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Abstract

The use of Source Code Author Profiles (SCAP) represents a new, highly accurate approach to source code authorship identification
that is, unlike previous methods, language independent. While accuracy is clearly a crucial requirement of any author identification
method, in cases of litigation regarding authorship, plagiarism, and so on, there is also a need to know why it is claimed that a piece
of code is written by a particular author. What is it about that piece of code that suggests a particular author? What features in the code
make one author more likely than another? In this study, we describe a means of identifying the high-level features that contribute to
source code authorship identification using as a tool the SCAP method. A variety of features are considered for Java and Common Lisp
and the importance of each feature in determining authorship is measured through a sequence of experiments in which we remove one
feature at a time. The results show that, for these programs, comments, layout features and package-related naming influence classifi-
cation accuracy whereas user-defined naming, an obvious programmer related feature, does not appear to influence accuracy. A com-
parison is also made between the relative feature contributions in programs written in the two languages.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

With the increasingly pervasive nature of software sys-
tems, cases arise in which it is important to identify the
author of a usually limited piece of programming code.
Such situations include cyber attacks in the form of viruses,
Trojan horses and logic bombs, fraud and credit card clon-
ing, code authorship disputes, and intellectual property
infringement. Identifying the authorship of malicious or
stolen source code in a reliable way has become a common
goal for digital investigators. Spafford and Weber (1993)
have suggested that it might be feasible to analyze the rem-
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nants of software after a computer attack, through means
such as viruses, worms or Trojan horses, and identify its
author through characteristics of executable code and
source code. Zheng et al. (2003) proposed the adoption
of an authorship analysis framework in the context of
cybercrime investigation to help law enforcement agencies
deal with the identity tracing problem.

Researchers addressing the issue of code authorship
have tended to adopt a methodology comprising two main
steps (Krsul and Spafford, 1995; MacDonell and Gray,
2001; Ding and Samadzadeh, 2004). The first step is the
extraction of apparently relevant software metrics and
the second step is using these metrics to develop models
that are capable of discriminating between several authors,
using a statistical or machine learning algorithm. In gen-
eral, the software metrics used are programming-lan-
guage-dependent. Moreover, the metrics selection process
is a non-trivial task.
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The use of Source Code Author Profiles (SCAP) repre-
sents a new approach to source code authorship identifica-
tion and classification that is both highly effective
(Frantzeskou et al., 2005, 2006) and language-independent,
since it is based on low-level non-metric information. In
this method, byte-level n-grams are utilised to establish
and assess code against author profiles. The aim of this
paper is to demonstrate the SCAP approach in action with
two different styles of programming language and to assess
the impact of particular features on the accuracy of author-
ship attribution. In other words, the question we address
here is: which are the features of the source code that con-
tribute to correct authorship identification? This question is
very important whenever a need for evidence arises (Mac-
Donell et al., 2002). Cases of litigation arising from dis-
putes over authorship clearly have such a need. When
submitting evidence to court, it is vital to be able to say
with conviction and proof which features of a program
are those that identify an author. For example, we may
be able to assert with evidence that programmer A is the
author of a disputed program because the layout of that
program is highly similar to others written by programmer
A, or the variable and function names used closely resem-
ble those used elsewhere by programmer A – and that they
do not resemble those used by other programmers. In pla-
giarism cases, we need to know which features of the pro-
gram prove that code has been plagiarized, and by whom.
Is it, for instance, the function names used, the style of
comments, or the names of the variables?

A number of high-level features including those just
mentioned are considered here. The SCAP approach, based
on byte-level features, is used as a tool for assessing the sig-
nificance of high-level programming features. The
approach we have followed in order to measure the contri-
bution of each feature to authorship identification is to run
a sequence of experiments, each time removing (or disguis-
ing) a certain feature. We are then able to measure the
effect that each feature removal has on the authorship clas-
sification accuracy. This measure effectively indicates the
relative significance of this feature’s contribution to
authorship identification. The experiments have been per-
formed using programs written in Java and Common Lisp.
These two languages have been chosen as they represent
different styles of programming – Java is highly object-ori-
ented, while Common Lisp is multi-paradigm, supporting
functional, imperative, and object-oriented programming
styles.

The remainder of this paper is organized as follows. Sec-
tion 2 contains a review of past research efforts in the area
of source code authorship analysis, a description of the
SCAP approach and a discussion of the high-level features
that might influence source code authorship identification.
Section 3 describes the two data sets used: the Java data set
and the Common Lisp data set. Section 4 details all the
experiments performed on the two data sets in order to
examine which high-level programming features contribute
to authorship identification, and to what degree. Finally,
Section 5 summarizes the conclusions drawn by this study
and proposes future work directions.

2. Related work on code authorship

The first part of this section describes previous studies in
the area of source code authorship analysis and identifica-
tion. This is followed by a detailed description of the SCAP
approach, including conclusions of the method as
described in previous work (Frantzeskou et al., 2005,
2006). Also, this subsection includes a discussion about
the high-level features that might influence authorship
identification.

