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In this paper a new technique for performing image registration with subpixel accuracy

is presented. The proposed technique, which is based on the maximization of the

correlation coefficient function, does not require the reconstruction of the intensity

values and provides a closed-form solution to the subpixel translation estimation

problem. Moreover, an efficient iterative scheme is proposed, which reduces

considerably the overall computational cost of the image registration problem. This

scheme properly combined with the proposed similarity measure results in a fast spatial

domain technique for subpixel image registration.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Many image processing applications require an image
registration scheme in order to estimate the underlying
correspondence between two or more images, which have
been acquired either by a single sensor at different times,
or by different sensors at the same time but from different
viewpoints, or by a combination of the above. Two
examples of such applications are remote sensing and
biomedical imaging. For remote sensing, registration of
infrared to visible spectra is very important for studying
satellite images of the earth. Image registration is
also very useful for the medical community, since can
lead to substantially enhanced diagnosis, in surgical
planning, or in the fusion of images coming from different
modalities.

Many techniques have been proposed for image
registration. Two basic categories are the feature-based
and the intensity-based techniques [8,42]. Feature-based
techniques first identify edges, contours or other features
ll rights reserved.
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common to the compared images and then find the
mapping between them [22,15,10]. This results in reduced
computational complexity. However, the problem of
identifying features is rather complicated and these
techniques are very sensitive to the accuracy of the
feature extraction stage. On the other hand, intensity-
based techniques are more computationally demanding,
but avoid the difficulties of feature extraction.

Another classification of the existing image registration
techniques can be made based on the domain of
implementation (frequency or spatial domain). A well-
known frequency domain technique is phase correlation
[11]. Many other Fourier-based [9,31], as well as wavelet-
based [12], techniques have also been proposed in
literature. Note that some methods obtain pixel-level
registration that may be adequate for some applications.
On the other hand, there are applications that require
registration with subpixel accuracy.

The most commonly used methods that provide
subpixel accuracy are based on interpolation [36]. The
phase-correlation interpolation is such an example. In
[37], an algorithm for registering multiple frames simul-
taneously using nonlinear minimization in frequency
domain is described, based on the assumption that the
original image is bandlimited. In [16], three new algo-
rithms for 2D translation image registration to within
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a fraction of a pixel are presented that use nonlinear
optimization and matrix-multiply discrete Fourier trans-
forms. The accuracy of these algorithms is equivalent to
that of the conventional fast Fourier transform upsam-
pling approach, while the computational cost is signifi-
cantly reduced. The authors of [20] propose a frequency
domain technique for registration of aliased images. Their
technique is based on spectrum cancellation, that is,
elimination of the aliased frequency components. Reddy
and Chatterji in [31] use the so-called phase correlation of
the log-polar transform of the images and apply a high-
pass emphasis filter to strengthen high frequencies in the
estimation. Another Fourier-based algorithm for image
registration with subpixel accuracy is presented in [33],
where the pure translation case is investigated. The
algorithm detects and removes the frequency components
that might cause errors in the shift estimation due to
aliasing. In [13], it is shown that the signal power in the
phase correlation corresponds to the polyphase transform
of a filtered unit impulse centered at the point of
registration. Recently, in [38] a frequency domain techni-
que has been proposed for the registration of aliased
images, based on their low-frequency, aliasing-free
(or marginally affected by aliasing) part. The phase
difference between the compared images is computed
and for the aliasing-free frequencies the corresponding
system of linear equations is formed and the optimal shift
parameters result from its least squares solution.

It is easier to describe and handle aliasing in frequency
domain, but frequency domain methods are more suitable
for global motion models. On the other hand, spatial
domain methods generally allow for more general motion
models. Some typical criteria for intensity-based registra-
tion are the minimization of the squared error between
the compared images, the correlation maximization [28]
and the maximization of mutual information [40,41,27].

Intensity and correlation interpolation can be used to
provide subpixel accuracy [36]. However, the accuracy of
these methods depends highly on the interpolation algo-
rithms performance. Other approaches are based on the
differential properties of the image sequences [36], or
formulate the subpixel registration as an optimization
problem [37,20,35]. These approaches rely on the image
intensity conservation assumption. In [19], an iterative
scheme based on Taylor expansions is presented and a
pyramidal scheme is used to increase the precision for large
motion parameters. Earlier, Lucas and Kanade in [23]
presented an image registration technique that makes use
of the spatial intensity gradient of the images to find a good
match, using a type of Newton–Raphson iteration. Then, in
order to handle large motions, Bougeut implemented a
pyramid-based version of the Lucas–Kanade technique [4,5].
The authors of [1] use sparsely sampled regional correlation,
providing accuracy better than 0:2 pixels. In [26], an error
function linear in the model (local affine) parameters is
minimized using least-squares. This error function is then
augmented with a nonlinear smoothness constraint, and the
least-squares solution is used to bootstrap an iterative
nonlinear minimization. This entire procedure is built upon
a differential multiscale framework, allowing the capture of
both large and small-scale transformations.
The technique proposed here has been motivated by
the approach suggested recently in [29], where a correla-
tion-based method for stereo correspondence is pre-
sented. The proposed technique aims to maximizing the
correlation coefficient, which is a measure that provides
robustness to photometric distortions. In contrast to the
interpolation-based techniques, the proposed one does
not require the reconstruction of the intensity values and
provides an easily computed closed-form solution to the
subpixel translation estimation problem. Moreover, an
efficient iterative scheme is proposed, which reduces
considerably the overall computational cost of the image
registration problem. This scheme properly combined
with the subpixel accuracy technique results in a fast
spatial domain technique for subpixel image registration.
Note that if exhaustive search is used for the maximiza-
tion of the correlation coefficient, N2 searches are
required, where N is the number of searches in each
dimension. Using the proposed scheme for the computa-
tion of the correlation coefficient function, the number of
searches is in most cases much smaller than N2. We deal
here only with translation, since this is the most costly
part of an image registration problem, as it is pointed in
[7], where the rotation and translation distortions are
faced separately. Some preliminary results of this work
were presented in [17].

