note that this section concentrates on keystroke

authentication systems. Thus, approaches that deal with

keylogging as a way to generate better models of user-to-

mobile-device interaction in the context of Human-to-

Computer Interaction (HCI) like (Schulz, 2008; Park et al.,

2008; Lee and Zhai, 2009) and others that examine keystroke

on desktop (fixed) keyboards or computer mouse like those in

(Nakkabi et al., 2010; Findlater et al., 2011; Feher et al., 2012;

Stefan et al., 2012) have been intentionally neglected. The

same applies for works capitalizing on side (or covert) chan-

nels, such as electromagnetic and optical emanations, in an

effort to leak out information about which key has been

pressed on a desktop keyboard (Vuagnoux and Pasini, 2009;

Adhikary et al., 2012). All the approaches presented below are

arranged in chronological and thematic order in Fig. 5.

5.1. Hard keyboard-oriented keystroke proposals

Clarke et al. (Clarke et al., 2002) examine a number of clas-

sification algorithms based on feed-forward multiple layer

perception neural networks in an effort to evaluate the

potential to authenticate users by the way they type text

messages with a qwerty mobile hardware keyboard. Their

results have been promising, with an average classification of

18% EER and individual users achieving an EER as low as 3.2%.

A follow up work by the same authors (Clarke and Furnell,

2007) also evaluates the potential to authenticate users by

the way they type text messages succeeding an average EER

of 12.8%. A year later, Karatzouni and Clarke (2007) identified

that the hold-time (which is the interval between the

pressing and releasing of a single key) was not a beneficial

feature for use on a qwerty mobile device but a combination

of both inter key (which is the interval between two succes-

sive keystrokes) and hold time measures would provide

better results.

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

Fig. 5 e Major mobile device keystroke approaches in chronological order. The arrows indicate interrelation between

proposals ((i.e., [b] has been influenced by [a]).

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 111
Buchoux and Clarke (2008) capitalized on keystroke anal-

ysis on a qwerty smartphone and highlighted that the large

amount of processing power required to effectively use

a neural network as classifier exceeded that of the device.

A year later, Saevanee and Bhattarakosol (2009) suggested

new metrics such as finger pressure and unique combina-

tions of keystroke latencies to authenticate modile users.
Their study conducted on a sample of 10 participants with

a notebook touchpad had the lowest EER of 9% using

keystroke dynamics and the KNN classification algorithm.

During the same year, Campisi et al. (2009) focused on

keystroke biometrics within the framework of secure user

authentication using a numeric mobile hardware keyboard.

They proposed a statistical approach able to produce

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4112
satisfactory verification rates (of 14.46% EER) even in cases

where the number of samples contributed by the participants

is low. The authors worked with data taken from a sample of

40 users who have typed each password 20 times during 4

distinct sessions. Hwang et al. (2009) proposed a Keystroke

Dynamics-based Authentication (KDA) method with “artifi-

cial rhythms” and “tempo cues” for mobile user authentica-

tion. Their aim was to come through problems resulting from

short PIN length. They experimented with standard keypad

mobile devices and found that the proposed strategy reduces

ERR from 13% to 4%. Zahid et al. (2009) proposed a user

identification system that takes into account 6 distinct

keystroke features and can be used for user identification

with average ERR of 2%. They showed that specific keystroke

features for different users are diffused and therefore a fuzzy

classifier is well-suited for clustering and classification of

those data.

More recently, Saevanee et al. (2011) elaborated on behav-

ioral biometric techniques that can be applied toward

authenticating users that utilize mobile devices with a qwerty

hardware keyboard. To this end, they study the biometric

information, the keystroke dynamics and the finger pressure

(the last one using a notebook touchpad) using the RBF algo-

rithm to sift out legitimate users from intruders. The average

result they succeeded in terms of FAR and FRR was 52.2% and

1% respectively. These results have been acquired using

keystroke dynamics (hold-time) as the key factor to identify

users. Moreover, they succeeded in obtaining a FAR of 44.8%

and an FFR of 3% by using finger pressure as another key factor

to identify users. During the same year, Maiorana et al. (2011)

introduced a new statistical classifier for keystroke recogni-

tion. They analyzed the verification performances achievable

when varying several parameters like the distance between

keypress and key release, as well as the number of enrollment

acquisitions, and the number of characters contained in the

used passwords.

