
Ontology-based Representation of UPnP Devices and Services for Dynamic Context-
aware Ubiquitous Computing Applications

Konstantinos Togias1,2, Christos Goumopoulos1, Achilles Kameas1,2

1DAISy Group
Computer Technology Institute

Patras, Greece
ktogias@cti.gr, goumop@cti.gr, kameas@cti.gr

2School of Science and Technology
Hellenic Open University

Patras, Greece
ktogias@eap.gr, kameas@eap.gr

Abstract—Ontology and related technologies have been introduced
into the Ambient Intelligence domain as a mean to provide
declarative formal representations of the domain knowledge. The
range of devices available in the scope of an Ambient Intelligence
space becomes increasingly heterogeneous and at the same time
ubiquitous. Hence there is a need to link the discovery, description
and deployment of these ambient devices and their services with
context and domain knowledge representations in order to facilitate
an Ambient Intelligence space experience. The contribution of this
work is an approach for bridging the gap between the non-semantic
description mechanisms of XML based devices description
protocols, such as UPnP, and the AmI domain knowledge
representation. For this we design a prototype ontology-based
representation for UPnP devices and services that provide a
semantic linking between human-centric abstract description, and
the software-centric concrete description that derives from the
UPnP descriptors and is necessary to remotely execute method
calls on devices. We also demonstrate the benefits of its use with a
prototype implementation.

Keywords-ontology; semantics; ubiquitous computing;
service description; device description; UPnP

I. INTRODUCTION

The ability to automatically discover, configure, control
and monitor the available devices is mandatory for an
Ambient Intelligence (AmI) space [1] in order to provide
intelligent and adaptive behavior. There are several systems
that aim at providing the device and service description and
discovery mechanisms needed in pervasive systems. Jini [2],
Zero Configuration Networking (Zeroconf) [3], Universal
Plug and Play (UPnP) [4], Digital Living Network Alliance
(DLNA) [5], Device Profile for Web services (DPWS) [6]
are the most prominent of them. Some of them are based on
central repositories while other utilize a peer-to-peer
architecture. Most of them use Extensible Markup Language
(XML) [7] descriptions for devices, services and application
programming interfaces (APIs) [8]. The PalCom project also
proposes the description of services in XML format [9] .

UPnP is the most well established industry-wide protocol
for device advertising, discovery controlling and monitoring.
UPnP devices advertise their presence and their services
through UPnP XML descriptions while UPnP access points
can subscribe and invoke UPnP actions on them. The UPnP
device description contains several pieces of vendor-specific
information, definitions of all embedded devices, URL for
presentation of the device, and listings for all services,
including URLs for control and eventing. The UPnP service

description defines actions and their arguments, state
variables and their data type, range, and event characteristics
[4]. The UPnP forum has developed specifications for some
device classes, so-called "Device Control Protocols" (DCPs)
[10]. Each DCP defines a common (machine-level) interface
for a class of UPnP devices with embedded services in terms
of mandatory and optional actions and state variables.
Control points that have foreknowledge of the DCP that a
device is using, can thus easily make use of its interface.
Considering though, that the specified device classes cover
only a small portion of the types of the available UPnP
devices, that the protocol does not make it mandatory for
manufacturers to adhere to it, as it provisions custom device
and service types [4], and the lack of semantics from such
XML-based description models, proves UPnP nearly
unusable to reason and make adaptation decisions.

Ontologies have become the means of choice for
knowledge representation in recent years. In general,
ontologies do add a layer of semantics that provides a
common and formal understanding of domain concepts on
top of the syntax modeling provided by the existing schema
languages, such as XML [11]. Ontologies and related
technologies have been introduced into the AmI domain as a
means to provide declarative formal representations of the
domain knowledge and thus to enable intelligent behaviors,
such as context-based device discovery and selection, service
deployment and adaptation.