The paper is organized as follows. In Section 2 the
problem is formulated and the proposed measure along
with the closed-form solution are given. In Section 3
experimental results that evaluate the performance of the
proposed subpixel registration technique and compare it
to other techniques are provided. The new iterative
scheme and some experiments concerning its complexity
are presented in Section 4. Finally, the work is concluded
in Section 5.

2. Subpixel image registration

2.1. Problem formulation

Let f ði; jÞ be a reference image and wði; jÞ a window in
f ði; jÞ, with dimensions n� n and with its support defined
by the set

S ¼ ½0;n� 1� � ½0;n� 1�. (1)

Let also gði; jÞ be a search area in a translated version of
image f ði; jÞ, f tði; jÞ, with dimensions m�m (where m4n).
For both wði; jÞ and gði; jÞ, the upper left corner is located at
the origin of a global coordinate system. Then, it is clear
that all the possible positions of window wði; jÞ in the
search area gði; jÞ take values in the following set:

A ¼ ½0;N � 1� � ½0;N � 1�; N ¼ m� nþ 1 (2)

and their maximum number is upper bounded by the
cardinality of set A, i.e., N2.

Let now sxði; jÞ be a window of the search area gði; jÞ that
has the same size with w, with x ¼ ½x; y�t 2A; ði; jÞ 2S
denoting the coordinates of its upper left corner, and the
relative coordinates of the pixels of the window with
respect of its upper left corner, respectively. Then, the
image registration problem can be stated as a searching
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problem. Namely, we are searching for a x0 2A such that
the following n2 relations hold

sx0
ði; jÞ ¼ wði; jÞ; 8ði; jÞ 2S. (3)

In order to achieve our goal, we need to use an appropriate
similarity measure. Such a well known measure is the
correlation coefficient of windows wði; jÞ and sxði; jÞ, which
is defined as

Cx ¼ ewtesx (4)

where ew ¼ w̄=kwk and esx ¼ s̄x=ksxk stand for the zero
mean Euclidean normalized versions of vectors w̄ �
vecðwði; jÞ �mwÞ and s̄x � vecðsxði; jÞ �msx Þ, with ði; jÞ 2S,
mw and msx denoting the mean values of windows wði; jÞ

and sxði; jÞ, respectively, and operator vec stacking each
windows columns in a column vector of length n2. The
correlation coefficient defined in (4) has the advantage of
being invariant to linear photometric distortions. This
property is required by many image registration applica-
tions where the illumination of the scene is nonuniform.

Having defined the desired similarity measure by (4)
and assuming that the translation differences between the
compared windows are constant, we have to compute the
correlation coefficient for all the possible positions of
the window wði; jÞ in the search area gði; jÞ, in order to find
the integer translation x0 that maximizes (4). In fact, we
have to solve the following maximization problem:

max
x2A

Cx. (5)

Solving the above defined optimization problem, we can
register images with pixel accuracy. However, in many
applications subpixel accuracy is required [38,1,26,29,17].
To this end, in the next paragraph, we are going to extend
in the two dimensions case the similarity measure
proposed in [29] and formulate an appropriate maximiza-
tion problem in order to obtain the desired subpixel
accuracy.

2.2. Proposed measure for subpixel accuracy

For computing translations with subpixel accuracy, the
correlation coefficient in (4) has to be redefined. To this
end, let us redefine the correlation coefficient as follows:

CxðtÞ ¼ ewtesxðtÞ (6)

where the elements of vector t ¼ ½t1 t2�
t are continuous

variables, which stand for the subpixel translations along
the horizontal and vertical axes of the spatial domain,
respectively. Then, the corresponding maximization pro-
blem takes the following form:

max
x2A

max
t

CxðtÞ (7)

which involves a maximization with respect to the integer
translation x and a maximization related to the subpixel
translation t.

It is clear that the computational cost we need for the
solution of the maximization problem defined in (7) as
well as the accuracy of the achieved solution, heavily
depends on the specific form of the correlation coefficient
function defined in (6) (which typically is a nonlinear
function) as well as the strategy we adopt for its solution.
Changing the order of maximizations involved in (7) and
by sampling the continuous variables t, the total registra-
tion problem can be solved by adopting a direct search
strategy at the expense of increased computational cost
and finite precision. On the other hand, if we use an
approximation of the correlation coefficient function
defined in (6) and select this approximation so that the
resulting optimizers are simple to compute, then a large
computational saving can be achieved. This is the
approach we are using here in order to solve the
optimization problem under consideration.

To this end, let us replace the intensity of each pixel of
the window sxðiþ t1; jþ t2Þ; ði; jÞ 2S by its first order
Taylor approximation, that is

sxðiþ t1; jþ t2Þ � sxði; jÞ þ r
tsxði; jÞt (8)

where rsxði; jÞ denotes the gradient vector of length 2 of
the intensity function sxði; jÞ evaluated at the point with
relative coordinates ði; jÞ, with ði; jÞ 2S. By using this
approximation and operator vec we obtain

sxðtÞ � sx þFsx t (9)

where each row of the size n2 � 2 matrix Fsx contains the
transpose of a gradient vector of length 2 as defined in (8).
We now need the zero mean counterpart of vector (9),
that is

s̄xðtÞ � s̄x þ F̄sx t (10)

where s̄x denotes the zero mean counterpart of vector sx

and F̄sx denotes the column zero mean version of matrix
Fsx . This matrix results by subtracting from each column
of matrix Fsx its arithmetic mean. Using (10), and by
defining the following quantities

ux ¼ ewt
s̄x

ux ¼ F̄t
sx
ew

vx ¼ ks̄xk
2

vx ¼ F̄t
sx

s̄x

Fx ¼ F̄t
sx
F̄sx (11)

we obtain the following approximation of the correlation
coefficient function CxðtÞ defined in (6):

ĈxðtÞ ¼
ux þ ut

xtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vx þ 2vt

xtþ ttFxt
q (12)

where, as we can easily see from (11), ux; vx are scalar
quantities, ux; vx are vectors of length 2 and Fx is a
symmetric positive definite matrix of size 2� 2. We must
stress at this point that, by incorporating (9) into (6), the
correlation coefficient becomes a function of the contin-
uous translation parameters t. Note also that for the value
of t ¼ 0 the resulting value of the correlation coefficient
function Ĉxð0Þ coincides with the correlation coefficient Cx

defined in (4). Thus, having defined the correlation
coefficient as a function of the continuous translation
parameters t and for a given x0 2A, we have to solve the
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following maximization problem:

max
t

Ĉx0
ðtÞ. (13)

This is the goal of the next subsection.