The most recent work is that of (Saevanee et al., 2012). The

authors correctly observe that an effective way to augment

the reliability of non-intrusive and continuous authentication

systems is create a multi-modal behavioral biometric

authentication system for mobile devices. Toward this goal

they investigate the potential of fusing three different

biometric methods, namely behavior profiling, keystroke

dynamics, and linguistic profiling, into a multi-modal

behavior biometric authentication system. The results they

succeeded indicate that such fusion techniques can improve

the classification performance with an overall EER of 8%.

5.2. Soft keyboard-oriented keystroke proposals

Kune and Kim (2010) attempted to reduce the passcode

combination search space by overhearing the acoustic

feedback emitted from PIN touch-input devices when a user

enter their password. They managed to record audio feed-

back samples produced by 3 distinct types of keypads; an

iPhone device’s initial screen passcode lock, an office door

keypad, and an ATM. However, their work is in a prelimi-

nary stage suggesting that by using a Hidden Markov Model

it might be possible to considerably narrow the PIN search

space.
Aviv et al. (2010) examine the feasibility of “smudge

attacks” on touchscreens for smartphones. They argue that

oily residues (smudges) on the touchscreen surface are one

side effect of touches from which frequently used patterns

such as a graphical passwordmight be inferred. They focus on

Android password patterns and investigate the conditions

under which a smudge can be easily extracted. The authors

also describe how an ill-motivated person could use the

information obtained from a smudge attack to augment the

chances of guessing users’ patterns.

The most relevant work to ours is that of Cai and Chen

(2011) appeared in 2011. They proposed a new keylogging

scheme based on mobile device motion. They argue that

typing (touching) on different locations on the screen causes

different vibrations (motion data) which in turn can be used to

infer the keys being typed. Their evaluation shows that the

proposed system can correctly infer more than 70% of the

keystrokes on a number-only virtual keypad when used in the

landscape mode.

During the same year, Schlegel et al. (2011) reported their

findings on sensory malware. This is an emerging type of

smartphone malware that uses on-board sensors to harvest

private user information. The authors created Soundcomber,

a trojan that is able to snatch a small amount of targeted

private information from the audio sensor of the smartphone.

According to their experiments, the extraction of sensitive

private data such as credit card and PIN numbers from both

tone- and speech-based interaction with phone menu

systems is possible with an accuracy equal to 85%.

Inspired by the work in (Cai and Chen, 2011), the authors of

(Owusu et al., 2012; Xu et al.,; Miluzzo et al., 2012) discuss and

evaluate their proposals designed with the aim to extract

sequences of entered text on touchscreen keyboards. This is

done by taking advantage of only the on-device motion

sensors, i.e., the accelerometer and gyroscope. More specifi-

cally, Owusu et al. (2012) showed that accelerometer can be

used to extract 6-character passwords in as few as 4.5 trials

(median). Xu et al., presented TapLogger a stealth trojan for

the Android platform which is able to log not only the screen

lock password but also the numbers entered during a phone

call. Actually, TapLogger implements two schemes: (a) a tap

event detection mechanism to discover and utilize the users

patternwith statisticalmeasurements on acceleration, and (b)

an approach of deducing tap position with observed gesture

changes. For the first scheme they report an average precision

of 83%, after experimenting with 2 different smartphone

models and 3 participants. The last work by Miluzzo et al.

(2012) introduces TapPrints, a framework to infer where one

taps and what one types on the touchscreen based on accel-

erometer and gyroscope sensor readings. In their experiments

engaging 10 participants and three different mobile platforms

the authors show that TapPrints is able to attain up to 90% and

80% accuracy in inferring tap locations across the display and

letters respectively.

