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ABSTRACT
Searchable Symmetric Encryption is a mechanism that facilitates

search over encrypted data that are outsourced to an untrusted

server. SSE schemes are practical as they trade nicely security for

efficiency. However, the supported functionalities are mainly lim-

ited to single keyword queries.

In this paper, we present a new efficient SSE scheme, called REX,

that supports range queries. REX is a no interactive (single round)

and response-hiding scheme. It has optimal communication and

search computation complexity, while it is much more secure than

traditional Order Preserving Encryption based range SSE schemes.

CCS CONCEPTS
• Security and privacy → Management and querying of en-
crypted data;

KEYWORDS
encrypted data, searchable encryption, secure computation, range

query

1 INTRODUCTION
Searchable Symmetric Encryption (SSE) was introduced in 2000 by

Song et al. [26] as a mechanism to facilitate search over encrypted

data (either a database or a collection of files) that are outsourced to

an untrusted server. While we have several techniques for securly

querying encrypted data, like multiparty computation schemes

([27]), Oblivious RAM algorithms ([11]), or fully homomorphic

encryption ([10]), all these solutions are still impractical. On the

other hand, SSE schemes nicely trade security for efficiency and

for that it has gained a lot of attention.

The proposed schemes are practical (or almost practical) and

at the same time they are supported by a security proof. What

the proof guarantees is that there is a well defined upper bound

of the information leaked. The weakest schemes assume that the

attacker is allowed to send a batch of queries and only once (non-

adaptive security). In the most realistic model, the attacker can
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choose new queries after receiving the server’s response to previous

ones (adaptive security).

SSE schemes possess a plethora of characteristics. They can be

static or dynamic, verifiable and parallelizable. The vast majority

of the schemes support only single keyword queries and only a

few proposals offer more complex functionalities, like conjunctive

queries, wildcards, and substring.

Without doubt one of the most useful functionalities is the range

query. That is, given two keywords ωi and ωj , the SSE must com-

pute and return the data entries that have a keywordω that satisfies

the condition ωi ≤ ω ≤ ωj . Very few SSE schemes, so far, have

been proposed that support range queries and most of them are

based on Order Preserving Encryption (OPE) schemes.

The adoption of SSE has raised some concerns regarding the

level of security it can offer. While there is a good definition of the

leaked information, it is still not clear how this leakage influences

the scheme’s security. Since Islam et al. ’s work [14], several papers

have been published demonstrating that the leaked information can

be fatal for a SSE scheme ([28]). An interesting observation is that

most of the attacks are against range query supporting schemes

and especially the ones that are based on OPE algorithms ([15],

[21], [22]).

In this paper, we present a new efficient SSE scheme that supports

range queries. Our scheme is called REX and it does not rely on

OPE algorithms. We show, somehow surprisingly, that it has almost

the same complexity as a single keyword SSE scheme.

1.1 Our Contribution
We present REX, a range query SSE scheme. REX is very efficient,

not interactive (single round) and response-hiding (i.e. the scheme

does not reveal the response to queries). It has optimal communi-

cation and search computation complexity. Also, it is much more

secure than any OPE based scheme, as it uses semantically secure

encryption to protect confidentiality. We analyze its security in

terms of information leakage profiles. Finally, the presented version

of REX is static, however, we elaborate on the required amendments

to support updates as well.

REX builds on most of the existing single keyword SSE schemes

and we show that supporting range queries can come with mini-

mum cost. We take advantage of the following observation. The

vast majority of the single keyword SSE schemes are based on an in-

verted index, and in all these schemes the order that the identifiers

are stored is random and thus we cannot exploit further the struc-

ture. In this paper, we demonstrate, somehow surprisingly, that the

order of the stored identifiers can be used to support efficiently

range queries.

Session: Secure & Privacy Preserving Computations CCSW’17, November 3, 2017, Dallas, TX, USA

29

https://doi.org/10.1145/3140649.3140653


In a few words, REX is a sequence of simple steps. First, we

introduce a new data structure called R. The client re-structures
the inverted index DB and computes R. R can be seen as a matrix

and each row of R is stored as a list of the file identifiers of a

specific keyword ω. The client outsources R to the server using

two dictionaries. At the first dictionary the rows of R are stored

encrypted. It can be used to answer single keyword queries. At the

second dictionary an index on R is stored. This is used to answer

range queries as a partial multi-keyword search. The server uses

a constant size token sent by the client. With the index stored at

D1 the server locates the adequate parts of the row lists at D0 and

sends the encrypted file identifiers. Finally, the client decrypts the

received data and retrieves the answer. The scheme is response-

hiding.

Finally, we have implemented and evaluated REX. Our scheme

has reasonable client storage requirements comparable to secure

single keyword SSE, like [3], and practical average search time per

matching file identifier returned.

1.2 Related Work
Searchable Symmetric Encryptionwas introduced by Song et al. ([26])

in 2000 with a scheme that has linear in N search time, where N is

the total number of keyword/file identifier pairs. The first sublinear

and index-based solution was proposed by Curtmola et al. ([6]).

This scheme was static. The first sublinear dynamic scheme was

presented by Kamara et al. in [19] and later was improved in [18].

Several index based schemes have been proposed improving either

the security ([25], [3]) or the functionality (for instance, [5] and

[17] support Boolean queries) or the efficiency ([18], [13]).

Secure range search has gained a lot of attention by the database

research community, but all these proposals lack provable secu-

rity guarantees and usually they accept unreasonable information

leakage.