2.3. Closed-form solution

The correlation coefficient ĈxðtÞ defined by (12) is a
nonlinear function of the continuous translation para-
meters t. However, its maximization results in a closed-
form solution, which is given in the next theorem.

Theorem 1. Let x0 2A be given, the correlation coefficient

function ĈxðtÞ be defined as in (12), the denominator of (12)
be nondegenerate and matrix Fx � uxvt

x=ux be of full rank;
then, Ĉx0

ðtÞ attains its unique extremum at

t0 ¼ Fx �
uxvt

x

ux

� ��1
vx

ux
ux � vx

� �
. (14)

Furthermore, this extremum corresponds to a maximum iff

the following matrix:

H0 ¼ Ĉx0
ðt0Þ Fx �

uxut
x

Ĉ
2

x0
ðt0Þ

0
@

1
A (15)

is positive definite.

Proof. Let us consider the scalar function Ĉx0
: R2
! R

defined in (12) which we would like to maximize with
respect to the elements ti; i ¼ 1;2, of vector t. Let us also
consider that nðtÞ; d1=2

ðtÞ denote the numerator and
denominator of function Ĉx0

, respectively. Then, it is well
known that a necessary condition for the function Ĉx0

to
attain an extremum at a point t0 in 2D space, is that its
partial derivatives with respect to ti evaluated at this point
are equal to zero, that is

qĈx0
ðtÞ

qti

�����
t¼t0

¼ 0; i ¼ 1;2 (16)

or equivalently

qnðtÞ

qti
d1=2
ðtÞ �

qd1=2
ðtÞ

qti
nðtÞ

�����
t¼t0

¼ 0; i ¼ 1;2. (17)

From the definitions of nðtÞ and d1=2
ðtÞ we have that

qnðtÞ

qti
¼ uxi

; i ¼ 1;2 (18)

and

qd1=2
ðtÞ

qti
¼

vxi
þ/t

xi
t

d1=2
ðtÞ

; i ¼ 1;2 (19)

where uxi
; vxi

;/xi
are the i-th element of vectors ux, vx and

the i-th column of matrix Fx, respectively.

By substituting now (18) and (19) into (17) we obtain

uxi
d1=2
ðt0Þ �

vxi
þ/t

xi
t0

d1=2
ðt0Þ

nðt0Þ ¼ 0; i ¼ 1;2 (20)

or equivalently

uxi
dðt0Þ � ðvxi

þ /t
xi

t0Þnðt0Þ ¼ 0; i ¼ 1;2. (21)
Using matrix notation, (21) can be equivalently

rewritten as

ut
xdðt0Þ � ðvt

x þ t0t
FxÞnðt

0Þ ¼ 0t (22)

By right-multiplying the above relation by t0 we obtain

ut
xt0dðt0Þ � ðvt

xt0 þ t0t
Fxt0Þnðt0Þ ¼ 0 (23)

Note though that, by definition, the following relations

also hold true

ut
xt0 ¼ nðt0Þ � ux (24)

vt
xt0 þ t0t

Fxt0 ¼ dðt0Þ � ðvx þ vt
xt0Þ (25)

and consequently, (23) can be rewritten as follows:

nðt0Þ

dðt0Þ
¼

ux

vx þ vt
xt0

. (26)

From (22), (26) and after some simple mathematical

manipulations we conclude that, if the matrix Fx �

uxvt
x=ux is nonsingular, then the function Ĉx0

attains a

unique extremum at the point

t0 ¼ Fx �
uxvt

x

ux

� ��1
vx

ux
ux � vx

� �
(27)

of 2D parameter space.

A sufficient condition for t0 to be the maximizer of Ĉx0
is

that the Hessian matrix of Ĉx0
evaluated at t0 is negative

definite [30]. In order to prove that the above-mentioned

condition is equivalent to (15) of Theorem 1, we should

take the second partial derivatives of Ĉx0
, which, as can be

easily shown, are given by

q2Ĉx0
ðtÞ

qti qtj
¼

q
qtj

qnðtÞ

qti
d1=2
ðtÞ �

qd1=2
ðtÞ

qti
nðtÞ

dðtÞ

8>>><
>>>:

9>>>=
>>>;,

i ¼ 1;2; j ¼ 1;2. (28)

Our goal is now to evaluate the above partial derivatives at

the unique extremum t0 defined in (27). By substituting

into (28) the partial derivatives of functions nðtÞ and

d1=2
ðtÞ given by (18), (19) and using (21), after some simple

manipulations we obtain

q2Ĉx0
ðtÞ

qti qtj

�����
t¼t0

¼

�
fxij

nðt0Þ

d1=2
ðt0Þ
þ

uxi
uxj

d1=2
ðt0Þ

nðt0Þ

dðt0Þ

i ¼ 1;2; j ¼ 1;2 (29)

where fxij
is the ij element of Fx. By using (29) we can

easily see that the Hessian matrix of Ĉx0
can be expressed

as follows:

HĈx0
¼ �

Ĉx0
ðt0Þ

dðt0Þ
Fx �

uxut
x

Ĉ
2

x0
ðt0Þ

0
@

1
A. (30)
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Since now dðt0Þ40, HĈx0
is negative definite iff the

following matrix:

H0 ¼ Ĉx0
ðt0Þ Fx �

1

Ĉ
2

x0
ðt0Þ

uxut
x

0
@

1
A (31)

is positive definite, and this concludes the proof of

theorem. &

With Theorem 1 at our disposal, we can adopt a
straightforward strategy in solving the total registration
problem we are interested in. But before this, let us
comment on the computational complexity of the pro-
posed optimizer. The basic cost for the solution of the
optimization problem is due to the computation of the
quantities defined in (11) as well as to the verification of
the kind of extremum attained at the optimal solution by
examining the positiveness of matrix H0 defined in (15).
For the former, as we can easily see from (11), the
computational complexity is Oðn2Þ. For the latter, based on
the uniqueness of the optimum solution, the kind of the
unique stationary point can be easily verified. Specifically,
this can be achieved by simply comparing the optimum
value Ĉx0

ðt0Þ of the correlation coefficient function with
the value of the function at the pixel location x0, i.e. Ĉx0

ð0Þ,
thus reducing the required computational cost.