2.1. Previous studies

Although the programming languages used to produce
source code are much more syntactically restrictive than
natural languages, there is still a large degree of flexibility
available to the programmer when writing code (Krsul
and Spafford, 1995). As stated above, the conventional
authorship attribution methodology for programming lan-
guages requires two main steps (Krsul and Spafford, 1995;
MacDonell and Gray, 2001; Ding and Samadzadeh, 2004).
The first step is the extraction of data for selected features
that are said to represent each author’s style. The second
step normally involves the application of a statistical or
machine learning algorithm to these variables in order to
develop models that are capable of discriminating between
potentially several authors (Frantzeskou et al., 2004).

In general, when authorship attribution methods have
been developed for programming languages, the software
features used are language-dependent and require compu-
tational cost and/or human effort in their derivation and
calculation. The main focus of the early approaches was
on the definition of the most appropriate features in repre-
senting the style of an author. For instance, Oman and
Cook (1989) focused initially on typographic features of
(Pascal) programs and then collected a list of 236 style rules
that could be used as a base for extracting metrics dealing
with programming style (Oman and Cook, 1991). Spafford
(1989) conducted an analysis of the worm program, which
infected the Internet on the evening of 2 November 1988,
using three reversed-engineered versions. Coding style
and methods used in the program were manually analyzed
and conclusions were drawn about the author’s abilities
and intent. Benander and Benander (1989) built a Cobol
style analyzer in order to demonstrate that good program-
ming style improves programmer productivity. Longstaff
and Schultz (1993) focused their attention on code struc-
tures in their manual analysis of the WANK and OILZ
worms which in 1989 attacked NASA and DOE systems.
They concluded that three distinct authors worked on the
worms and inferred educational backgrounds and pro-
gramming levels for the alleged authors. More recent work
has considered the effectiveness of such features across
authorship identification, classification, discrimination
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and the like. Further work has addressed the data analysis
itself – which statistical or machine learning methods
appeared to be the most effective in answering questions
over authorship (Krsul and Spafford, 1995; MacDonell
and Gray, 2001; Ding and Samadzadeh, 2004).

Ideally, the selected features should have low within-
author variability, and high between-author variability
(Krsul and Spafford, 1995; Chaski, 1997). For program-
ming languages, previously proposed features (commonly
referred to as metrics given their emergence from token-
based code analysis) include (Krsul and Spafford, 1995;
Kilgour et al., 1998; Ding and Samadzadeh, 2004):

• Programming layout metrics: These are metrics that
characterise the form and the shape of the code. For
example, metrics that measure indentation, placement
of comments, and the use of white space.

• Programming style metrics: Such metrics include charac-
ter preferences, construct preferences, statistical distri-
bution of variable lengths, and capitalisation.

• Programming structure metrics: These are metrics
assumed to be related to the programming experience
and ability of the author. For example, such metrics
include the statistical distribution of lines of code per
function, the ratio of keywords per line of code, the rel-
ative frequency of use of complex branching constructs
and so on.

• Linguistic metrics: Metrics in this category enable the
capture of concepts that might be said to reflect the
maturity or capability of an author, such as deliberate
versus non-deliberate spelling errors, the degree to
which code and comments match, and whether identifi-
ers used are meaningful.

The earliest work in software forensics (Spafford and
Weber, 1993) focused on a combination of features reflecting
data structures and algorithms, compiler and system infor-
mation, programming skill and system knowledge, choice
of system calls, errors, choice of programming language,
use of language features, comment style, variable names,
spelling and grammar. Sallis et al. (1996) extended the work
of Spafford and Weber by suggesting some additional fea-
tures, such as cyclomatic complexity of the control flow
and the use of layout conventions. This general approach
– the extraction of metric features said to reflect an author’s
profile – has dominated work to date. Its application has
been described in a small number of empirical studies.

Krsul and Spafford (1995) automated the process just
described in order to identify the author of a program writ-
ten in C. The study relied on the use of three categories of
software metrics, reflecting layout, style and structure.
These features were extracted using a software analyzer
program from 88 programs written by 29 authors. A tool
was developed to visualize the metrics collected and help
select those metrics that exhibited little within-author var-
iation but large between-author variation. Discriminant
function analysis was applied on the chosen subset of met-
rics to classify the programs by author. The experiment
achieved 73% overall accuracy in classification using
leave-one-out validation.

Kilgour et al. (1998) and MacDonell and Gray (2001)
examined the authorship of computer programs written
in C++. In related work, Gray et al. (1998) developed a
dictionary-based system called IDENTIFIED (Integrated
Dictionary-based Extraction of Non-language-dependent
Token Information for Forensic Identification, Examina-
tion, and Discrimination) to enable the extraction, visual-
isation and analysis of source code metrics for authorship
classification and prediction. In MacDonell and Gray’s
(2001) work, satisfactory results were obtained for C++
programs using case-based reasoning, a feed-forward neu-
ral network, and multiple discriminant analysis. The best
prediction accuracy – at 88% for 7 different authors –
was achieved using case-based reasoning.

In more recently reported work focused on Java source
code, Ding and Samadzadeh (2004) investigated the extrac-
tion of a set of software metrics that could be used as a so-
called ‘fingerprint’ to identify the author of a program. The
contributions of the selected metrics to authorship identifi-
cation were measured by canonical discriminant analysis.
A set of 56 metrics of Java programs was proposed for
authorship analysis. Forty-six groups of programs were
diversely collected. Classification accuracies were up to
67.2% when the metrics were selected manually, while they
were up to 87.0% with the use of canonical variates.