Schemes that support range queries can be based on Order Pre-

serving Encryption (OPE). OPE have the nice property of preserving

the order of the plaintext, i.e. if p1 < p2, then c1 < c2, where c1
and c2 are the ciphertexts of p1 and p2, respectively. Thus, we do
not need to modify existing database management systems, as it

is possible to build traditional indexes efficiently on the encrypted

data and to query in the same way as for the plaintexts.

Boldyreva et al. ([2]) have proposed the first concrete implemen-

tation of OPE. However, this first work was later proved weak,

as half of the plaintext was leaked. More recent OPE by Popa et

al. ([23]) and Boelter et al. ([1]) have improved OPE security. The

practicality of OPE schemes was demonstrated by implementations,

like CryptDb [24] (that uses Boldyreva et al.’s proposal) and the

most recent ArX ([23]) that builds on [1]. However, OPE’s security

is still debatable. A series of recent works have shown that OPE

schemes’ main property, i.e. the order preservation, can lead to very

efficient attacks.

Another line of work is to use SSE for exact pattern matching. A

range query can be seen asmulti-keyword search ([7]) by expressing

the sub-ranges of the range to index nodes. A similar approach is

used in [9].

Generally, the security provided by the encrypted outsourced

data is poorly understood. Recent works, focusing on some practi-

cal solutions, have demonstrated that confidentiality can be com-

promised given auxiliary information on the data and using the

system’s leakage ([14], [15], [4], [8], [22], [28], [12]). Most of the

attacks take advantage of well-known vulnerabilities of weak, but

efficient, primitives that the systems use, like deterministic encryp-

tion and order preserving (or revealing) encryption. In [20], abstract

attack models have been proposed, independent of the details of

the system.

1.3 Paper Outline
The paper is organized as follows. In Section 2, some notation is de-

fined. Also, we provide scheme and security definition. In Section 3,

we introduce REX. First, we describe the main data structure and

we establish some basic properties. Then, we propose a scheme that

takes advantage of this data structure and we explain how it works

with several examples. We also analyze its complexity, security and

correctness. In Section 4, we evaluate an implementation of REX

and in Section 5, we present our current line of work on extending

REX to support updates. We call the new version DREX.

2 PRELIMINARIES AND DEFINITIONS
Notation. Next, we provide some notation. Let R be a n ×m

matrix. We use R[:, j] and R[i, :] to denote the j-th column and the

i-th row of R respectively, and R[i1 : i2, j1 : j2] is the submatrix of

R that consists of the rows from i1 to i2 and the columns from j1
to j2, for 0 ≤ i1 ≤ i2 < n and 0 ≤ j1 ≤ j2 < m. We define a special

submatrix of R, as

R(i, j) = R[i : j, 0 : i]

and we denote by ∪R(i, j) the union of all entries of R(i, j), for 0 ≤
i < n and 0 ≤ i < j < m. That is,

∪R(i, j) = ∪i≤i′≤j, 0≤j′≤iR[i, j].

Example 2.1. Let the matrix R

R =

©«
12 3 4 8

5 2 9 10

3 4 2 11

6 15 12 13

16 115 112 23

ª®®®®®¬
.

Then, the submatrix R(1,3) is given by

R(1,3) =
©«

5 2

3 4

6 15

ª®¬
and

∪R(1,3) = ∪1≤i≤3, 0≤j≤1R[i, j]

= {5, 2, 3, 4, 6, 15}.

�

Finally, the output x of an algorithm A is denoted as x ← A

and H i
is the composition i times of the function H , i.e H i (·) =

H (H (. . .H (H (·)) · · · )).
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The Scheme’s Syntax. Let λ be the security parameter. We will

follow the notation that it is common in almost all the previous

works on SSE. Let W and F be the set of keywords and file iden-

tifiers, respectively, and let |W| and |F| denote their cardinality,

i.e. F = ∪ |F |−1i=0 idi and W = ∪
|W |−1
i=0 ωi . The file identifiers and the

keywords will be bit strings, and N denotes the total number of

keyword/identifier pairs.

A database DB is a list of file identifier and keyword pairs

(idi ,ωj ), for idi ∈ F and ωj ∈ W. We write DB(ω) for the set

of all identifiers of files that contain ω. Similarly, we denote by

DB(ωi ,ωj ) = ∪ωi ≤ω≤ωjDB(ω)

the set of all identifiers of files that contain a keywordωi ≤ ω ≤ ωj ,
i.e. the set of identifiers that satisfies a range query. Without loss

of generality, for the rest of the paper, we assume that ωi ≤ ωj , for
0 ≤ i ≤ j < |W|, and for all the keywords ωi ,ωj ∈W.

Cryptographic Primitives and Data Structures. We use sev-

eral data structures, namely multi-maps, lists and dictionaries. Also,

we use a semantically secure secret-key encryption scheme SKE =
(Gen,Enc,Dec), where Gen is the key generation processes, Enc
is the probabilistic encryption and Dec the deterministic decryp-

tion algorithm. Finally, we use two hash functions H1 and H2 with

outputs µ andψ , respectively. We only need the pre-image property.

2.1 Definitions
Definition 2.2. (RS-Range SSE): A single-round response-hiding

range SSE scheme ΣR = (Setup,Token, Search,Decrypt) consists
of four polynomial-time algorithms that work as follows:

• (S,EDR) ← Setup(1λ ,DB): is a probabilistic algorithm that

takes as input a security parameter 1
λ
and a database DB of

keyword and file identifier pairs and outputs a secret local

state S and an encrypted structure EDR.
• tk ← Token(S,q): is a (possibly) probabilistic algorithm that

takes as input the secret local state S and a range query q
and outputs a token tk .
• msд ← Search(tk,EDR): is a (possibly) probabilistic algo-

rithm that takes as input the encrypted structure EDR and a

token tk and outputs a messagemsд.
• r ← Decrypt(S,msд): is a deterministic algorithm that takes

as input a secret local state S and a messagemsд and outputs
a response r .