Concluding, the solution of the optimization problem
(13) has a computational complexity of Oðn2Þ and is of the
same order with the computational complexity of the
correlation coefficient. In order to access the performance
of the proposed subpixel image registration technique, we
conducted a large number of experiments. The results we
obtained are discussed in the next section.

3. Performance evaluation of the subpixel image
registration technique

In this section we apply the proposed technique to a
series of image pairs in order to evaluate the accuracy of
our registration scheme. Moreover, we compare its
performance against two leading image registration
techniques; a frequency domain technique presented in
[38] and a spatial domain one based on a pyramidal
implementation [4,5] of the Lucas–Kanade (LK) image
registration algorithm [23].

In the image registration technique presented in [38]
the estimation of motion parameters is based on the low
frequency, aliasing-free part of images. Similar ideas for
the translation parameters estimation are used in
[20,33,13,32]. Since, as it is reported in [38], the technique
outperforms popular frequency as well as spatial domain-
based registration techniques [19,25,24], we use it here as
a point of reference and compare it against our technique.
However, as we will see in the next paragraphs, the size of
the critical frequency band vitally degrades the perfor-
mance of this technique.

As we mentioned above, the proposed technique is also
compared to the pyramidal implementation of the LK
algorithm. LK image registration algorithm is an iterative
scheme which minimizes the l2 norm of the intensity
difference of the two image profiles with respect to the
motion parameters, and its performance measure gives
rise to the most popular iterative algorithms for the image
registration problem.

Pyramidal implementation of LK algorithm constitutes
a powerful scheme for handling large image motions. In
this scheme, a pyramidal representation of each image of
a pair is built up in a recursive fashion. Starting from the
level with the lowest resolution (upper level of the image
pair pyramids) the corresponding image registration
problem is solved and the optimally estimated motion
parameters are used as initial values in the next level of
the pyramid. The optimal values of the motion parameters
result from the solution of the registration problem at the
bottom level of pyramids which is the level with the
highest resolution. Finally, the selection of ‘‘interest’’
points appropriate for tracking is done according to the
feature selection process described in [4].

In order to evaluate the performance of the proposed
technique and compare it against the aforementioned
methods, we have conducted two set of simulations. In
the first set, image pairs are created by using the Matlab
code provided in [2], while in the second one they are
created by using the Matlab Camera Tool. In the first set,
an image pair is created from a high-resolution image
(originally up-sampled by a factor 2) via down-sampling.
Moreover, in order to avoid boundary effects the initial
up-sampled image is multiplied by a Tukey window, thus
avoiding all boundary effects. Using this up-sampled
image a shifted copy is created. Finally, the up-sampled
image and its shifted version are filtered by using an ideal
low-pass filter with normalized cutoff frequency 0:12, and
then they are down-sampled by a factor eight. The above-
mentioned procedure results in an image pair which is
used as input to the registration algorithms under
comparison.

In the second set, as we previously mentioned, we use
the Matlab Camera Tool in order to create image pairs. To
this end, we create a plane in 3D space and we set the
angle from which the camera views the current 3D plot, so
as to have the same depth for all the plane points. In
particular we set the azimuth equal to 0� and the vertical
elevation equal to 90�. In this way, by moving the camera
and capturing images from different viewpoints we can
simulate the planar motion model. Since in this paper we
investigate the pure translation case, we make use of the
camdolly Matlab function.

In all of the experiments, we use the images shown in
Fig. 1. Specifically, by using a generator of normally
distributed random numbers with a standard deviation
of 10, for each one of the above-mentioned images
we created 500 translated image pairs and used them as
input to the registration algorithms under comparison.
For all the competing algorithms, in order to measure
the quality of their optimal estimations, the mean
absolute error between the actual translations and their
estimated counterparts as well as their standard devia-
tions are computed. In addition, in order to evaluate
the performance of the competing algorithms in the
presence of noise, the case of 32 dB additive white
Gaussian noise (which corresponds to �10 graylevels) is
also considered.
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In Table 1, the mean absolute errors and standard
deviations achieved by the proposed technique are
presented. The Sampled Building, Sampled Windmill,
etc., refer to images generated according to [38]. Note
that for these images our algorithm performs a bit worse
than in the case of images generated by the Matlab
Camera Tool. However, its performance remains in a good
level. In addition, noise has small effects on the perfor-
mance of the proposed algorithm for the images gene-
rated by the Matlab Camera Tool, while it has actually no
effect for the sampled images.