5.3. Discussion

From the above analysis, it is clear that there is significant

research interest in this area. Naturally, the main inspiration

factor for all these works is found in touchstroke biometric

http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4 113
schemes proposed over the years for both fixed and mobile

devices. The research efforts in the field seem to now expand

toward capitalizing on the advanced functionalities and

features that ultramodern mobile devices bring along

(including full qwerty keyboards, cameras, touchscreens,

accelerometers etc). In this context, our work is more akin to

those included in Section 5.2. Note however, that the common

ground of all these efforts is the observation that keyloggers

are facing major obstacles on touchscreen devices due to the

non-electromagnetic emanation from a virtual keyboard, the

OS restricted privileges granted to applications and the diffi-

culty to read keystrokes unless the keylogger software is

active and receives the focus on the screen.

This is exactly where the essence of the contribution of the

current paper lies. Specifically, in contrast to what is proposed

in (Cai and Chen, 2011; Owusu et al., 2012; Xu et al.,; Miluzzo

et al., 2012), the novelty of our approach is that the logging of

touch events is actual. This means that, every touch event or

even gesture happening on the touchscreen is recorded and

not indirectly inferred by (or relies on) other factors. Obviously,

this advancement e pertaining to low-level OS functionality -

enables us to record any touch event occurring anywhere on

the screen and not just those taking place on the virtual

keyboard. Therefore, to our knowledge, this is the first work

that attempts to profile the user based on touchscreen behav-

ioral patterns. Our feeling is that this research field will evolve

in the years to come because, as already mentioned, mobile

devices embed a unique number of features that can be

straightforwardly exploited for implementing such solutions.
6. Conclusions and future work

With the advent of smartphones equippedwith touchscreen it

is certain that we shall witness the emergence of sophisti-

cated software that can be used either benignly ormaliciously.

Without doubt, the mutation of keyloggers to touchloggers is

a salient paradigm of what “the road ahead” is. The signifi-

cance of the current study lies in the assessment of the

potentiality of such a type of software under two different

views into the same prism. Specifically, to the best of our

knowledge, our work is the first to demonstrate that this type

of software can be used to profile and subsequently post-

authenticate the user of the device with extremely high

accuracy in the vicinity of 100%. Themalevolent personality of

such a powerful and stealthy software is also exhibited

through practical case studies.

We are currently working on extending this research by

gathering more user data and analyzing them more thor-

oughly, e.g., by enriching the existing dataset and employing

advanced machine learning techniques, as sketched in

Section 3.2.

Acknowledgments

We would like to thank the anonymous reviewers for their

valuable comments and suggestions, which have significantly

contributed to improve the quality of this paper.
r e f e r e n c e s

Adhikary N, Shrivastava R, Kumarl A, Verma SK, Bag M, Singh V.
Battering keyloggers and screen recording software by
fabricating passwords. International Journal of Computer
Network and Information Security e (IJCNIS) 2012;4(5):13e21.

Ahmed AAE, Traore I, Almulhem A. Digital fingerprinting based
on keystroke dynamics. In: Proceedings of the Second
International Symposium on Human Aspects of Information
Security & Assurance e HAISA; 2008. p. 94e104.

Apple Inc.. UIKit framework reference, http://developer.apple.
com/library/ios/#documentation/uikit/reference/UIKit_
Framework/_index.html; 2012.

Aviv A, Gibson K, Mossop E, Blaze M, Smith J. Smudge attacks on
smartphone touch screens. In: Proceedings of the 4th USENIX
Workshop on Offensive Technologies e WOOT; 2010.

Bergadano F, Gunetti D, Picardi C. User authentication through
keystroke dynamics. ACM Transactions on Information and
System Security 2002;5(4):367e97.

Buchoux A, Clarke NL. Deployment of keystroke analysis on
a smartphone. In: Proceedings of the 6th Australian
Information Security Management Conference e SECAU,
Western Australia; 2008. p. 40e7.