While many researchers have proposed architectures for
semantics-based context-aware dynamic service
composition, they either propose domain custom low-level
discovery and configuration mechanisms that are not based
on UPnP [12][13] or link specific UPnP DCPs (e.g.,
multimedia service DCP) with specific domain ontologies
(e.g., MPEG-21 DIA Ontology) [11]. To the best of our
knowledge there is no generic ontology-based representation
for the UPnP protocol.

This paper aims to extend the AmI space's capability to
reason and make adaptation decisions by bridging the gap
between generic XML-based description protocols (such as
UPnP) and ontologies. We propose an ontology-based
representation for UPnP devices and services that provide a
semantic linking between human-centric abstract description,
and the software-centric concrete description that derives
from the UPnP XML descriptors and is necessary to
remotely execute method calls on devices. We also show its
use with a prototype implementation.

The paper is organized as follows. We first give a
motivating example in Section 2. Section 3 presents the

2010 Third International Conference on Communication Theory, Reliability, and Quality of Service

978-0-7695-4070-2/10 $26.00 © 2010 IEEE

DOI 10.1109/CTRQ.2010.44

220

proposed ontology-based representation of UPnP devices
and services. Section 4 describes an implemented system that
makes use of this representation, and Section 5 presents
conclusions and suggests possible future work.

II. MOTIVATING EXAMPLE

We present below a motivating example to show how
linking UPnP devices and services with semantical
information is non-trivial and how a mapping of the XML
device and service descriptions to an ontology will be
helpful.

Imagine that Alice has equipped her house with a UPnP
compatible AmI system. In order to support Alice's activities
in a dynamic environment where various UPnP smart
devices are entering, leaving, becoming available or
unavailable in non-predictable ways, the system has to get
answers to questions such as:

• Which of the present UPnP devices offer a service
that is appropriate for supporting a specific task?
(e.g., reading a book)

• What UPnP actions or state variables can be used to
monitor that service? (e.g., to find out whether the
text displaying service is activated or not)

• What UPnP actions can be used to control that
service? (e.g., to activate or deactivate the text
displaying service)

• What parameter values must the actions be invoked
with in order to set a service to the appropriate
state? (e.g., to activate the text displaying service)

We assume that the AmI system has access to domain
and upper level ontologies that gather knowledge about
devices and services, user profiles, privacy policies, etc. The
system also is equipped with ontology management software
that can query and inference on these ontologies [14].
Therefore, for providing answers to the above questions,
there is need to combine the information provided by each
device's UPnP description with the knowledge incorporated
in ontologies. This is not a trivial task because the UPnP
XML descriptors do not provide semantics and are not
expressed in an RDF based language. In addition if Alice
owns various UPnP devices from different manufacturers
there is no guaranty that similar devices, services and actions
will not be implemented in different ways and advertised
with different UPnP names, types and ids, making answering
the above questions even harder.

Suppose that Alice has two ontology enabled UPnP e-
reader devices, from different manufacturers, each of which
carries its own local ontology that describes it in an abstract
way. As there is no standard UPnP DCP for this type of
devices, the manufactures have described their devices in
heterogeneous ways. The one e-reader is advertised as a
device of type "urn:manufacturer1-domain:device:e-
book:1" with a service of type "urn:manufacturer1-
domain:service:switchpower" that provides an action named
"getstatus" that returns a binary value, while the other is a
device of type "urn:manufacturer2-
domain:device:tabletpc:2" and provides a service of type
"urn:manufacturer2-domain:service:ereading" with an
"isactive" action that also returns a binary value. Even if a
standard UPnP DCP existed for this type of devices and
manufacturers had followed it, so their descriptions were