As we already mentioned, in [38] the translation is
estimated based on a low-frequency part of the phase
difference existing between the images. We conducted
experiments for different sizes of this low-frequency part
(with the radial ranging from 1 to 20) and we computed
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Table 1
Performance evaluation of the proposed subpixel registration (axis X,

axis Y)

Images Mean value of

absolute error

Standard

deviation of

absolute error

Building ð0:0136;0:0140Þ ð0:0105;0:0111Þ

Windmill ð0:0138;0:0134Þ ð0:0106;0:0108Þ

Bridge ð0:0171;0:0154Þ ð0:0117;0:0117Þ

Camels ð0:0123;0:0097Þ ð0:0096;0:0072Þ

Musicians ð0:0165;0:0158Þ ð0:0125;0:0118Þ

Well ð0:0124;0:0152Þ ð0:0094;0:0118Þ

Building with Noise ð0:0247;0:0281Þ ð0:0231;0:0259Þ

Windmill with Noise ð0:0361;0:0332Þ ð0:0329;0:0301Þ

Bridge with Noise ð0:0570;0:0446Þ ð0:0543;0:0446Þ

Camels with Noise ð0:0452;0:0229Þ ð0:0442;0:0208Þ

Musicians with Noise ð0:0298;0:0212Þ ð0:0269;0:0172Þ

Well with Noise ð0:0222;0:0226Þ ð0:0186;0:0195Þ

Sampled Building ð0:0368;0:0336Þ ð0:0383;0:0269Þ

Sampled Windmill ð0:0321;0:0486Þ ð0:0275;0:0422Þ

Sampled Bridge ð0:0266;0:0229Þ ð0:0238;0:0167Þ

Sampled Camels ð0:0419;0:0358Þ ð0:0333;0:0272Þ

Sampled Musicians ð0:0459;0:0289Þ ð0:0372;0:0234Þ

Sampled Well ð0:0333;0:0443Þ ð0:0275;0:0386Þ

Sampled Building with

Noise

ð0:0368;0:0339Þ ð0:0395;0:0276Þ

Sampled Windmill with

Noise

ð0:0321;0:0486Þ ð0:0285;0:0438Þ

Sampled Bridge with Noise ð0:0287;0:0225Þ ð0:0268;0:0188Þ

Sampled Camels with Noise ð0:0419;0:0362Þ ð0:0344;0:0284Þ

Sampled Musicians with

Noise

ð0:0463;0:0287Þ ð0:0384;0:0238Þ

Sampled Well with Noise ð0:0338;0:0439Þ ð0:0283;0:0388Þ
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Fig. 2. Mean absolute error for the method presented in [38].

Table 2
Performance evaluation of the technique presented in [38] (axis X,

axis Y)

Images Mean value of

absolute error

Standard

deviation of

absolute error

Sampled Building ð0:2489;0:2069Þ ð0:8837;0:8526Þ

Sampled Windmill ð0:0021;0:0046Þ ð0:0116;0:0313Þ

Sampled Bridge ð0:2074;0:2393Þ ð0:7223;0:8895Þ

Sampled Camels ð0:2015;0:1992Þ ð0:7996;0:7121Þ

Sampled Musicians ð0:2964;0:1813Þ ð1:1097;0:9866Þ

Sampled Well ð0:6079;0:4809Þ ð1:8299;1:5158Þ

Sampled Building with

Noise

ð0:2558;0:2127Þ ð0:8816;0:8515Þ

Sampled Windmill with

Noise

ð0:0098;0:0128Þ ð0:0120;0:0312Þ

Sampled Bridge with Noise ð0:2124;0:2444Þ ð0:7196;0:8887Þ

Sampled Camels with Noise ð0:2066;0:2045Þ ð0:7982;0:7107Þ

Sampled Musicians with

Noise

ð0:3016;0:1867Þ ð1:1076;0:9863Þ

Sampled Well with Noise ð0:6176;0:4899Þ ð1:8273;1:5149Þ

I.G. Karybali et al. / Signal Processing: Image Communication 23 (2008) 711–724 717
the absolute error for all radial values. In the case of
images generated by the Matlab Camera Tool this
technique has not even pixel accuracy. The error ranges
from 8 to 12 pixels. In the case of sampled images, small
errors are achieved for small radials, as we can see in
Fig. 2, where the achieved mean absolute errors (in log
scale) for the Sampled Building and Sampled Windmill
(for the noise free case) are shown, for different values of
radial. In Table 2 the means and standard deviations of the
smallest absolute errors we achieved for the sampled
images are shown. This techniques behavior remains
approximately the same in the presence of noise. Simula-
tion results indicate that the proposed technique is more
robust as compared to [38], which seems to be very
sensitive to the radials size as well as to the size of the
displacements.

The results we obtained from the application of the
pyramidal implementation of LK technique, are contained
in Table 3. As we can easily see, they are much better than
those achieved by the technique proposed in [38], but
worse than those achieved by the proposed technique.

Concluding, the proposed technique seems to outper-
form the other techniques and its computational cost, as
we will see in the next section, can be significantly
reduced without sacrificing the accuracy.

Let us now proceed with the solution of the total
registration problem we are interested in. Based on
Theorem 1, for a given position x0 of the window sxði; jÞ

in the search area, i.e., for x0 2A, we can find the
optimum values of the translation parameter t0 as well
as the achieved maximum value Ĉxðt

0Þ of the correlation
coefficient function. Hence, the solution of the total
registration problem we are interested in, can result from
the solutions of N2 subproblems of the form of (13) by
choosing the optimizer that achieves the maximum value
of the correlation coefficient function. Since the overall
computational cost is N2Oðn2Þ, an iterative scheme for fast
image registration is proposed in the next section, which
with high probability reduces significantly this cost.
4. An iterative scheme for fast image registration

The computationally intensive part of a registration
process is the evaluation of the involved measure (the
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Table 3
Performance evaluation of the pyramid-based Lucas–Kanade technique

(axis X, axis Y)