While this approach to software forensics has been dom-
inant for the last decade it is not without its limitations.
The first is that at least some of the software metrics col-
lected are programming-language dependent. For example,
metrics specifically appropriate to Java programs are not
inherently useful for examining C or Pascal programs –
some may simply not be available from programs written
in a different language. The second limitation is that the
selection of useful metrics is not a trivial process and usu-
ally involves setting (possibly arbitrary) thresholds to elim-
inate those metrics that contribute little to a classification
or prediction model. Third, some of the metrics are not
readily extracted automatically because they involve judg-
ments, adding both effort overhead and subjectivity to
the process.

In sum, the previous work in author identification of
programming code has exhibited varying degrees of lan-
guage-dependence and has achieved a range of levels of
effectiveness. In this context, our goal is to provide a fully
automated, language-independent method with high reli-
ability for distinguishing authors and assigning programs
to programmers. Furthermore, we aim to identify the lan-
guage features that contribute to authorship identification
and measure the significance of their contribution.

2.2. The SCAP approach

Our approach to source code authorship attribution is
called the Source Code Author Profiles (SCAP) approach
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and is an extension of a method that has been successfully
applied to text authorship identification by Keselj et al.
(2003). Programming languages resemble natural lan-
guages. Both ‘ordinary’ texts written in natural language
and computer programs can be represented as strings of
symbols (words, characters, sentences, etc.) (Miller, 1991;
Kokol et al., 1999; Schenkel et al., 1993). While both rely
on the application of rules regarding the structure and for-
mation of artifacts, programming languages are more
restricted and formal than (many) natural languages and
have much more limited vocabularies. This has been dem-
onstrated by an experiment counting the number of charac-
ter n-grams (i.e. bigrams, 3-grams, 4-grams and so on)
extracted from three files equal in size (0.5 MB). One file
contained Java source code text, the second Common Lisp
code and the third English text. Fig. 1 shows the results of a
comparison of n-gram ‘density’, illustrating that the num-
ber of n-grams is much larger in the natural language text
for all but the smallest n-gram size.

2.2.1. Description of the SCAP method

The SCAP approach is based on the extraction and
analysis of byte-level n-grams. An n-gram is an n-contigu-
ous sequence and can be defined at the byte, character,
or word level. For example, the byte-level 3-grams
extracted from ‘The first’ are (the character _indicates the
space character): The, he_, e_f, _fi, fir, irs, rst. Byte, char-
acter and word n-grams have been used in a variety of
applications such as text authorship attribution, speech
recognition, language modelling, context sensitive spelling
correction, and optical character recognition.

The SCAP procedure is explained in the following steps
and is illustrated in Figs. 2 and 3 (Frantzeskou et al., 2005,
2006). Fig. 2 shows step 3 of the procedure (dealing with
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Fig. 3. Estimation of most likely author of an unknown source code
sample using the SCAP approach.
profile creation) in detail. The bolded numbers shown in
the figures indicate the corresponding step in the descrip-
tion that follows. The SCAP method, as it is described
below, calculates the most likely author of a given file for
different values of n-gram size n and profile length L.
Fig. 3 illustrates the SCAP procedure for specific values
of n-gram size n and profile size L. (For this reason Steps
4.1 and 4.2 are omitted from the diagram.)
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1. Divide the known source code programs for each author
into training and testing data.

2. Concatenate all the programs in each author’s training
set into one file. Leave the testing data programs in their
own files.

3. For each author training and testing file, get the corre-
sponding profile:
3.1 Extract the n-grams at the byte-level, including all

non-printing characters. That is, all characters,
including spaces, tabs, and new line characters
are included in the extraction of the n-grams. In
our analyses, Keselj’s (2003) Perl package
Text::N-grams has been used to produce n-gram
tables for each file or set of files that is required.

3.2 Sort the n-grams by frequency, in descending
order, so that the most frequently occurring n-
grams are listed first. The n-grams extracted from
the training file correspond to the author profile,
which will have varying lengths depending on the
length (in terms of characters) of the programming
data and the value of n (n-gram length). The pro-
file created for each author will be called the Sim-
plified Profile (SP).

3.3 Keep the L most frequent n-grams {x1,x2, . . . ,xL}.
The actual frequency is not used mathematically
except for ranking the n-grams.

4. For each test file, compare its profile to each author
using the Simplified Profile Intersection (SPI) measure:
4.1 Select a specific n-gram length, such as trigram

(For the experiments in this paper, we used a range
of lengths, 3-grams up to 10-grams).

4.2 Select a specific profile length L, at which to cut-off
the author profile, smaller than the maximum
author profile length.