Correctness. We say that a range SSE scheme ΣR is correct if,

∀λ ∈ N, for all poly(λ)-size databases DB, for all (S,EDR) output by
Setup(1λ ,DB) and all sequences ofm = poly(λ) queries q1, · · · ,qm ,

for all the produced tokens tki by Token(S,qi ), and for all mes-

sages msдi output by Search(tki ,EDR), Decrypt(S,msдi ) returns
the correct response ri with all but negligible probability.

Security. We use the standard notion of security as was first

formalized by Curtmola et al. in the context of searchable encryp-

tion [6]. The range SSE scheme guarantees that no information

is revealed beyond the setup leakage LS , and the query leakage

LQ due to the search algorithm. If this holds when the queries are

chosen adaptively, then we have adaptive security. Otherwise, we

have non-adaptive security.

Definition 2.3. (Adaptive Security): Let ΣR = (Setup,Token,
Search,Decrypt) be a response-hiding range SSE scheme and con-

sider the probabilistic experiments where A is a stateful adversary,

S is a stateful simulator, LS and LQ are the leakage profiles and

z ∈ {0, 1}∗:

• RealΣ,A(λ): given z the adversary A outputs a database DB
and receives EDR from the challenger, where (S,EDR) ←

Setup(1λ ,DB). The adversary then adaptively chooses a poly-
nomial number of queries q1, · · · ,qm . For all 1 ≤ i ≤ m, the

adversary receives tki ← Token(S,qi ). Finally, A outputs a

bit b that is output by the experiment.

• IdealΣ,A,S(λ): given z the adversary A outputs a database

DB that it sends to the challenger. Given z and the setup

information leakage LS (DB) from the challenger, the simu-

lator S returns an encrypted data structure EDR to A. The

adversary then adaptively chooses a polynomial number of

operations q1, · · · ,qm . For all 1 ≤ i ≤ m, the simulator re-

ceives the search leakage LQ (DB,qi ) and returns a token

tki to A. Finally, A outputs a bit b that is output by the

experiment.

We say that ΣR is adaptively (LS ,LQ )-secure if for all polyno-

mial time adversaries A, there exists a polynomial time simulator

S, such that for all z ∈ {0, 1}∗,

|Pr [RealΣ,A(λ) = 1] − Pr [IdealΣ,A,S(λ) = 1] ≤ neдl(λ).

3 THE REX DESIGN
Without loss of generality, we assume that ωi ≤ ωj , for 0 ≤ i ≤ j <
|W|, and for all the keywords ωi ,ωj ∈ W. When only the upper

bound is defined, i.e. ω ≤ ωj , we assume that the lower bound is

the minimum keyword ω0. That means that, the server must return

the set DB(ω0,ωj ). Similarly, when only the lower bound is defined,

the server returns the set DB(ωi ,ω |W |−1).
First, we describe a new data structure to support the range

queries and then, we propose a protocol that implements the design.

3.1 The REX Data Structure
We define the following |W| × |W| matrix R. Each entry contains a

tuple of file identifiers f ∈ F and initially the matrix is empty. Then,

starting from the first column R[:, 0], we fill in the matrix column

by column as follows. For the j-th column, we leave the first j − 1
entries empty, i.e.

R[i, j] = ” − ”, 0 ≤ i ≤ j − 1. (1)

The rest of the entries R[i, j], for i ≥ j, are completed with the

maximum subset of the file identifiers DB(ωi ) that do not appear

in R(i, j). That is, for a given column j and starting from R[j, j], we
fill in sequentially the entries R[i, j] with all the file identifiers from

DB(ωi ) that do no appear at the entries R[i ′, j ′], for j ≤ i ′ ≤ i and
0 ≤ j ′ ≤ j.

Example 3.1. Let the set of file identifiers be

{ f0, f1, f2, f3, f4, f5, f6, f7, f8} ∈ F

and the set of keywords be {ω0,ω1,ω2,ω3} ∈ W. The entries of

DB are DB(ω0) = { f0, f1, f2, f3}, DB(ω1) = { f2, f4, f5}, DB(ω2) =
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{ f0, f3, f4, f8} and DB(ω3) = { f2, f3, f6, f7}. The matrix R that cor-

responds to the above DB is:

R =
©«

f0, f1, f2, f3 − − −

f4, f5 f2 − −

f8 f0, f3 f4 −

f6, f7 − f2 f3

ª®®®¬ (2)

Theorem 3.2. The matrix R has the following properties:
(1) The matrix is lower triangular.
(2) All the entries of R(i, j) are distinct, for any 0 ≤ i ≤ j < |W|.
(3) The set DB(ωi ,ωj ) equals

DB(ωi ,ωj ) = ∪R
(i, j). (3)

The properties derive directly from the design of the matrix and

we provide their proof in the Appendix.

Example 3.3. Let DB be as described in the Example 3.1. It is easy

to verify that

DB(ω1,ω2) = { f2, f4, f5, f0, f3, f4, f8}

= R[1, 0] ∪ R[1, 1] ∪ R[2, 0] ∪ R[2, 1]

= ∪1≤i′≤2, 0≤j′≤1R[i, j]

= ∪R(1,2)

where

R(1,2) =

(
f4, f5 f2
f8 f0, f3

)
.

All the entries of R(1,2) are distinct.
�

Corollary 3.4. All the entries of the i-th row of R are distinct
and their union equals the set DB(ωi ).