identical, there is a need for those UPnP descriptions to be
linked with the domain knowledge contained in the device
ontology in order to facilitate the binding of abstract
concepts (such as "reading", "monitor" e.t.c.) to the actual
devices, services and action invocations. Once such links and
the appropriate semantic descriptions are provided by the
devices' ontologies, the system, can use them to infer that
both the devices can be used for "reading" and that in order
to "monitor" the state of the device of type
"urn:manufacturer2-domain:device:tabletpc:2" it has to
invoke the "isactive" action of the service of type
"urn:manufacturer2-domain:service:ereading", while in
order to "monitor" the state of the device of type
"urn:manufacturer1-domain:device:e-book:1" it has to
invoke the "getstatus" action of the service of type
"urn:manufacturer1-domain:service:switchpower".
Furthermore, those software-centric semantic descriptions
can easily be linked with concepts deriving from already
defined ontologies for pervasive computing and AmI spaces
or domain ontologies that gather higher level knowledge
about devices and services, user profiles, privacy policies,
locations, etc.. Such links can be defined using the
equivalence and sub-classing elements provided by the Web
Ontology Language (OWL) [15] (e.g. “owl:sameAs”,
“rdfs:subClassOf” and “rdfs:subPropertyOf”). After such
relations are defined, OWL reasoners such as Pellet [16] and
Jena [17] can use them to answer complex questions.

To bridge the gap between the non-semantic description
mechanism of UPnP protocol and the domain knowledge
representation, we designed a prototype ontology-based
representation for UPnP devices and services that provide a
semantic linking between human-centric abstract
descriptions and the software-centric concrete description
that derives from the UPnP XML descriptors and is
necessary to remotely execute method calls on devices. We
have also developed a component in the context of
ATRACO project [18] that uses instances of this
representation for binding UPnP devices to abstract service
descriptions and providing ontology-based device selection,
service invocation and device failure adaptation.

III. ONTOLOGY-BASED REPRESENTATION OF UPNP DEVICES AND
SERVICES

In order to describe a device in a way that can be
interpreted by software components, we have introduced an
ontology-based representation of devices and services. To
support consistent AmI space functionality and human-
centric operation, a device should be described in two ways:
a human-centric and a software-centric. The human-centric
perception of a device takes into consideration the human
that uses a device, the services it provides to him and its
characteristics as a physical object. The software-centric
view of the device focuses on the software API it provides to
other software components and describes operations,
parameters, variables and return values. The proposed
ontology represents and links together both the human-
centric and the software-centric descriptions of a device and
is built in a modular fashion. The use of OWL [15] import
element allows the separation of the levels of a domain
description into independent documents, which can then be
imported as needed. This technique helps writing clearer

221

descriptions, by separating the definitions according to the
sub-domains they describe. It also maximizes the ability to
reuse ontologies of all kinds. As a result, ontologies
structured in this way are easier to be used and maintained.
The proposed ontology consists of three modules. One
module aims at providing a basic human-centric description
of the device while the two other modules describe the
software-centric characteristics focusing at the Device and
Service levels respectively. For the software-centric
description we focus on devices that implement the UPnP
protocol, but modules describing the aspects of other
protocols can be also developed in the future. From now on,
we will refer to the group of the three modules as the
"Device Ontology", while the modules will be referred as
"Physical Device Ontology", "UPnP Device Ontology" and
"UPnP Service Ontology" respectively when considered as
ontologies by their owns.

A. The Physical Device ontology

The Physical Device ontology describes the generic
human-centric aspects of a device such as it's name, it's
owner, description tags, its location, the services it
provides , the states each service can have and the services'
current states (from a human-centric view). It also provides
properties that relate the described device, its services and it's
states to its corresponding UPnP Device and UPnP Services
that are described by the "UPnP Device" and "UPnP
Service" ontologies. The main concepts defined in the
Device Ontology are the following:

• Device: Represents a device in its general human-
centric notion. Each physical device is considered
as an instance of this class.

• Service: Represents an abstract service that a device
can provide to a human. e.g., An e-reader can
provide reading service to a human, while a lamp
can provide lighting services.

• State: Represents the abstract states of a Service.
e.g., "enabled" and "disabled" can be the possible
states of the reading service of an e-reader, while
the lighting control service of a dimmable light may
have three possible states: "Low", "Moderate", and
"High".