4.3 For each pair of test and known author profiles,
create the SPI measure. Letting SPA and SPT be
the simplified profiles of one known author and
the test or disputed program, respectively, then
the similarity distance is given by the size of the
intersection of the two profiles:

jSP A \ SP T j
In other words, the similarity measure we propose
is the amount of common n-grams in the profiles
of the test case T and the author A.
4.4 Classify the test program to the author whose pro-
file at the specified length has the highest number
of common n-grams with the test program profile
at the specified length. In other words, the test pro-
gram is classified to the author with whom we
achieved the largest amount of intersection. We
have developed a number of Perl scripts in order
to create the sets of n-gram tables for the different
values of n (n-gram length), L (profile length) and
for the classification of the program file to the
author with the smallest distance (i.e., greatest
overlap). By shifting the n-gram length n and the
profile length L (or cut-off, or number of n-gram
types included in the SPI), we can test how accu-
rate the method is under different n, L

combinations.
2.2.2. Previous outcomes and our current goal

In summary, the conclusions reached in previous
research efforts in relation to the SCAP method are as fol-
lows (see Frantzeskou et al., 2005, 2006):

• One of the inherent advantages of this approach over
others is that it is language independent since it is based
on low-level non-metric information.

• Experiments with data sets in Java and C++ have
shown that it is highly effective in terms of classification
accuracy.

• Comments alone can be used to identify the most likely
author in open-source code samples, where there are
detailed comments in each program sample. Further-
more, the SCAP method can also reliably identify the
most likely author even when there are no comments
in the available source code samples.

• The SCAP approach can deal with cases where very lim-
ited training data per author is available or there are
multiple candidate authors, with no significant compro-
mise in performance.

• Many experiments are required in order to identify the
most appropriate combination of n-gram size n and pro-
file size L.

The principal research question addressed in this paper
is a follow-on from these outcomes: which are the high-
level programming language features that contribute most
to correct authorship classification? The provision of evi-
dence to support or refute claims of authorship depends
on our ability to answer this question (MacDonell et al.,
2002). Additionally, the work in this paper is a further eval-
uation of the effectiveness of SCAP approach, this time
using programs written in languages that represent two dif-
ferent programming styles: Java, which uses objects heav-
ily, and Common Lisp, which uses a functional/
imperative programming style.
2.2.3. Program features and source code authorship

identification

Computer programs are written according to strict
grammatical rules (context free and regular grammars)
(Floyd and Beigl, 1994). Programming languages have
vocabularies of keywords, reserved words and operators,
from which programmers select appropriate terms during
the programming process (Kokol and Kokol, 1996). In
addition, programs have vocabularies of numbers and
vocabularies of identifiers (names of variables, procedures,
functions, modules, labels and the like) created by pro-
grammers. These are, in general, not language dependent.

Based on previous research efforts (Ding and Samad-
zadeh, 2004; Krsul and Spafford, 1995) and the broad



Table 1
Accuracy of classification for the CLisp data set

Profile size (L) n-gram size

3 4 5 6 7 8 9 10

2000 63.2 63.2 68.4 68.4 68.4 68.4 73.7 73.7
3000 73.7 73.7 68.4 68.4 73.7 73.7 78.9 84.2
4000 68.4 84.2 73.7 78.9 89.5 84.2 84.2 89.5

5000 68.4 84.2 78.9 78.9 84.2 78.9 84.2 89.5

6000 68.4 84.2 78.9 78.9 84.2 78.9 78.9 84.2
7000 68.4 84.2 78.9 78.9 84.2 78.9 78.9 78.9
8000 68.4 84.2 84.2 78.9 84.2 78.9 78.9 78.9
9000 68.4 84.2 84.2 78.9 84.2 84.2 78.9 78.9

10,000 68.4 84.2 84.2 84.2 78.9 84.2 78.9 78.9
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language characteristics just described, the features that
could influence source code authorship attribution can be
considered in the following categorisation:

• Comments: Comments are the natural language text
statements created by the programmer that generally
explain the functionality of the program, possibly
including further information regarding the history of
the program’s development. The programmer is free to
use any words he or she prefers. Recently, a number
of authorship attribution approaches have been pre-
sented (Stamatatos et al., 2000; Peng et al., 2004; Cha-
ski, 2005) proving that the author of a natural
language (i.e. free-form) text can be reliably identified.
Thus, we assert that comments could contribute to
source code authorship identification.

• Programming layout features: This category includes
those features that deal with the layout of the program
and could reflect a programmer’s style. Such features
include indentation, placement of comments, placement
of braces and placement of tabs spaces.

• Identifiers: Each programmer is free to create his or her
own variable names, function names and similar labels.
Also, within a program there are commonly names not
created by the programmer but by the author of a pack-
age which is imported.

• Programming structure features: In previous research
efforts, this term has been used to describe certain lan-
guage-dependent features that might reflect source
authorship identification. For example, the ‘‘ratio of
keyword while to lines of non-comment code’’, or ‘‘ratio
of keywordprivate to lines of non-comment code’’. The
way this term is used in this paper is to describe the key-
words that are ‘‘built-in’’ to the language. In Java, this
maps to 59 reserved words and in Common Lisp to
978 symbols that are used in the Common Lisp package.

3. Datasets and initial empirical analysis

In order to check that the SCAP method works effec-
tively independent of any particular programming lan-
guage, a number of initial tests were performed on
programs written in two programming languages – Java
and Common Lisp. These languages were chosen because
they foster very different styles of programming. Following
this, a set of experiments were undertaken in order to assess
the importance of the factors above that are asserted to
contribute to authorship attribution (reported in the fol-
lowing section).