Proof. This corollary derives from Theorem 3.2 by setting ωj =
ωi . �

Example 3.5. LetDB be as described in the Example 3.1. From (2),

it is easy to verify that all the entries at each row are distinct and

that DB(ω0) = R[0, 0], DB(ω1) = R[1, 0] ∪ R[1, 1] = ∪R(1,1), etc.

Corollary 3.4 states that each row of R is just a structured version

of the data set DB(ωi ). Also, from Theorem 3.2 and more precisely

from relation (3), it follows that due to the proposed structure, it is

easy to support range queries and compute the set of file identifiers

DB(ωi ,ωj ) by computing the union of all the tuples of the submatrix

R(i, j) of R.

3.2 The REX Protocol
Next, we present the static version of REX. The details of the scheme

appear in Fig. 1 and Fig. 2. In Section 5, we describe the dynamic

version.

Main Idea. REX is based on theRmatrix described in Section 3.1.

Initially, the client organizes the inverted index DB as a R matrix.

From (3), we have seen that it is easy to answer a range query and

compute the set DB(ωi ,ωj ) using R by returning all the tuples of

the submatrix R(i, j), i.e. the first i columns from the i-th to the j-th
row of R. Thus, the challenging part is to outsource R encrypted

−Setup(1λ ,DB)

(1) Initialize a multi-map S , two dictionaries D0, and

D1, and two matrices R and tempR;
(2) For i = 0 : |W| − 1 do

For j = i : |W| − 1 do
Set R[i, j] equal to the maximum subset

of DB(ωi ) that is not in R(i, j);
(3) compute K ← SKE.Gen(1λ);
(4) For i = 0 : |W| − 1 do

sample r
(0)

i ← {0, 1}
λ
;

set c = 0

For j = i : 0 do
get curr = c;
get T ← R[i, j];
if T not empty

for z = 0 : |T | − 1 do
c + +;
id ← T [z];

pos ← Hc
1
(r
(0)

i );

D0[pos] ← SKE.Enc(K , id);
if z = 0

tempos ← pos;
tempR[i, j] ← [tempos, |DB(ωi )| − curr ];

else tempR[i, j] ← [];
(5) For i = 0 : |W| − 1 do

if tempR[i, 0] is empty,

then tempR[i, 0] = [NULL, 0];
For j = 1 : i do
if tempR[i, j] is empty,

then tempR[i, j] = tempR[i, j − 1];
(6) For j = 0 : |W| − 1 do

sample [r
(1)

j ,k
(1)

j ] ← {0, 1}
λ×λ

;

set S(ωj ) ← [r j (1),k
(2)

j ];

For i = |W| − 1 : j do
pos ← H

|W |−i
1

(r
(1)

j );

D1[pos] ← tempR[i, j] ⊕ H
|W |−i
2

(k
(1)

j );

(7) set EDR ← (D0,D1).

(8) Output EDR to the server, and S , and K to the

client.

Figure 1: The Setup operation of the REX scheme.

and construct tokens that facilitate the server to locate and return

R(i, j) and nothing else.

The client outsources R encrypted and stored at two dictionaries

D0 andD1. The first dictionaryD0 contains the elements of R, while
the second dictionary D1 is used as an index on D0.

Each row of R is organized as a list L
(0)

i , for 0 ≤ i < |W|. The

order that the elements appear at L
(0)

i must follow one condition:

the elements from R[i, j] must succeed the elements from R[i, j ′],
for j < j ′. The relative order of appearance of the elements that

come from the same tuple R[i, j] can be random. Let R[i, jf ] and
R[i, jl ] be the first and the last tuples, respectively, of the row R[i, :]
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that are not empty. Following the above condition, the head of the

list L
(0)

i is one of the elements from R[i, jl ], while the tail is one of
the elements from R[i, jf ]. Note that since R is a diagonal matrix, it

holds that 0 ≤ jf ≤ jl ≤ i .

Example 3.6. The four lists of R from (2) are given by:

L
(0)

0
f1 ← f3 ← f0 ← f2

L
(0)

1
f4 ← f5 ← f2

L
(0)

2
f8 ← f3 ← f0 ← f4

L
(0)

3
f7 ← f6 ←−−−−−−−−−−− f2 ← f3

(4)

Note that the elements of the first column of R appear after the

elements of the second column, e.t.c. Also, the elements from the

same tuple are placed in a random order. For instance, since all the

elements of the first list L
(0)

0
come from the same tuple R[0, 0] they

are ordered randomly, without any restriction. On the other hand,

regarding the third list L
(0)

2
, f8 must be its tail, f4 its head, while f3

and f0 are interchangeable.
�

Each node element of the listL
(0)

i is encryptedwith a semantically

secure SE scheme using the same secret key K and the ciphertext is

stored at a logical location of D0. This location Lo
(0)

i (c) is derived

from a row randomness r
(0)

i and a counter c as

Lo
(0)

i (c) = Hc
1
(r
(0)

i ), (5)

where H1 is a pre-image resistant function. Thus, the head of L
(0)

i
is stored at Lo

(0)

i (1) = H1

1
(r
(0)

i ), while the tail at Lo
(0)

i (|DB(ωi )|) =

H
|DB(ωi ) |
1

(r
(0)

i ). Since, REX is static and we do not add new data,

we can use a keyed hash function to compute the locations of the

elements.

From (5), it is easy to see that given the location Loc of the c ′-th

element of L
(0)

i , for 1 ≤ c ′ ≤ |DB(ωi )|, the server can compute

the logical locations of the rest of the list’s nodes by successively

applying H1. That is, the locations L
(0)

i (c), for c
′ ≤ c ≤ |DB(ωi )|,

are computed as L
(0)

i (c) = Hc−c ′
1
(Loc). The pre-image resistance of

H1 prohibits the server from traversing the list from the c ′-th node

towards the head.