Cai L, Chen H. Touchlogger: inferring keystrokes on touch screen
from smartphone motion. In: Proceedings of the 6th USENIX
Workshop on Hot Topics in Security e HotSec; 2011.

Campisi P, Maiorana E, Bosco ML, Neri A. User authentication
using keystroke dynamics for cellular phones. IET Signal
Processing e Special Issue on Biometric Recognition 2009;3(4):
333e41.

Clarke NL, Furnell SM. Authenticating mobile phone users using
keystroke analysis. International Journal of Information
Security 2007;6(1):1e14. Springer.

Clarke NL, Furnell SM, Lines B, Reynolds P. Subscriber
authentication for mobile phones using keystroke dynamics.
In: Proceedings of the 3rd International Network Conference e

INC, UK; 2002. p. 347e55.
Damopoulos D, Kambourakis G, Gritzalis S. iSAM: an iphone

stealth airborne malware. In: Proceedings of the 26th IFIP TC-
11 International Information Security Conference, IFIP
Advances in Information and Communication Technology e

IFIP AICT. Springer; 2011. p. 17e28.
Damopoulos D, Kambourakis G, Gritzalis S, http://ibackup.samos.

aegean.gr/iTL/; 2012.
EFG Eurobank, http://www.eurobank.gr/online/home/index.

aspx?lang¼en; 2012.
Feher C, Elovici Y, Moskovitch R, Rokach L, Schclar A. User

identity verification via mouse dynamics. Information
Sciences 2012;201(0):19e36. Elsevier.

Findlater L, Wobbrock JO, Wigdor D. Typing on flat glass:
examining ten-finger expert typing patterns on touch
surfaces. In: Proceedings of the 2011 Annual Conference on
Human Factors in Computing Systems e CHI. New York: ACM;
2011. p. 2453e62.

Hwang S, Cho S, Park S. Keystroke dynamics-based
authentication for mobile devices. Computers & Security 2009;
28(1e2):85e93. Elsevier.

iDW, iPhone Development Wiki, http://iphonedevwiki.net/index.
php/Special:AllPages; 2012.

iKeyGuard, http://ikeyguard.com/; 2012.
Karatzouni S, Clarke NL. Keystroke analysis for thumb-based

keyboards on mobile devices. In: New approaches for Security,
Privacy and Trust in Complex Environments. IFIP
International Federation for Information Processing, Springer
Boston; 2007. p. 253e63.

Kune FD, Kim Y. Timing attacks on pin input devices. In:
Proceedings of the 17th ACM Conference on Computer and

http://developer.apple.com/library/ios/#documentation/uikit/reference/UIKit_Framework/_index.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIKit_Framework/_index.html
http://developer.apple.com/library/ios/#documentation/uikit/reference/UIKit_Framework/_index.html
http://ibackup.samos.aegean.gr/iTL/
http://ibackup.samos.aegean.gr/iTL/
http://www.eurobank.gr/online/home/index.aspx%3flang%3den
http://www.eurobank.gr/online/home/index.aspx%3flang%3den
http://www.eurobank.gr/online/home/index.aspx%3flang%3den
http://iphonedevwiki.net/index.php/Special:AllPages
http://iphonedevwiki.net/index.php/Special:AllPages
http://ikeyguard.com/
http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

c om p u t e r s & s e c u r i t y 3 2 (2 0 1 3) 1 0 2e1 1 4114
Communications Security e CCS. New York: ACM; 2010. p.
678e80.

Lee S, Zhai S. The performance of touch screen soft buttons. In:
Proceedings of the 27th International Conference on Human
Factors in Computing Systems e CHI. New York: ACM; 2009. p.
309e18.

Leggett J, Williams G, Usnick M, Longnecker M. Dynamic identity
verification via keystroke characteristics. International
Journal of Man-machine Studies 1991;35(6):859e70. Academic
Press.

Maiorana E, Campisi P, Gonzlez-Carballo N, Neri A. Keystroke
dynamics authentication for mobile phones. In: Proceedings
of the 2011 ACM Symposium on Applied Computing e SAC.
USA: ACM; 2011. p. 21e6.