Images Mean value of

absolute error

Standard

deviation of

absolute error

Building ð0:0334;0:0347Þ ð0:0304;0:0391Þ

Windmill ð0:0271;0:0299Þ ð0:0278;0:0327Þ

Bridge ð0:0576;0:0391Þ ð0:0741;0:0454Þ

Camels ð0:0306;0:0312Þ ð0:0293;0:0332Þ

Musicians ð0:0397;0:0418Þ ð0:0465;0:0525Þ

Well ð0:0250;0:0285Þ ð0:0227;0:0273Þ

Building with Noise ð0:0545;0:0606Þ ð0:0685;0:0683Þ

Windmill with Noise ð0:0629;0:0713Þ ð0:0840;0:0916Þ

Bridge with Noise ð0:1716;0:1136Þ ð0:1876;0:1450Þ

Camels with Noise ð0:0968;0:1001Þ ð0:1135;0:1246Þ

Musicians with Noise ð0:1174;0:1257Þ ð0:1459;0:1524Þ

Well with Noise ð0:0445;0:0530Þ ð0:0439;0:0524Þ

Sampled Building ð0:0527;0:0482Þ ð0:0654;0:0555Þ

Sampled Windmill ð0:0515;0:0542Þ ð0:0782;0:0837Þ

Sampled Bridge ð0:0749;0:0573Þ ð0:1225;0:0828Þ

Sampled Camels ð0:0393;0:0372Þ ð0:0450;0:0478Þ

Sampled Musicians ð0:0534;0:0519Þ ð0:0748;0:0807Þ

Sampled Well ð0:0318;0:0313Þ ð0:0272;0:0327Þ

Sampled Building with

Noise

ð0:0550;0:0511Þ ð0:0669;0:0564Þ

Sampled Windmill with

Noise

ð0:0548;0:0589Þ ð0:0821;0:0875Þ

Sampled Bridge with Noise ð0:0919;0:0738Þ ð0:1318;0:1012Þ

Sampled Camels with Noise ð0:0472;0:0481Þ ð0:0538;0:0639Þ

Sampled Musicians with

Noise

ð0:0654;0:0623Þ ð0:0895;0:0901Þ

Sampled Well with Noise ð0:0335;0:0341Þ ð0:0299;0:0362Þ
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correlation coefficient function in our case) for all the
different relative image positions. It is well-known that
cross-correlation can be efficiently implemented in the
transform domain. Unfortunately, the correlation coeffi-
cient function cannot be computed via a simple and
efficient frequency domain procedure, and hence, it has to
be computed in the spatial domain [28,14]. In literature,
several fast, but approximate spatial domain matching
methods have been developed [6]. In [21], a properly
normalized cross-correlation measure is obtained via
transform domain convolution. The authors of [34] use a
Fourier-based scheme for computing the normalized
correlation measure, along with nonlinear prefiltering
and thresholding, in order to perform a fast cross-spectral
registration. Their registration scheme achieves accuracy
of �2 pixels.

In this section, we propose a new spatial-domain
iterative algorithm for fast image registration. When
exhaustive search is used, the number of the required
searches is N2, where N is the number of searches in each
dimension. The aim of the proposed algorithm is to reduce
this number by iteratively performing searches across a
column and along a row. If the correlation coefficient
function is concave, this algorithm converges to the global
maximum. Otherwise, a proper re-initialization of the
algorithm should be performed, as described in the next
subsection, in order to reach the global maximum.
4.1. Algorithm description

As we already said, the total computational cost
needed for solving the maximization problem defined in
(7) depends on the strategy we adopt for its solution, as
well as the form of the correlation coefficient function.
More specifically, it depends on the number of the local
maxima the correlation coefficient function has. To be
more precise, if we knew that the correlation coefficient
function is concave, then the following simple algorithm
converges to the global maximum of the correlation
coefficient function, independently of the starting point.

Initialization: Choose randomly a column y0 of the
search area, with y0 2 ½0;N � 1�. Set yc ¼ y0.
S1:
 For all rows xi 2 ½0;N � 1� of the chosen column yc

compute the correlation coefficient function Cxi
, with

xi ¼ ½xi; yc�
t, and find the location x1 ¼ ½x1; yc�

t where
the correlation coefficient function attains its maxi-
mum value Cx1

.

S2:
 For all columns yi 2 ½0;N � 1� of the row x1 compute

the correlation coefficient function Cxi
, with

xi ¼ ½x1; yi�
t, and find the location x2 ¼ ½x1; y2�

t where
the correlation coefficient function attains its max-
imum value Cx2

.

S3:
 If the location x2 (resulting from S2) coincides with x1

(resulting from S1) then stop, else set yc ¼ y2 and
goto S1.
However, if the correlation coefficient function has many
local maxima, then the probability of the algorithm to be
trapped in one of them increases. Hence, we must provide
a mechanism which will prevent the algorithm from being
trapped in local maxima. To this end, let us modify the last
step of the algorithm as follows:
S3:
 If x2 (resulting from S2) coincides with x1 (resulting
from S1) then goto S4, else set yc ¼ y2 and goto S1.
S4:
 If Cx2
4T then stop, else choose randomly a row of y0

(not used before) and goto S2.
Notice that the condition added in S4 ensures that the
algorithm will converge at a point where the value of the
correlation coefficient function is greater than the value of
threshold T (assuming of course that such a point exists).
On the other hand, if the condition in S4 is not satisfied,
then the algorithm starts a new cycle to find out a new
maximum. This continues until the algorithm finds out a
point inside the search area, where the condition in S4 is
satisfied.

It is clear that the convergence of the algorithm to the
global maximum depends on the value assigned to
threshold T . Assigning, in an optimal way, an appropriate
value to threshold T , requires the probability density
function (PDF) of the employed similarity measure and
the formulation of a hypothesis testing problem [39,18],
but this is currently under investigation and is beyond the
scope of this paper. In this paper the value of this
threshold is estimated in a different way. Note that in
many computer vision applications the basic image
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registration problem must be solved for a whole image
sequence, not just for an image pair. By taking into
account this fact, we can use the first two frames of the
sequence to evaluate the corresponding correlation coeffi-
cient function and use it as a guide for the estimation of
threshold T . This practical approach is used in all the
experiments we have conducted. Note though that this
approach cannot be used in all types of image registration
problems and should be used with caution. However, if we
restrict ourselves in sequences captured with a high
temporal sampling rate and assuming that the statistical
properties of the underlying noise do not change during
the capturing of the sequence the above-mentioned
approach is applicable. Indeed, in such a case we are
expecting that the correlation coefficient function (and
consequently the desired threshold value) will not
dramatically change from pair to pair, retaining almost
the same value for a large number of frames in the image
sequence.