Example 3.7. We use as an example the lists L
(0)

1
and L

(0)

2
from

the Example 3.6. The row randomness is r
(0)

1
and r

(0)

2
, respectively.

L
(0)

1
f4 ← f5 ← f2

c 3 2 1

Lo
(0)

1
(c) H3

1
(r
(0)

1
) H2

1
(r
(0)

1
) H1(r

(0)

1
)

L
(0)

2
f8 ← f3 ← f0 ← f4

c 4 3 2 1

Lo
(0)

2
(c) H4

1
(r
(0)

2
) H3

1
(r
(0)

2
) H2

1
(r
(0)

2
) H1(r

(0)

2
)

The location Loc = H2

1
(r
(0)

1
) of the second element f5 of L

(0)

1
can

be used to compute the location of f4 as H1(Loc) = H1(H
2

1
(r
(0)

1
)) =

H3

1
(r
(0)

1
). Similarly, the location Loc = H2

1
(r
(0)

2
) of the second el-

ement f0 of L
(0)

2
can be used to compute the location of the last

two elements f3 and f8, as H1(Loc) = H1(H
2

1
(r
(0)

2
)) = H3

1
(r
(0)

2
) and

H2

1
(Loc) = H2

1
(H2

1
(r
(0)

2
)) = H4

1
(r
(0)

2
), respectively.

�

At the setup phase, the client uses a |W| × |W| matrix tempR
to temporary store some of these logical locations. More precisely,

per tuple R[i, j], the logical location of the element that appears

first at the list L
(0)

i is stored at tempR[i, j]. When, R[i, 0] is empty,

then we set tempR[i, 0] = [NULL, 0] and, for j > 0, when R[i, j] is
empty, then we set tempR[i, j] = tempR[i, j − 1]. Together with the

location we store the number of elements that can be found until

the tail of the list.

Since, by design, tempR[i, j] contains the logical location of the

first element from the tuple R[i, j] that appears in the list L
(0)

i , by

continuously applying the function H1 to this location the server

can compute the locations of the rest of the list’s elements. That is,

using (5), the server can locate all the nodes until the tail of the list,

i.e. all the elements from the tuples R[i, j ′], for 0 ≤ j ′ ≤ j.

Example 3.8. For the matrix R from (2) and the lists from (4),

tempR is given by:

©«
(Lo
(0)

0
(r
(0)

0
), 4) − − −

(Lo
(0)

1
(r
(0)

1
), 2) (Lo

(0)

1
(r
(0)

1
), 3) − −

(Lo
(0)

2
(r
(0)

2
), 1) (Lo

(0)

2
(r
(0)

2
), 3) (Lo

(0)

2
(r
(0)

2
), 4) −

(Lo
(0)

3
(r
(0)

3
), 2) (Lo

(0)

3
(r
(0)

3
), 2) (Lo

(0)

3
(r
(0)

3
), 3) (Lo

(0)

3
(r
(0)

3
), 4)

ª®®®®®¬
(6)

For instance, the entry tempR[0, 0] contains the location Lo
(0)

0
(r
(0)

0
)

of the first element of R[0, 0] that appears at L
(0)

0
, i.e. the location of

f2 and it is the fourth element counting from the tail. Thus, the loca-

tions of the rest of the nodes at D0 are computed as H1(Lo
(0)

0
(r
(0)

0
)),

H2

1
(Lo
(0)

0
(r
(0)

0
)) and H3

1
(Lo
(0)

0
(r
(0)

0
)).

Similarly, the entry tempR[2, 1] contains the logical location

Lo
(0)

2
(r
(0)

2
) of f0, the element of R[2, 1] that appears first at the list

L
(0)

2
and the number 3 as this is the third element counting from

the tail. The locations of the other two elements are computed as

H1(Lo
(0)

2
(r
(0)

2
)) and H2

1
(Lo
(0)

2
(r
(0)

2
)). The server cannot calculate the

location of f4, the list’s head.
Note that since R[3, 1] is empty, tempR[3, 1] is set equal to the

previous non zero value, i.e. tempR[3, 0].
�

The matrix tempR is also outsourced to the server. Each column

of the matrix is organized as a list L
(1)

i , and each list has |W| − i
nodes, for 0 ≤ i < |W|, while the head of the list is located at the last
row of tempR. Again, each node element of the list L

(1)

i is encrypted

and the ciphertext is stored at a logical location, this time of D1.

The logical location of the c-th node Lo
(1)

i (c) derives from a column

randomness r
(1)

i and a counter c , as Lo
(1)

i (c) = Hc
1
(r
(1)

i ). Thus, the

element at the head node of L
(1)

i is stored at Lo
(1)

i (1) = H1

1
(r
(1)

i ),

and the tail at Lo
(1)

i (i) = H i
1
(r
(1)

i ). The plaintext is masked by a

value that is derived from the column key k
(1)

i and the counter c ,

as Hc
2
(k
(1)

i ).
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Example 3.9. For the matrix tempR from (6), the second column’s

list and the corresponding locations at D1 are given by:

L
(1)

1
(Lo1(r

(0)

1
), 3) ← (Lo2(r

(0)

2
), 3) ← (Lo3(r

(0)

3
), 2)

c 3 2 1

Lo
(1)

1
(c) H3

1
(r
(1)

1
) H2

1
(r
(1)

1
) H1(r

(1)

1
)

�

The client stores locally the randomness per column r
(1)

i and

the secret key per column k
(1)

i , as well as the secret key K used to

encrypt the entries of D0.