When using Java, the programmer must ‘create’ some
words when writing a program, such as a class name or a
method name (Lewis and Loftus, 1998). Other terms, such
as String,System.out.println, are not created by
the person who writes the piece of code but they are drawn
from the author of the Java API and are simply selected for
use by the programmer. Reserved words are terms that
have special meaning in a programming language and
can only be used in predefined ways. The Java language
comprises 59 reserved words, including for example
class, public, static and void.

The fundamental values manipulated by Common Lisp
are called atoms (Lamkins, 2004). An atom is either a num-
ber (integer or real) or a symbol that looks like a typical
identifier (such as ABC or L10). Their most common use
is to assign a label to a value. This is the role played by var-
iable and function names in other languages. Symbols can
be defined by the person who writes the program (for
example open-joysticks, padding-x) or by the
author of the package (sdl-data:data-file, sdl:i-
nit-video) or can be one of the built-in symbols found
in the Common Lisp package (for example array, gen-
sym). The Common Lisp package contains the primitives
of the Common Lisp system as defined by the language
specification (The Harlequin Group Ltd, 1996). It contains
978 symbols. All programs could use any of these symbols
as they are all defined by Common Lisp specification.
3.1. The Common Lisp data set

Common Lisp source code samples written by eight dif-
ferent authors were downloaded from the website fresh-
meat.net. The authors were from four different projects.
Two were from project1, three from project2, two from
project3 and one from project4. This distribution therefore
presented an additional challenge in terms of authorship
attribution, as we had programs on the same subject (pro-
ject) written by different authors. The total number of pro-
grams was 34. In order to ensure adequate splits of the
sample for each author, 16 programs were assigned to
the training set and 19 to the test set. The data set is from
this point referred to as the CLisp dataset. We ran a first
experiment on this data set, with all-features intact, to
establish benchmark classification accuracy figures
(referred to as the ‘‘CLisp benchmark’’) against which we
could compare performance after the removal of com-
ments. Table 1 shows the classification accuracy results
achieved on the test data set using various combinations
of profile parameter values. The highest level of accuracy
achieved on this dataset was 89.5%, shown in bold in the



Table 2
Accuracy of classification for the Java data set

Profile size (L) n-gram size

3 4 5 6 7 8 9 10

2000 58.8 88.2 94.1 94.1 94.1 82.4 88.2 88.2
3000 35.3 82.4 94.1 94.1 100 88.2 88.2 88.2
4000 35.3 70.6 82.4 100 94.1 88.2 88.2 88.2
5000 35.3 47.1 88.2 100 100 100 88.2 88.2
6000 35.3 41.2 76.5 94.1 100 100 88.2 94.1
7000 35.3 41.2 70.6 88.2 100 100 94.1 82.4
8000 35.3 41.2 70.6 82.4 94.1 100 94.1 100

9000 35.3 41.2 70.6 76.5 94.1 94.1 94.1 94.1
10,000 35.3 41.2 70.6 76.5 94.1 94.1 94.1 94.1
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table. The best results were achieved in three instances, all
where n > 6 and L > 3000. (Note that in all other experi-
ments performance is compared to that achieved with the
non-commented version of the data set, referred to as the
‘‘CLisp[or Java]NoCom benchmark’’, because our aim in
those tests was to consider the features of the source code
that contributed to authorship identification without the
‘influence’ of comments).
3.2. The Java data set

The Java data set included programs by eight different
authors. The programs were open source and were found
in the freshmeat.net web site. The programs were split into
equally sized training and test sets. In order to make the
classification ‘subject independent’ all programs from each
author that were placed in the training set were from a dif-
ferent project than the programs placed in the test set.
Hence, we had programs from 16 different projects, two
projects for each author. Consequently, the programs in
each set did not share common characteristics because they
were from different projects. The total number of programs
was 35. Eighteen programs were allocated to the training
set and 17 to the test set. This data set is from this point
referred to as the Java dataset. The results achieved in
the Java all-features benchmark experiment (referred to
as the ‘‘Java benchmark’’) with this data set are given in
Table 2. As can be seen, accuracy reaches 100% in several
cases, many of them for L > 4000 and n = 6, 7 and 8.
Table 3
Accuracy of classification for the CLispNoCom data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 63.2 63.2 63.2� 57.9� 63.2� 68.4 63.2� 63.2�
3000 68.4� 63.2� 63.2� 68.4 57.9� 68.4� 73.7� 68.4�
4000 68.4 68.4� 68.4� 68.4� 68.4� 68.4� 73.7� 68.4�
5000 68.4 68.4� 63.2� 68.4� 63.2� 73.7� 68.4� 73.7�
6000 68.4 68.4� 68.4� 68.4� 63.2� 73.7� 68.4� 73.7�
7000 68.4 68.4� 68.4� 73.7� 73.7� 73.7� 68.4� 73.7�
8000 68.4 68.4� 68.4� 73.7� 73.7� 73.7� 68.4� 68.4�
9000 68.4 68.4� 68.4� 73.7� 73.7� 73.7� 73.7� 73.7�

10,000 68.4 68.4� 68.4� 73.7� 73.7� 73.7� 73.7� 73.7�
4. Significance of high-level programming features

Focusing on the features said to influence authorship
identification, as described in Section 2.2.3, a set of exper-
iments was performed on both the Common Lisp and Java
program sets in order to measure each feature’s contribu-
tion to accurate classification. To aid understandability
of the following results, we have augmented the entries in
each table with an indication of comparative performance.
In all subsequent tables, the sign ‘–’ to the right side of a
value indicates a drop in accuracy in comparison with the
associated benchmark data (either all-features or NoCom),
the sign ‘+’ indicates increased accuracy, whereas no sign
alongside the value indicates the same level of performance.

4.1. Significant features for the Common Lisp data set

Our first set of experiments was conducted with the
Common Lisp programs. We retained the same split of
programs across training and test sets as used in the initial
empirical analysis reported above.

4.1.1. Contribution of comments

In order to assess the level of influence that comments
have on authorship attribution, all comments were
removed from the programs, including the documenta-
tion part of Common Lisp statements such as deffun,
defvar, defparameter. The accuracy achieved on the
test data set dropped from that reported previously in the
CLisp benchmark. Comparing the results obtained in this
experiment (on the CLispNoCom data set) with those
obtained from the analysis of the original Common Lisp
data set (i.e. comparing the results presented in Tables 1
and 3) we can see that accuracy dropped in 61 of the 72
cases, by 10.5% on average. In the remaining 11 cases,
accuracy remained the same. The conclusion we reach from
this experiment is that comments do appear to influence
authorship attribution in Common Lisp programs.

4.1.2. Contribution of layout

Does the layout of Common Lisp programs contribute
to authorship classification accuracy, and if yes, to what
degree? Note that in general, Common Lisp programs do
not differ a lot in terms of layout (Lamkins, 2004). The rea-
son for this is that Common Lisp’s simple, consistent syn-
tax eliminates the need for the rules of style that
characterize more complicated languages. The most impor-
tant prerequisite, in terms of legible Common Lisp code, is
a simple consistent style of indentation (Seibel, 2005).

The objective of this particular experiment was to assess
the contribution of program layout to authorship attribu-
tion. This was made possible by the removal of the layout
features of all programs in the CLispNoCom data set fol-
lowed by measurement of the effect that this had on classi-
fication accuracy. All programs were transformed to a
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unified-layout data set by removing all indentation and by
placing in the previous line of source code all parentheses
that were on a separate line. The resulting dataset is
referred to as the CLispLayout data set. The accuracy
results achieved with this dataset are given in Table 4.

Comparing the results obtained from this analysis with
the CLispNoCom benchmark results (comparing Tables 3
and 4), we found that the classification accuracy was unaf-
fected in 15 of the 72 cases, in 3 cases we attained better
results (by 5.3% on average) and in 54 cases classification
accuracy decreased (typically by about 5.5%). The conclu-
sion drawn from this experiment is that, in this case, lay-
out-related features have a consistent but relatively low
level of influence in correctly assigning authorship.
4.1.3. Contribution of identifiers

Another aspect of source code that is author-dependent
is the naming convention used. As explained earlier, in
Common Lisp the programmer creates his or her own sym-
bols that are analogous to identifiers in other languages. In
our experiments, we divided the symbols used in a Com-
mon Lisp program into two main categories and conducted
a separate experiment for the set of Common Lisp pro-
grams, masking instances of symbols from each category
in turn.

The first category comprises all symbols that are defined
by the programmer who wrote the piece of code. This
category is referred to as Symbol Name Identifiers. In the
second category, we include all symbols that are package-
related but do not belong to the Common Lisp package.
Lisp uses packages in order to avoid namespace collisions
in a group development environment. In some cases, these
symbols are not defined by the user who wrote the piece of
code but by the author of the package. These symbols can
be distinguished because they include the character ‘‘:’’.
Some examples of such symbols are foo:bar, :bar, and
cl::print-name. This category is referred to as Package
Name Identifiers.

4.1.3.1. Contribution of symbol name identifiers. The first
Identifiers experiment was conducted on the CLispNoCom
data set, after changing all names that belonged to the
Table 4
Accuracy of classification for the CLispLayout data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 57.9� 57.9� 63.2 57.9 57.9� 63.2� 57.9� 63.2
3000 63.2� 57.9� 63.2 63.2� 63.2+ 57.9� 68.4� 57.9�
4000 63.2� 68.4 63.2� 73.7+ 63.2� 68.4 68.4� 63.2�
5000 63.2� 63.2� 63.2 68.4 63.2 68.4� 68.4 68.4�
6000 63.2� 63.2� 63.2� 68.4 68.4+ 68.4� 68.4 68.4�
7000 63.2� 63.2� 63.2� 68.4� 68.4� 68.4� 68.4 68.4�
8000 63.2� 63.2� 63.2� 68.4� 68.4� 68.4� 68.4 68.4
9000 63.2� 63.2� 63.2� 68.4� 68.4� 68.4� 68.4� 68.4�

10,000 63.2� 63.2� 63.2� 68.4� 68.4� 68.4� 68.4� 68.4�
Symbol Name Identifiers category to unique identifiers.
This action neutralized the effect that these names might
have had on authorship attribution. If the same identifier
was used in two different files then it was changed to two
different unique names. An example could be the symbol
name ‘action’ that was used (perhaps by a certain program-
mer) in two different programs. It was changed to ‘a123’ in
the first program and ‘a234’ in the second. The data set
thus derived is referred to as CLispSymbol.