Let us now concentrate on the computational cost of
the proposed algorithm. It is clear that the number of
searches needed by the proposed algorithm to reach the
global maximum of the correlation coefficient function
depends on the correlation coefficient function shape and
ranges from 2N � 1 (best case) to N2 (worst case, if of
course we do not recompute the correlation coefficient
function each time we pass from an image position). We
will present in next subsection results for two of the
images shown in Fig. 1, Building and Windmill. The
correlation coefficient functions of these images, evalu-
ated for displacements ð�13;32Þ, for window size 64� 64
and search area size 264� 264, have quite different
shapes, as shown in Fig. 3. Note that image Building has
repeated structures, and as a result its correlation
coefficient function has many local maxima as shown in
Fig. 3(a). It is also clear that because of the several random
steps involved in the proposed algorithm it is expected
that different runnings of the algorithm, even on the same
set of data, will result into different computational costs.
Moreover, the computational cost of the algorithm is
Fig. 3. Correlation coefficient functions corresponding to Building and Windm

264� 264.
expected to be affected from other factors, such as the size
of the window w we would like to register, the size of the
search area, as well as the location of the window inside
the search area. By realizing that the complexity of the
proposed algorithm is a random variable, we are going, in
the next subsection, to estimate its empirical cumulative
distribution function (ECDF).

4.2. Algorithm complexity

In this subsection, in order to evaluate the complexity
of the proposed algorithm, we perform a number of
simulations. Before we proceed with the presentation of
our results, let us first introduce the figures of merit we
are going to adopt, as well as the experimental setup we
used. To this end, let

r ¼
c

N2
(32)

be the ratio of the computational cost (or complexity) c of
the proposed algorithm to the cost of the exhaustive
search. Then, it is evident that the cumulative distribution
function (CDF) of the above defined random variable Frð	Þ

can be used in accessing the performance of the proposed
algorithm in a probabilistic way. Specifically, using Frð	Þ,
we can easily evaluate the probability of each one of the
following events:

Rr ¼ frpr; r 2 ð0;1�g. (33)

In addition, using Frð	Þ, we are able to easily find the CDF
of random variables that are based on transformations of
the random variable r and we are interested in. Such a
random variable is the following one:

s ¼ 1� r (34)

which expresses the achieved speedup by the proposed
algorithm. Indeed, using the CDF of the random variable r,
we can easily prove that the probability of the events

Ss ¼ fsXs; s 2 ½0;1Þg (35)
ill, for translation ð�13;32Þ, for window size 64� 64 and search area
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is given by

PðsXsÞ ¼ Pð1� rXsÞ ¼ Pðrp1� sÞ. (36)

However, since the CDF Frð	Þ is an unknown function, we
are going to estimate it by evaluating its empirical
counterpart. To this end, we adopt the following experi-
mental setup.

Let f ði; jÞ, wði; jÞ be an image and a window of size n� n,
respectively, which we like to register. For the given image
f ði; jÞ we form the following set of its translated versions:

Ip ¼ ff pði; jÞ ¼ f ði� xp; j� ypÞ; xp; yp
Nð0;100Þ,

p ¼ 1;2; . . . ; Pg. (37)

Then, by keeping the size of the search area constant and
using the proposed algorithm, we solve the image
registration problem for each member of the set Ip and
keep the resulting computational cost. In this way, we
attempt to record the dependency of the computational
cost of the proposed algorithm on the location of the
window inside the desired search area. In order to record
the dependency of the computational cost on the random
steps involved in the proposed algorithm, we repeat the
above-mentioned procedure K times, thus obtaining a
sequence of length L ¼ P 	 K , rð‘Þ, with ‘ ¼ 1;2; . . . ; L,
which contains the corresponding computational costs.
Having obtained the sequence rð‘Þ, we evaluate the
desired ECDF by using the following relation:

bFLðrÞ ¼
1

L

XL

‘¼1

uðr � rð‘ÞÞ (38)

where uð	Þ is the step function, and use it as an approxima-
tion of the true but unknown CDF. Moreover, in order to
record the dependency of the computational cost on the
window and search area size, we conducted the aforemen-
tioned procedure for different values of their sizes.

Specifically, in our experiments we considered three
window cases with dimensions 128� 128, 64� 64 and
32� 32 and two search area cases. First, search areas of
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Fig. 4. Image Building, threshold: 0.95. Estimated probability (usin
sizes 228� 228, 164� 164 and 132� 132 were used,
which correspond to 101� 101 ¼ 10 201 searches (in an
exhaustive search mode). Second, we used search areas of
sizes 328� 328, 264� 264 and 232� 232 corresponding
to 201� 201 ¼ 40 401 searches. For each case, the length
L of the sequence rð‘Þ was more than 10 000. The value of
the threshold, in the noise free case, was estimated to be
equal to 0:95, by using the approach described in previous
subsection. In order to evaluate the performance of the
proposed algorithm under noisy conditions, the case of
additive white Gaussian noise (20 dB) was also tested. In
this case, an appropriate value for the threshold was found
to be equal to 0:75.

The results we obtained from the experiments con-
cerning image Building are shown in Figs. 4 and 5 and
Tables 4 and 5, while those concerning image Windmill
are shown in Figs. 6 and 7 and Tables 6 and 7, respectively.
Specifically, in the figures, the estimated probabilities
(using the ECDFs) that the speedups are more than or
equal to a value s are plotted, for different window sizes,
while in the tables, the probabilities that the proposed
algorithm offers speedups more than 50%, 80%, 90% and
95% are contained. The maximum speedup achieved for
the case of the smaller search areas (where the maximum
number of searches is 10 201) is 98:029%, while the
maximum speedup for the other case (where the maxi-
mum number of searches is 40 401) is 99:007%.