Figure 1 depicts the main classes and properties of the
Physical Device ontology.

A Physical Device may embody a UPnP Device. The
upnpdevice:Device class that represents the UPnP essence of
a device is defined in the “UPnP Device” ontology. The
embodiesupnpdevice property describes this relation. The
same way an abstract service that is provided by the device
can be related to an UPnP Service provided by the UPnP
device through the isRelatedToupnpservice property. The
upnpservice:Service class that represent a UPnP Service is
defined in the UPnP Service ontology. The
hasStateGetUpnpAction and hasStateSetUpnpAction
properties link the abstract service with the exact UPnP
actions that must be invoked in order to get and set its state.
Similarly the hasStateGetUpnpArgument and
hasStateSetUpnpArgument properties link the service with
the UPnP arguments that must be provided for invoking the
get and set actions. The hasStateUpnpVariable property
links a service with the UPnP state variable that can be used

for getting notifications about current state. The
upnpservice:Action, upnpservice:Argument and
upnpservice:StateVariable classes that represent UPnP
actions, arguments and state variables are defined in the
UPnP Service ontology. A service is connected with its
possible states with the hasState property. The current state
of the service can also be retracted by the ontology, without
needing to invoke some UPnP method, through the
hasCurrentState attribute, provided that the device has an
internal mechanism for keeping its ontology instance up to
date as its services change states. The
hasUpnpValueMapping and hasUpnpRangeMapping
properties map a state with the actual argument or return
values that represent it in the UPnP context.

Figure 1. Visualization of the Physical Device Ontology

Finally the hasOwner and hasLocation properties can be
used to link the device with a user and a location. The
description of the concepts User and Location is out of the
scope of this ontology, so we assume that they are defined in
separate user profile and spatial ontologies that can be
imported if used. The datatype properties
deviceDescriptionTag, serviceDescriptionTag and
stateDescriptionTag enables the tagging of devices, services
and states from the manufacturer or the user. Services have
also the isUsefulFor datatype property for tagging the uses a
service may have.

B. The UPnP Device ontology

The upnpdevice ontology contains all the device
attributes that are defined by the UPnP device architecture
[4]. Such attributes are friendlyName, Manufacturer, icon,
model, embedded device, udn, provided UPnP services, etc.
It also relates the UPnP Device with the description of the
UPnP Services it provides as it is presented by the
upnpservice ontology.

The main class of upnpdevice ontology is the Device
class that represents a UPnP device as it is defined by the

222

UPnP protocol. The classes EmbeddedDevice,
Manufacturer, Icon, Model and their properties are direct
mappings of the UPnP device XML template and their
meaning is described in [4]. Figure 2 shows a visual
representation of the UPnP Device ontology.

Figure 2. Visualization of the UPnP Device Ontology

C. The UPnP Service ontology

The upnpservice Ontology describes the UPnP Service
attributes as they are defined by UPnP protocol. For
example, a UPnP service has a service type, is related to
state variables and provides actions that have arguments.
The main class of upnpservice ontology is the Service class
that represents a UPnP service as it is defined by the UPnP
protocol. All other classes and properties are direct mappings
of the UPnP service XML template and their meaning is
described in [4]. Figure 3 shows a visual representation of
the UPnP Service ontology.

Figure 3. Visualization of the UPnP Service Ontology

D. An example instance of the device ontology

Figure 4. Partial visualization of an instance of the Device Ontology

The concepts defined in the Device, UPnP Device and
UPnP Service ontologies can be used to create ontology
instances for describing the devices that are available in an
AmI space. Each device is supposed to have one local
instance that specializes the classes defined in the three
ontologies to its actual human-centric and software-centric
properties. The visualization of a part of such an instance is
shown in Figure 4.