Given a range query of keywords ωi ≤ ω ≤ ωj the server

computes the setDB(ωi ,ωj ) by locating and returning all the entries

of R(i, j). The client retrieves locally the randomness r
(1)

i and the

secret key k
(1)

i of the list L
(1)

i . Then, the location and the secret

key of tempR[i, j] are computed and sent to the server as a search

token. Using the token the server locates the rest of the elements of

the list L
(1)

i until its tail and reveals a node location at D0 for each

one of the lists L
(0)
m , for i ≤ m ≤ j. Then, the server locates all the

elements of each of these lists from the revealed node location to

the tail. The server returns all these encrypted elements of D0 to

the client and the client decrypts them locally to compile the set

DB(ωi ,ωj ).

Example 3.10. The client wants to submit the range query for

ω1 ≤ ω ≤ ω2 and compute the set DB(ω1,ω2). First, she retrieves

the randomness r
(1)

1
and the key k

(1)

1
of the list L

(1)

1
. Then, from r

(1)

1
,

she computes Loc = H2

1
(r
(1)

1
) for the location of the second element

(see also Example 3.9) and the corresponding decryption key as

Key = H2

2
(k
(1)

1
) (we will elaborate on that later). The location Loc

and the key Key are sent to the server as the search token.

The server uses Loc and the key Key to retrieve from D1 the

pair (Lo2(r
(0)

2
), 3). Also, by applying H1 to Loc and H2 to Key, it

computes H3

1
(r
(1)

1
), the location of the next element of the list L

(1)

1

from D1, decrypts it with the key H2(Key) and retrieves the next

pair (Lo1(r
(0)

1
), 3).

Then, from (Lo2(r
(0)

2
), 3) we have that starting from the location

Lo2(r
(0)

2
) at D0 the server will return the content for 3 locations, i.e.

for Lo2(r
(0)

2
), H1(Lo2(r

(0)

2
)) and H2

1
(Lo2(r

(0)

2
)) (see also Example 3.7).

Similarly, starting from Lo1(r
(0)

1
) the server computes the 3 logical

locations of D0 and retrieves their content. Then, it sends to the

client the six ciphertexts, the client decrypts them with the sym-

metric key K and reveals the plaintexts f4, f5, f2, f8, f0, and f3 (see
also Example 3.3). �

3.3 The REX Operations
Setup. The Setup algorithm takes the database DB and the security

parameter λ as input. First, it computes the matrix R and generates

the symmetric key K for the encryption of the file identifiers with

the symmetric key semantically secure encryption scheme SKE.
Then, it stores each row of R as a list at D0 and produces the ma-

trix tempR. Afterwards, it stores each column of R as a list at D1,

while the elements of the lists are masked by the output of H2. The

location and the masking value are computed using different ran-

domness per columns. This randomness is stored at a multi-map S .
The algorithm outputs the dictionaries D0 and D1 as the encrypted

structure EDR and the multi-map S and the key K as the local state.

Token. The Token algorithm takes as input the local state of the

client, the lower bound ωi and the upper bound ωj of the range.
When there is no lower bound, it is assumed that the lower bound

is the smallest of all the keywords ω0. Similarly, in the absence of

an upper bound, the maximum keyword ω |W |−1 is used. The algo-
rithm retrieves the i-th entry of the internal state S , i.e. the column

randomness r
(1)

i and the key k
(1)

i of the list L
(1)

i and computes the

location Loc of the (|W| − j)-th node of the list at D1. It also com-

putes the corresponding key needed to decrypt the ciphertext. The

token tk consists of the location Loc , the key Key and the number

of elements from this location until the end of the list.

Search. The Search algorithm takes as input the token tk and

the two dictionaries stored at the server. The element of the list

L
(1)

j is retrieved from the location Loc at D1 and it is decrypted

with the key Key. By applying counter times the function H1 to

the value Loc and H2 to Key, the server can traverse the rest of

the list L
(1)

j and decrypt all the nodes. Each revealed plaintext has

one location at D0 that corresponds to a node from a different list.

Again, by applying recursively the function H1 to these locations

the algorithm traverses these lists and finds the ciphertexts of the

file identifiers. The algorithm returns these ciphertexts as its output

message.

Decryption. The Decryption algorithm takes as input a set of

ciphertexts from the server and the symmetric secret key K of the

client. It decrypts the ciphertexts with the key and returns the

plaintexts, i.e. the file identifiers, as its response.

3.4 Complexity and Correctness
Complexity. The asymptotic complexities of REX appear in Ta-

ble 1. We distinguish three main types of complexity, the commu-

nication, the computation and the storage complexity.

The size of the token is the same for all the range queries. It

is equal to the length of the sum of the counter log(|W|) and the

outputs of the two hash functions µ +ψ . On the other hand, the

server’s reply message is exactly the set DB(ωi ,ωj ) and nothing

more. That is, the communication complexity is optimal and the

Search operation is single round.

In order to compute the setDB(ωi ,ωj ), the server accesses j−i+1

locations of D1 to retrieve the rest of the list l
(1)

i , i.e. j − i +1 indexes
(logical locations) of list nodes stored atD0. Then, it accesses exactly

|DB(ωi ,ωj )| locations of D0, at least one from each of the j − i + 1

lists l
(0)
z , for i ≤ z ≤ j. That is, the search computation complexity

is O(DB(ωi ,ωj )) and it is also optimal.

The client must store |W| pairs of µ andψ bits for the random-

ness and the column key, respectively. Finally, the server requires

O(log(|F|)) bits for each file identifier’s ciphertext and in total N
such entries. Thus, D0 requires O(N log(|F|)). Finally, for the dic-
tionary D1 the server has storage overhead O(|W|2(µ + log(|F|))).