The accuracy results obtained in this experiment are
shown in Table 5. Comparing these results with the CLi-
spNoCom benchmark results, it can be seen that in 17
out of the 72 cases we had poorer attribution performance
(by about 13.0% on average), in 33 cases the same level of
accuracy was achieved, and in 22 cases we achieved
improved results (by 6.7% on average). This is explained
in part by the fact that the unique identifiers, that replaced
the user-defined names, eliminated some of the common n-
grams between programs from different authors, which
were based on coincidentally common variable names
between different programmers. The conclusion drawn
from these rather mixed results is that the names defined
by the user in Common Lisp programs do not play a signif-
icant role in authorship attribution using the SCAP
method.
4.1.3.2. Contribution of package name identifiers. Similarly,
in the second Common Lisp Identifier experiment each
name in the training and test program sets that pertained
to the Package Naming category was changed to a unique
identifier, affecting multiple instances as above. (All the
names that belonged to the first category remained
unchanged.) An example could be the name cl:print-

name used in two different programs. It was changed to
b45:b671 in the first file and to c56:k43 in the second. This
action eliminated all common n-grams between the test and
author profiles that were based on package-related names.
The resulting data set is referred to as CLispPackNam.

The attribution accuracy results obtained from this
experiment can be seen in Table 6. Comparing these results
with the CLispNoCom benchmark results, it can be
observed that in 34 of the 72 cases we achieved poorer
Table 5
Accuracy of classification for the CLispSymbol data set

Profile
size
(L)

n-gram size

3 4 5 6 7 8 9 10

2000 73.7+ 68.4+ 73.7+ 57.9 68.4+ 63.2� 57.9� 63.2
3000 47.4� 68.4+ 73.7+ 73.7+ 68.4+ 68.4 68.4� 73.7+

4000 47.4� 68.4 73.7+ 73.7+ 73.7+ 68.4 68.4� 73.7+

5000 47.4� 68.4 68.4+ 73.7+ 73.7+ 73.7 73.7+ 63.2�
6000 47.4� 68.4 68.4 73.7+ 73.7+ 73.7 73.7+ 68.4�
7000 47.4� 68.4 68.4 73.7 73.7 73.7 73.7+ 68.4�
8000 47.4� 68.4 68.4 73.7 73.7 73.7 73.7+ 68.4
9000 47.4� 68.4 68.4 73.7 73.7 73.7 73.7 68.4�

10,000 47.4� 68.4 68.4 73.7 73.7 73.7 73.7 68.4�



Table 6
Accuracy of classification for the CLispPackNam data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 63.2 57.9� 63.2 52.6� 63.2 57.9� 52.6� 52.6�
3000 63.2� 57.9� 68.4+ 63.2� 63.2+ 57.9� 63.2� 52.6�
4000 63.2� 68.4 68.4 68.4 68.4 68.4 57.9� 57.9�
5000 63.2� 68.4 73.7+ 68.4 68.4+ 68.4� 57.9� 63.2�
6000 63.2� 68.4 73.7+ 68.4 68.4+ 73.7 57.9� 57.9�
7000 63.2� 68.4 73.7+ 73.7 68.4� 73.7 57.9� 57.9�
8000 63.2� 68.4 73.7+ 79.0+ 73.7 73.7 57.9� 57.9�
9000 63.2� 68.4 73.7+ 79.0+ 79.0+ 73.7 63.2� 57.9�

10,000 63.2� 68.4 73.7+ 79.0+ 79.0+ 73.7 63.2� 63.2�
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accuracy outcomes (by approximately 9.1% on average), in
23 cases we achieved the same level of accuracy, and in 15
cases we achieved better results (typically by about 5.6%).
Overall, we conclude that in this case Package Naming
does influence accuracy, albeit only slightly, and that it
seems to have a greater impact than Symbol Naming.

4.1.3.3. Contribution of all identifiers. One further experi-
ment was conducted to assess the impact of the neutralizing
of all names, belonging to either the Symbol or Package
Name category. The data set derived is referred to as CLis-
pAllNames. This would show us the effect of naming as a
whole on authorship classification accuracy. The results
of this experiment are presented in Table 7. Comparing
these results with those obtained for the CLispNoCom
benchmark, accuracy decreased in 34 of the 72 cases (by
8.2% on average), it was improved in 27 cases (by around
6.4%) and in 11 cases it was the same as for the benchmark
data. Again, the improvement in accuracy is explained by
the fact that the unique identifiers, that replaced the user-
defined names, eliminated some of the common n-grams
between programs from different authors, which were
based on coincidentally common variable names between
different programmers.
4.2. Significant features for the Java data set