In this example, we describe the one of the two e-reader
devices that we presented at the previous section. The user
views it as "My book" and it is recognized at the UPnP
context as the device “uuid:ade1-0000-0001”. The device is
tagged as "e-reader" and "e-book". It provides a service
named "text display" that is useful for "reading" and
"studying" and has the states “activated” and “deactivated”.
The “text display” service is related to the UPnP service
with id “Service:SwitchPower:1”. It's “activated” state
corresponds to the UPnP value “1” while it's “deactivated”
state corresponds to value “0”. The setTarget UPnP action
can be used for setting the state of the “text display” service,
while the getStatus action returns information about “text
display” service's current state.

223

IV. IMPLEMENTATION

In the context of ATRACO project [18] we developed a
component, consisting of a control point and an ontology
manager, that uses instances of the device ontology for
selecting, controlling and monitoring UPnP devices and
services based on semantic descriptions. Each device was
equipped with a local instance of the ontology and with
ontology management software that was used for
automatically producing the UPnP Service and UPnP Device
ontology instances from the UPnP XML descriptors of the
device and for keeping the instance up to date regarding run-
time attributes such as the service's current states and the
device's location. The ontology manager was used for
importing the devices' ontology instances and performing
queries to the resulting combined graph. For the
representation of ontologies we used the OWL ontology
language [15n], while the software was written in Java [19].

Figure 5. Interaction between the control point, the ontology manager

For testing the component we turned two laptop
computers into two UPnP e-reader devices using software
we developed for this purpose. Their UPnP device and

service descriptors where crafted in heterogeneous ways,
providing different device and service type declarations and
different action and parameter names (see Section 2 for
detailed description of the two UPnP devices). Then we
equipped them with device ontology instances. We described
the devices and their services and states with human-centric
description tags and connected them with the corresponding
UPnP level actions and values.

We started our experiment by bringing the first e-reader
in the AmI space. After importing its ontology, the system
successfully selected it as a device that provides services
"useful for reading" and automatically invoked the
appropriate action for activating it, utilizing the information
encoded in the device ontology. Next we brought in the
second e-reader. Once it was discovered, its ontology was
also imported by the ontology manager. We then simulated a
malfunction on the first e-reader and made the system select
an alternative device for continuing the reading task. The
second e-reader was automatically selected and activated
although its UPnP description, action names and parameters
where totally different. Thus, we showed that the proposed
device ontology can be used to provide context-aware
adaptation and support device selection and activation
decisions.

In order to show how our ontology can be linked with
other ontologies in order to support higher level inference,
we defined the physicaldevice:Device class as a sub-class of
the geo:SpatialThing class and the physicaldevice:has-
Location class as a sub-property of geo:location. The
geo:SpatialThing and geo:location are defined at the W3C
WGS84 Geo Positioning ontology [20]. We also linked our
ontology with the Friend of a Friend (FOAF) ontology [21]
by defining profile:Person as a sub-class of foaf:Person. We
then created FOAF profiles for two hypothetical persons Joe
and Anni. The foaf:Person class is defined in the FOAF
ontology as a subclass of geo:SpatialThing. We defined the
location of Joe, Anni and the first e-reader as “Livingroom”
and the location of the second e-reader as “Kitchen”. We
also defined Joe as the owner of the first e-reader and Anni
as the owner of the second using the physicaldevice:-
hasOwner property. We then used the OWL reasoner
provided by the Jena RDF framework [17] for answering
complex queries such as “What are the UPnP devices that
provide a service useful for reading and are at the same
location as their owners?”.

A detailed sequence diagram showing the interaction
between the control point, the ontology manager and the
UPnP device is shown at figure 5 while some of the queries
that where executed on the combined graph during our runs,
expressed in SPARQL, and the returned results are shown at
Table 1.