Correctness. The correctness of REX is straightforward and

derives from Theorem 3.2. Regarding the probability of collision

among the D0 and D1 locations generated by H1, it can be easily
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−Token(S,ωi ,ωj )

(1) If ωi is empty, then i = 0;

(2) If ωj is empty, then j = |W| − 1
(3) get [r (1),k(1)] ← S[ωi ];

(4) compute pos ← H
|W |−1−j
1

(r (1));

key ← H
|W |−j−1
2

(k(1));
counter ← j − i + 1;

(5) set Tk ← [pos,key, counter ];
(6) Output Tk ;

−Search(Tk,EDR)

(1) parse [pos,key, counter ] ← Tk ;
(2) emptymsд;
(3) For j = 0 : counter − 1 do

[loc, c] ← D1[H
j
1
[pos]] + H

j
2
(key);

for i = 0 : c − 1 do
msд =msд ∪ D0[H

i
1
[loc]];

(4) Outputmsд;

−Decryption(K ,msд)

(1) empty r ;
(2) For j = 0 : |msд | − 1 do

r ←msд ∪ DeK (msд[j]);
(3) Output r ;

Figure 2: The Token, Search and Decryption operations of
the REX scheme.

Token Comm. Comp. O(1)
Reply Comm. Compl. O(|DB(ωi ,ωj )|)
Search Comp. Compl. O(|DB(ωi ,ωj )|)
Client Storage Compl. O(|W|(µ +ψ ))
Server Storage Compl. O(|W|2(µ + log(|F|)))+O(N log(|F|))

Table 1: The asymptotic communication, search computa-
tion and storage complexities of REX.

become negligible by choosing sufficiently large dictionaries (with

respect to µ−1N 2
forD0 and µ

−1 |W |4 forD1). Also, since the scheme

is static, a collision can be easily resolved at the setup phase by

choosing new row or column randomness, r
(0)

i and r
(1)

i , respectively.

3.5 Security
Intuitively, the client must compute a token that provides sufficient

information to the server to locate the file identifiers and nothing

else. We assume that the server is curious but honest, i.e. it executes

the operations properly, but at the same time it tries to extract

further knowledge.

The setup leakage is only due to the size of the two dictionaries.

From that the adversary can deduce the number of pairs N and

the size of the keywords set W. Of course, there are techniques for

hiding them, if it is necessary, at the expense of some redundancy

(we can use padding or even use one hash table for both dictionaries).

Thus, the setup leakage is at most:

LS = (N , |W|).

Note that, even in the worst case described above, the setup

leakage of REX is much smaller than the information leaked from

the OPE based schemes. Due to the order preservation property and

the deterministic nature of these schemes, in most of the proposed

attacks the adversary needs just a snapshot of the encrypted data

and it is not necessary to eavesdrop query transactions. REX uses

semantically secure encryption to limit that leakage.

Next, we compute the leakage due to the token and search op-

erations. Let qi, j be the query for the pair of keywords (ωi ,ωj ).
Since the token generation is deterministic, it leaks the history of

queries {Hist(qi, j )}. That is, it is leaked the moment when the same

query was submitted in the past. This leakage, as well as the access

pattern that we will describe next, are common in practically all

the proposed SSE schemes and they are considered acceptable.

More over, due to the nature of the query, i.e. it covers a range

of keywords, it is also common to leak the history of any sub-range

that has been queried in the past as part of another query or as a sep-

arate query. Thus, the leakage includes also Hist(qi′, j′)}i≤i′≤j′≤j .
The access pattern accp(qi, j ) is also leaked, as expected, as a

sequence of ciphertexts {c1, · · · , c |DB(ωi ,ωj ) |}, i.e. the response of

the server. At the same time, this access pattern is divided into

len(qi, j ) lists of ciphertexts accp(qi, j )
(r )

, for 1 ≤ r ≤ len(qi, j ). The
value len(qi, j ) = j − i + 1 is the number of keywords in the range

and it is leaked as part of the token. The lists have a specific order

corresponding to the ordered sequence of keywords in the query

range.

The information leaked per keyword in the range is not the entire

set of ciphertexts for the specific keyword. Each list accp(qi, j )
(r )

contains only the ciphertexts of the files that have not appeared in

the previous lists accp(qi, j )
(r ′)

, i ≤ r ′ < r . This leakage, is much

smaller than the usual access pattern leakage that we encounter

in other range SSE schemes. That is, while the adversary has also

learned all the sets DB(ωi ,ωj′), for i ≤ j ′ ≤ j, only a subset of the

sets DB(ωi′ ,ωj′), for i
′ ≤ j ′ ≤ j and i < i ′ ≤ j is leaked.

Finally, the scheme is response-hiding and the ciphertexts of

the same file identifier are indistinguishable up to the security

advantage of the SKE scheme.

The search leakage of the scheme is given by:

LQ (ωi ,ωj ) = (accp(qi, j ), {accp(qi, j )
(r )}i≤r ≤j ,

{Hist(qi′, j′)}i≤i′≤j′≤j ).

Next, we give a sketch of the proof for non-adaptive security,

which is rather straightforward. The proof of the adaptive case

presents some technical challenges and we are going to present it

with the dynamic version of REX that we are currently working on.

We need to show the existence of a simulator S who has access

to the leakage profiles LS and LQ , and produces indistinguishable

views to an adversary A (according to Definition 2.3). The only

difference from the definition is that the adversary sends the queries

all together. Again, the attacker A, i.e. the server, is semi-honest.

The simulator S must create m tokens for each query. Since the
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|W| Client Storage

1k 31kB
10k 320kB
100k 3MB

Table 2: Local (client) storage size.

queries are known beforehand, S creates an ordered sequence of the

keywords and stores in a multi-map the randomness per keyword.