Miluzzo E, Varshavsky A, Balakrishnan S, Choudhury RR.
Tapprints: your finger taps have fingerprints. In: Proceedings of
the 10th International Conference on Mobile Systems,
Applications, And ServiceseMobiSys’12. ACM; 2012. p. 323e36.

Nakkabi Y, Traore I, Ahmed A. Improving mouse dynamics
biometric performance using variance reduction via
extractors with separate features. IEEE Transactions on Man
and Cybernetics, Part A: Systems and Humans 2010;40(6):
1345e53. IEEE.

Owusu E, Han J, Das S, Perrig A, Zhang J. Accessory: password
inference using accelerometers on smartphones. In:
Proceedings of the 12th Workshop on Mobile Computing
Systems and Applications e HotMobile’12. ACM; 2012.

PanCaribbean Bank, Pancaribbean Bank, https://online.
gopancaribbean.com/retail/RetailLoginLang.html; 2012.

Park YS, Han SH, Park J, Cho Y. Touch key design for target
selection on a mobile phone. In: Proceedings of the 10th
International Conference on Human Computer Interaction
with Mobile Devices and Services e MobileHCI. New York:
ACM; 2008. p. 423e6.

Polla ML, Martinelli F, Sqandurra D. A survey on security for
mobile devices. Communications Surveys & Tutorials 2012;
PP(99):1e26. IEEE Press.

Saevanee H, Bhattarakosol P. Authenticating user using keystroke
dynamics and finger pressure. In: Proceedings of the 6th IEEE
Consumer Communications and Networking Conference.
Ireland: IEEE; 2009. p. 1e2.

Saevanee H, Clarke NL, Furnell SM. Behavioural biometric
authentication for mobile devices. In: Proceedings of the 2011
Collaborative European Research Conference e CERC, Ireland;
2011. p. 175e84.

Saevanee H, Clarke NL, Furnell SM. Multi-modal behavioural
biometric authentication for mobile devices. In: Proceedings of
the Information Security and Privacy Research, IFIP Advances
in Information and Communication Technology e IFIP AICT.
Springer Boston; 2012. p. 465e74.

Sagiroglu S, Canbek G. Keyloggers. IEEE Technology and Society
Magazine 2009;28(3):10e7. IEEE.

Schlegel R, Zhang K, Zhou X, Intwala M, Kapadia A, Wang X.
Soundcomber: a stealthy and context-aware sound trojan
for smartphones. In: Proceedings of the 18th Annual
Network & Distributed System Security Symposium e

NDSS’11; 2011.
Schulz T. Using the keystroke-level model to evaluate mobile

phones. In: Proceedings of the 31st Information Systems
Research Seminaria e IRIS 31, Scandinavia; 2008.

Sipior JC, Ward BT. Trust, privacy, and legal protection in the use
of software with surreptitiously installed operations: an
empirical evaluation. Information Systems Frontiers 2008;
10(1):3e17. Springer.
Sreenivas RS, Anitha R. Detecting keyloggers based on traffic
analysis with periodic behaviour. Network Security 2011;
2011(7):14e9. Elsevier.

Stefan D, Shu X, Yao D. Robustness of keystroke-dynamics based
biometrics against synthetic forgeries. Computers & Security
2012;31(1):109e21. Elsevier.

Syndicate Bank, https://netbanking.syndicatebank.in/netbanking/
2012.

The iPhoneWiki, http://theiphonewiki.com/wiki/index.php?title¼/
System/Library/Frameworks; 2012.

EFG Eurobank app, http://itunes.apple.com/us/app/eurobankefg/
id364587747?mt¼8; 2012.

Vuagnoux M, Pasini S. Compromising electromagnetic
emanations of wired and wireless keyboards. In: Proceedings
of the 18th conference on USENIX security symposium e

SSYM’09. USENIX Association; 2009. p. 1e16.
Weka. Wekamachine learning project, http://www.cs.waikato.ac.

nz/ml/weka; 2012.
Xu Z, Bai K, Zhu S. Taplogger: inferring user inputs on smartphone

touchscreens using on-board motion sensors. In: Proceedings
of the 5th ACM conference on Security and Privacy in Wireless
and Mobile Networks e WISEC’12, ACM, p. 113e124.