TABLE I. EXAMPLE QUERIES AND THE CORRESPONDING RESULTS

Query Result

SELECT DISTINCT ?upnpdeviceid FROM
?device a physicaldevice:Device .
?device physicaldevice:providesService ?service . ?
service physicaldevice:usefulFor ?tag . ?device
physicaldevice:embodiesupnpdevice ?upnpdevice . ?
upnpdevice upnpdevice:udn ?upnpdeviceid . FILTER
regex(?tag "reading", "i")

?upnpdeviceid
= "uuid:ade1-
0000-0001"

224

SELECT DISTINCT ?value FROM
?device a physicaldevice:Device . ?device
physicaldevice:embodiesupnpdevice ?upnpdevice . ?
upnpdevice upnpdevice:udn ?upnpdeviceid . ?service
physicaldevice:hasState ?state . ?state rdfs:label ?
statelabel . ?state
physicaldevice:hasUPnPValueMapping ?value FILTER
((?upnpdeviceid="uuid:ade1-0000-0001") && ?
statelabel = "Activated")

?value = "1"

SELECT DISTINCT ?upnpdeviceid FROM
?device a physicaldevice:Device . ?device
physicaldevice:providesService ?service .
?service physicaldevice:usefulFor ?tag . ?device
geo:location ?devloc . ?device physicaldevice:hasOwner
?user . ?user geo:location ?userloc . ?device
physicaldevice:embodiesupnpdevice ?upnpdevice . ?
upnpdevice upnpdevice:udn ?upnpdeviceid . FILTER
(regex(?tag "reading", "I") && ?userloc = ?devloc)

?upnpdeviceid
= "uuid:ade1-
0000-0001"

V. CONCLUSIONS AND FUTURE WORK

This paper presented a prototype ontology-based
representation for UPnP devices and services that provide a
semantic linking between human-centric abstract description
and the software-centric concrete description that derives
from the UPnP XML descriptors. The resulting ontology has
rich semantics that can be combined with other upper level
domain ontologies and used by ontology-based systems. We
implemented an ontology-based system and showed that the
use of UPnP devices that are equipped with instances of this
ontology provide the necessary mappings for performing
context-aware adaptation and device selection and activation
decisions.

For the software-centric representation we focused on the
prominent UPnP standard, but we would like to extend the
ontology with modules that map other known device
description protocols such as DPWS that is advertised as the
successor of UPnP. In the near future, we would also like to
try applying automatic alignment algorithms using ontology
alignment frameworks such as Alignment API [22],
heuristics and publicly available general purpose synonym
lexicons, taxonomies and semantic networks, such as
Wordnet [23] and ConceptNet [24], in order to align
instances of the device ontology that use different tags to
describe similar services. It will also be interesting to align
and integrate the device ontology with existing context
ontologies for smart spaces and domain ontologies, such as
policy ontologies, user profile ontologies and spatial
ontologies in order to enable the AmI system for richer more
intelligent and more adaptive behavior.

ACKNOWLEDGMENT

Τhe research described is partly supported by the
ATRACO (ICT-216837) project.

REFERENCES

[1] ISTAG in FP6: Working Group 1, IST Research Content, Final
Report. Available at ftp://ftp.cordis.europa.eu/pub/ist/docs/istag-wg1-
final_en.pdf. Retr. Feb 2010.

[2] J. Waldo. “The Jini Architecture for Network-Centric Computing.”
Communications of the ACM, 1999, pp. 76 - 82 .

[3] D. Steinberg and S. Cheshire. “Zero Configuration Networking: The
Definitive Guide.” O’Reilly Media, Inc., 2005.

[4] Contrib. Members of the UPnP Forum. “UPnP™ Device Architecture
1.1.” Available at http://www.UPnP.org/specs/arch/
UpnP-arch-DeviceArchitecture-v1.1.pdf. Retr. Feb 2010.

[5] N. Venkitaraman. “Wide-Area Media Sharing with UPnP/DLNA.” in
Proc. of Consumer Communications and Networking Conference,
CCNC 2008. 5th IEEE, pp. 294-298, 2008.