The computational savings that the algorithm offers
are significant, especially for window sizes 128� 128
and 64� 64. The case of window size 32� 32 is more
difficult, however, there are important savings as well,
since as we can see from the corresponding tables the
estimated probability that the speedup is more than 50%
is very close to 1. In case of noise the results are
approximately the same with the noise-free case, for
all the window and search area sizes. Note also that
the proposed algorithm seems to have similar behavior
for both images, although they have totally different
structures.
Window size: 128x128
Window size: 64x64
Window size: 32x32

0 10 20 30 40 50 60 70 80 90 100
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

s : speedup (%)

F̂ L
 (s

)

N2 : 201x201

g the ECDF) that speedup is more than or equal to a value s.
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Table 4
Image: Building (512� 512), threshold: 0:95

Search area 228� 228 164� 164 132� 132 328� 328 264� 264 232� 232

Window 128� 128 64� 64 32� 32 128� 128 64� 64 32� 32

F̂Lð0:5Þ 1 1 0.9905 1 1 1

F̂Lð0:8Þ 1 0.9970 0.8205 1 0.9970 0.8825

F̂Lð0:9Þ 1 0.9720 0.5585 0.9980 0.9375 0.5960

F̂Lð0:95Þ 0.8190 0.6740 0.3075 0.8980 0.7140 0.3225

Table 5

Image: Building (512� 512), AWGN: 20 dB, threshold: 0:75

Search area 228� 228 164� 164 132� 132 328� 328 264� 264 232� 232

Window 128� 128 64� 64 32� 32 128� 128 64� 64 32� 32

F̂Lð0:5Þ 1 1 0.9685 1 1 0.9765

F̂Lð0:8Þ 1 0.9975 0.7760 1 0.9985 0.8665

F̂Lð0:9Þ 0.9990 0.9695 0.5305 0.9955 0.9350 0.6030

F̂Lð0:95Þ 0.8010 0.6835 0.2975 0.9060 0.7070 0.3345
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Fig. 5. Image Building, threshold: 0.75. Estimated probability (using the ECDF) that speedup is more than or equal to a value s.
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Fig. 6. Image Windmill, threshold: 0.95. Estimated probability (using the ECDF) that speedup is more than or equal to a value s.
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Fig. 7. Image Windmill, threshold: 0.75. Estimated probability (using the ECDF) that speedup is more than or equal to a value s.

Table 6
Image: Windmill (512� 512), threshold: 0:95

Search area 228� 228 164� 164 132� 132 328� 328 264� 264 232� 232

Window 128� 128 64� 64 32� 32 128� 128 64� 64 32� 32

F̂Lð0:5Þ 1 0.9945 0.9585 1 0.9960 0.9705

F̂Lð0:8Þ 1 0.9790 0.6160 1 0.9765 0.6505

F̂Lð0:9Þ 1 0.9595 0.3415 1 0.9165 0.3955

F̂Lð0:95Þ 0.8925 0.8450 0.1560 0.9940 0.7260 0.2195

Table 7

Image: Windmill (512� 512), AWGN: 20 dB, threshold: 0:75

Search area 228� 228 164� 164 132� 132 328� 328 264� 264 232� 232

Window 128� 128 64� 64 32� 32 128� 128 64� 64 32� 32

F̂Lð0:5Þ 1 0.9955 0.9595 1 0.9965 0.9710

F̂Lð0:8Þ 1 0.9785 0.6035 1 0.9805 0.6625

F̂Lð0:9Þ 1 0.9540 0.3245 1 0.9175 0.4030

F̂Lð0:95Þ 0.8865 0.8450 0.1655 0.9940 0.7375 0.2190
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4.3. Evaluation of the proposed technique based on real data

In this last subsection we validate the speedup values
obtained in the previous section by the proposed fast
registration scheme from its application on real image
pairs. To this end, we used the image sequences found in
[3]. They have been obtained by moving the camera right
and down and capturing (from different viewpoints of a
toy scene) a total of 47 different images, contained in
sequences HorizL, HorizR, VertL and VertR. The displace-
ments between successive images were approximately
1:522:5 pixels (the camera movements were about 0.5 in).

We applied the proposed fast scheme for the registra-
tion of all possible combinations of image pairs resulting
from the above-mentioned sequences (a total of 1081
image pairs), and we calculated the resulting computa-
tional costs. In this experiment we used a window of size
128� 128, search areas of size 328� 328 (corresponding
to 201� 201 ¼ 40 401 searches), and a threshold equal to
0:8. This threshold value was estimated from the evalua-
tion of the correlation coefficient function of images
horizL0 and horizL1, shown in Fig. 8(b). The obtained
ECDF is depicted (dashed line) in Fig. 9(a). This ECDF is
very close to the ECDF obtained by following the
procedure described in Section 4.2. Indeed, using the
same setup and the procedure described in Section 4.2 we
generated 10 000 translated versions of image horizL0 and
the resulting ECDF is also depicted (solid line) in Fig. 9(a).
The two ECDFs are close enough each other, especially for
values of s lower than or equal to 95%, as we can see
clearly in Fig. 9(b), where part of Fig. 9(a) is shown. As we
can see, the estimated probabilities that the proposed fast
scheme will offer a speed up more than 95%, are 0.9940
and 1, respectively. Finally, we must stress at this point
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Fig. 9. (a) Estimated probabilities (using the ECDFs) that speedup is more than or equal to a value s, for simulated and real images. (b) Zoom in (a).

Fig. 8. Image horizL0 and the correlation coefficient function for window size 128� 128 and search area 328� 328 of images horizL0 and horizL1.
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that in all the above registration problems the proposed
scheme has converged to the same solution provided by
the exhaustive search.
5. Conclusion

A new technique for subpixel image registration is
proposed in this paper. It is based on the maximization of
the correlation coefficient. An easily computed closed-
form solution is derived, which does not require the
reconstruction of the images intensities, as the intensity
interpolation-based methods do. It provides registration
of high accuracy and is robust to photometric distortions,
as well as to additive white Gaussian noise. Moreover, an
efficient spatial domain algorithm is proposed which with
high probability reduces significantly the computational
cost of the image registration problem. This algorithm
properly combined with the proposed similarity measure
results in a fast spatial domain technique for subpixel
image registration.
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