The number of keywords |W| is leaked and the value j can be

deduced from the order. Then, the simulator just applies the token

operation. The value of counter is the range length and it is known

from the leakage function. The full proof will appear at the extended

version of the paper.

4 IMPLEMENTATION AND EXPERIMENTS
We implemented REX in Java. From the Clusion framework, we have

used the functions for file parsing and extraction of keywords to

multi-maps. Clusion is an open source encrypted search framework

provided by Kamara and Moataz ([16]).

For the symmetric encryption scheme SKE we used AES inCBC
mode with key size 128 bits. At the setup phase the matrix R was im-

plemented as an array of arraylists and tempR as an array of generic

objects. The local storage S is a multi-map and the outsourced D0

and D1 are HashMaps (with support of multiple collisions). We

have chosen to use SHA − 1 as the underlying hash function.

We ran our experiments on a desktop computer with an Intel

Xeon E3-1241 3.GHz CPU (with 8 logical cores), 8GB of RAM, a 250

GB SSD, running on Windows 10. Our code is Open Source.

4.1 Evaluation
We have computed the client storage size for different keyword

sets (randomly produced) and we present some indicative results in

Table 2. We optimized the load of S . It seems that the requirements

are reasonable (similar results have been provided in [3]).

Regarding the search time, we have computed the average per

matching entry time. We have performed the computations locally,

thus there is no communication latency (see Table 3). We used

for our experiments around 10k randomly produced files with an

average of 20 keywords per file. The results indicate that as the

number of output keywords per query increases, REX performs

better, i.e. the required time per file is decreasing. Definitely, our

implementation can be significantly improved. However, even these

early results are very promising.

We are planning to accelerate the search operation by visiting

the lists L
(0)

i in parallel and use a more efficient hash function

like Blake2b. We are currently investigating the dynamic version

of REX (see also Section 5) and we are planning to enrich our

measurements.

5 FUTURE WORK: THE DYNAMIC REX
In this section, we describe our work in progress, the dynamic

version of REX. However, static SSE schemes have an interest of

their own and they are used in many applications (for instance

archiving).

Number of Average Time per Range

matching files matching file (ms) O(j − i)

750 0.025 800

550 0.028 800

350 0.03 150

150 0.03 100

Table 3: Average computation time per matching file. No
communication overhead is included.

Let’s assume we want to add a new file
ˆf . Thus, we have a new

file identifier
ˆid and a list of z keywords {ωj1 ,ωj2 , · · · ,ωjz }. In

classical single keyword SSE schemes, we have to update the sets

DB(ωji ), 1 ≤ i ≤ z. In our case we will update the structure R. We

will assume, without loss of generality, that ωj1 < ωj2 < · · · < ωjz .
The updates are based on the following observation. The tuple

R[i, 0] contains the identifiers of the files that have the keyword
ωi and that do not have any of the keywords {ωj , · · · ,ωi−1}. Thus,

since the first keyword of
ˆf isωj1 , the tuple R[j1, 0]must be updated

with
ˆid .

By design, a file identifier can appear only once in any R(i, j).

Thus,
ˆid cannot belong in any other tuple of the columns R[:, j], for

0 ≤ j ≤ j1. Following the same reasoning, R[j2, j1 + 1] is updated

with
ˆid and so on. In other words, we insert the new file identifier

ˆid
in the tuples R[j1, 0] and R[jr+1, jr +1], for 1 ≤ r < z. The nice thing
is that we can use this update approach to improve our setup phase,

as well. The implementation performance so far is very promising.

Finally, we want to support modifications of the keyword set W.

Mainly, we want to add new keywords to REX. This has led us

to modify the local storage S . Instead of using a multi-map, we

organize S as a search tree. This adds some logarithmic overhead to

the client and it is somehow close to the work of [1]. Unfortunately,

it seems difficult to avoid multiple rounds without communication

overhead (using and updating garbled circuits to maintain single

round).

6 CONCLUSIONS
In this paper, we have presented REX, a new efficient SSE scheme

that supports range queries. REX is single round and has optimal

communication and search computation complexity. It is using

semantically secure encryption algorithms and it offers more secu-

rity than traditional Order Preserving Encryption based range SSE

schemes. We have implemented REX and the first experiments are

very promising.

Currently, we are working on an extended version of REX, the

dynamic REX. The enhanced REX will support updates as well, i.e.

the client will be able to add new files or delete existing ones. At

the same time, we improve our implementation as several tweaks

can significantly improve its performance.

A APPENDIX
A.1 Proof of Theorem 3.2

(1) This is a straightforward result since the first i − 1 entries of
the i-th column are left empty by design.
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(2) Let’s assume that there are two tuples of R(i, j) that have at
least one element in common and let R[i1, j1] be the first

one and R[i2, j2] the second one, where 0 ≤ j1 ≤ j2 ≤ i and
i ≤ i1, i2 ≤ j. We distinguish two cases: i1 ≤ i2 and i1 > i2.

In the first case, R[i1, j1] belongs to R(i2, j2), and by design

R[i2, j2] has no common elements with the other tuples of

R(i2, j2). Thus, we have a contradiction.
In the second case, i1 > i2. Let u be the element that ap-

pears at both tuples. Since, u ∈ R[i1, j1], then by design

u ∈ DB(ωi1 ) and u < DB(ωi2 ). Again, a contradiction.
(3) By design the tuple R[j, i] contains all the elements of the

set DB(ωj ) that are not in R
(i, j)

, i.e. R(i, j) contains the entire

DB(ωj ). Since, R
(i, j′)

is a submatrix of R(i, j), that means that

R(i, j) contains also DB(ωj′), for i ≤ j ′ ≤ j.
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