[6] OASIS, “Devices Profile for Web Services Version 1.1 – Public
Review Draft 01”, Available at http://docs.oasis-open.org/ws-dd/
dpws/1.1/wsdddpws-1.1-spec.html, Retr. Feb 2010.

[7] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F.
Yergeau. “Extensible Markup Language (XML) 1.0 (Fifth Edition)”,
W3C, Available at http://www.w3.org/TR/REC-xml/, Retr. Feb 2010.

[8] Wikipedia, “Application programming interface.”, Available at
http://en.wikipedia.org/wiki/Application_programming_interface,
Retrieved Feb 2010.

[9] D. Svensson Fors, B. Magnusson, S. Gestegård Robertz, G. Hedin,
and E. Nilsson-Nyman, “Ad-hoc composition of pervasive services in
the PalCom architecture.”, in Proc. of the 2009 international
conference on Pervasive services, New York, NY, USA, pp. 83-92,
2009.

[10] Contributing Members of the UPnP Forum, “UPnP Standardized
DCPs.”, Available at http://www.UPnP.org/standardizeddcps/
default.asp, Retr. Feb 2010.

[11] N. Li, A. Attou, S. De, and K. Moessner, “Device and service
descriptions for ontology-based ubiquitous multimedia services.”, in
Proc. of the 6th International Conference on Advances in Mobile
Computing and Multimedia, New York, NY, USA, pp. 370-375,
2008.

[12] K. Fujii and T. Suda, T. “Semantics-based context-aware dynamic
service composition.”, ACM Trans. Auton. Adapt. Sys., 4(2), pp. 1-
31, 2009.

[13] A. Toninelli, A. Corradi, and R. Montanari, “Semantic-based
discovery to support mobile context-aware service access.”,
Computer Communications, 31(5), pp. 935-949, 2008.

[14] L. Seremeti, C. Goumopoulos, and A. Kameas, “Ontology-based
modeling of dynamic ubiquitous computing applications as evolving
activity spheres.”, Perv. Mob. Comp., 5(5), pp. 574-591, 2009.

[15] M. K. Smith, C. Welty, and D. L. McGuinness. “OWL Web Ontology
Language Guide.”, W3C, Available at http://www.w3.org/TR/owl-
guide/, 2004. Retr. Feb 2010.

[16] Pellet open-source Java based OWL DL reasoner, Available at
http://www.mindswap.org/2003/pellet/. Retr. Feb 2010.

[17] Jena Semantic Web Framework for Java, Available at
http://jena.sourceforge.net/. Retr. Feb 2010.

[18] A. Goumopoulos et al., “ATRACO: Adaptive and Trusted Ambient
Ecologies, Self-Adaptive and Self-Organizing Systems (SASO).”,
Workshop on Pervasive Adaptation (PERADA), IEEE CS, pp. 96-
101, 2008.

[19] J. Gosling, B. Joy, and G. Steele, “The Java Language Specification,
Third Edition.”, http://java.sun.com/docs/books/jls/third_edition/
html/j3TOC.html . Retr. Feb 2010.

[20] WGS84 Geo Positioning RDF vocabulary, Available at
http://www.w3.org/2003/01/geo/wgs84_pos. Retr. Feb 2010.

[21] FOAF Vocabulary Specification, Available at
http://xmlns.com/foaf/spec/. Retr. Feb 2010.

[22] J. Euzenat, “An API for ontology alignment”, in Proc. of 3rd
conference on international semantic web conference (ISWC),
Hiroshima (JP), Lecture notes in computer science 3298, pp. 698-712,
2004.

[23] G. A. Miller, “WordNet: an on-line lexical database.”, International
Journal of Lexicography, pp. 235-244, 1990.

[24] C. Havasi, R. Speer, and J. Alonso, “Conceptnet 3: a flexible,
multilingual semantic network for common sense knowledge.”, In
Recent Advances in Natural Language Processing, Borovets,
Bulgaria, 2007.

225