Zahid S, Shahzad M, Khayam S, Farooq M. Keystroke-based user
identification on smart phones. In: Proceedings of the 12th
International Symposium on Recent Advances in Intrusion
Detection e RAID’09. Springer-Verlag; 2009. p. 224e43.

Zaitsev O. Skeleton keys: the purpose and applications of
keyloggers. Network Security 2010;2010(10):12e7. Elsevier.

Dimitrios Damopoulos is currently a Ph.D candidate at the Dept.
of Information and Communication Systems Engineering,
University of the Aegean. He received an MSc in Information &
Communication Systems Security from the Dept. of Information
and Communication Systems Engineering, University of the
Aegean, Greece. He also holds a B.Sc in Industrial Informatics from
the Technological Educational Institute (TEI) of Kavala, Greece. His
research interest includes Mobile Security, Mobile Device Intru-
sion Detection, Malware Detection.

Georgios Kambourakis, received the Diploma in Applied Infor-
matics from the Athens University of Economics and Business
and the Ph.D. in information and communication systems engi-
neering from the department of Information and Communications
Systems Engineering of the University of Aegean. Currently Dr.
Kambourakis is an Assistant Professor at the Department of
Information and Communication Systems Engineering of the
University of the Aegean, Greece. His research interests are in the
fields of Mobile and ad-hoc networks security, VoIP security,
security protocols, DNS security, Public Key Infrastructure and
mLearning and he has more than 85 publications in the above
areas.
Stefanos Gritzalis is a Professor at the Department of Information
and Communication Systems Engineering, University of the
Aegean, Greece and the Director of the Laboratory of Information
and Communication Systems Security (Info-Sec-Lab). He holds
a BSc in Physics, an MSc in Electronic Automation, and a PhD in
Information and Communications Security from the Dept. of
Informatics and Telecommunications, University of Athens,
Greece. His published scientific work includes 30 books or book
chapters, 100 journals and 130 international refereed conference
and workshop papers. The focus of these publications is on
Information and Communications Security and Privacy.

https://online.gopancaribbean.com/retail/RetailLoginLang.html
https://online.gopancaribbean.com/retail/RetailLoginLang.html
https://netbanking.syndicatebank.in/netbanking/
http://theiphonewiki.com/wiki/index.php%3ftitle%3d/System/Library/Frameworks
http://theiphonewiki.com/wiki/index.php%3ftitle%3d/System/Library/Frameworks
http://theiphonewiki.com/wiki/index.php%3ftitle%3d/System/Library/Frameworks
http://itunes.apple.com/us/app/eurobankefg/id364587747%3fmt%3d8
http://itunes.apple.com/us/app/eurobankefg/id364587747%3fmt%3d8
http://itunes.apple.com/us/app/eurobankefg/id364587747%3fmt%3d8
http://www.cs.waikato.ac.nz/ml/weka
http://www.cs.waikato.ac.nz/ml/weka
http://dx.doi.org/10.1016/j.cose.2012.10.002
http://dx.doi.org/10.1016/j.cose.2012.10.002

	From keyloggers to touchloggers: Take the rough with the smooth
	1. Introduction
	2. Design challenges, requirements, and implementation guidelines
	3. User profiling based on touch patterns
	3.1. Methodology and data structure
	3.2. Results

	4. The flip side of the coin: turning malware
	4.1. Scenario I: a sitting target
	4.2. Scenario II: dealing with zooming
	4.3. Scenario III: evading scrambled keyboards

	5. Related work
	5.1. Hard keyboard-oriented keystroke proposals
	5.2. Soft keyboard-oriented keystroke proposals
	5.3. Discussion

	6. Conclusions and future work
	Acknowledgments
	References