Our second set of experiments was conducted using the
set of open source Java programs described previously. We
Table 7
Accuracy of classification for the CLispAllNames data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 63.2 73.7+ 79.0+ 63.2+ 63.2 63.2� 59.0� 68.4+
3000 57.9� 68.4+ 79.0+ 68.4 63.2+ 63.2� 59.0� 68.4
4000 57.9� 73.7+ 73.7+ 73.7+ 73.7+ 63.2� 59.0� 68.4
5000 57.9� 73.7+ 73.7+ 73.7+ 68.4+ 73.7 63.2� 68.4�
6000 57.9� 73.7+ 73.7+ 73.7+ 68.4+ 73.7 63.2� 63.2�
7000 57.9� 73.7+ 73.7+ 73.7 68.4� 68.4� 63.2� 63.2�
8000 57.9� 73.7+ 73.7+ 73.7 68.4� 68.4� 63.2� 59.0�
9000 57.9� 73.7+ 73.7+ 73.7 68.4� 68.4� 63.2� 52.6�

10,000 57.9� 73.7 + 73.7+ 73.7 68.4� 68.4� 63.2� 52.6�
retained the same split of programs across training and test
sets as used in the initial empirical analysis reported above.

4.2.1. Contribution of comments

By removing the comments from the original data set we
were able to evaluate their impact on classification accu-
racy. The results achieved for this new data set, referred
to as JavaNoCom, are shown in Table 8. Comparing the
results shown in this table with those obtained from the
analysis of the original data set represented as the Java
benchmark (i.e. comparing Tables 2 and 8) we can see that
in 5 out of 72 cases we achieved the same levels of accuracy,
in 17 cases the results were better (by 12.5% on average)
and in 50 cases the results were worse (typically by
14.5%). The dominance of poorer results leads us to con-
clude from this experiment, that comments do play an
important role in authorship attribution in Java programs.

4.2.2. Contribution of layout

In order to assess the contribution of program layout to
authorship classification we needed to first create a data set
with a unified-layout style for all authors. To achieve this,
we transformed the programs in the JavaNoCom data set
with the use of the style formatter SourceFormatX. The
coding style used by the formatter is based on the layout
style devised by Sun Microsystems (1999).

The layout features that were unified were as follows:

• All braces were placed on a separate line.
• The indentation of braces was made uniform at two

blank characters.
• A blank character was added after each conditional

statement, a comma and a semicolon.
• Line length was set to a maximum of 80 characters.
• Long lines were split.
• A blank character was added on the right and left side of

the following symbols: ; , if and ?.
• A blank character was added on the right and left side of

all operators. Operators included were: ==, +,-, *, /,%,
+=, -=, *=, /=,!=,%=, =,>,<,>=, <=,& & ,jj,&
,j,^,�,�,�>,& =,j=, ^=,�=,�=,�>=
Table 8
Accuracy of classification for the JavaNoCom data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 52.9� 58.8� 70.6� 76.5� 70.6� 76.5� 82.4� 82.4�
3000 41.2+ 70.6� 64.7� 76.5� 76.5� 82.4 � 76.5� 82.4�
4000 41.2+ 64.7� 70.6� 82.4� 76.5� 82.4� 76.5� 76.5�
5000 41.2+ 64.7+ 70.6� 82.4� 82.4� 82.4� 82.4� 82.4�
6000 41.2+ 64.7+ 70.6� 88.2� 82.4� 82.4� 76.5� 88.2�
7000 41.2+ 64.7+ 70.6 88.2 82.4� 82.4� 70.6� 76.5�
8000 41.2+ 64.7+ 70.6 88.2+ 82.4� 82.4� 70.6� 76.5�
9000 41.2+ 64.7+ 70.6 88.2+ 82.4� 82.4� 70.6� 76.5�

10,000 41.2+ 64.7+ 70.6 88.2+ 82.4� 82.4 � 70.6� 76.5�



Table 9
Accuracy of classification for the JavaLayout data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 41.2� 23.5� 47.1� 52.9� 47.1� 47.1� 41.2� 52.9�
3000 17.6� 29.4� 29.4� 29.4� 41.2� 52.9� 52.9� 52.9�
4000 17.6� 29.4� 29.4� 35.3� 29.4� 41.2� 41.2� 47.1�
5000 17.6� 29.4 35.3� 29.4� 35.3� 35.3� 41.2� 35.3�
6000 17.6� 29.4� 35.3� 17.6� 35.3� 35.3� 41.2� 35.3�
7000 17.6� 29.4� 35.3� 17.6� 35.3� 35.3� 41.2� 35.3�
8000 17.6� 29.4� 35.3� 17.6� 35.3� 35.3� 41.2� 35.3�
9000 17.6� 29.4� 35.3� 17.6� 35.3� 35.3� 41.2� 35.3�

10,000 17.6� 29.4� 35.3� 17.6� 35.3� 35.3� 41.2� 35.3�

Table 10
Accuracy of classification for the JavaUserNam data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 52.9 76.5+ 76.5+ 82.4+ 82.4+ 88.2+ 82.4 82.4
3000 47.1+ 76.5+ 88.2+ 88.2+ 88.2+ 82.4 76.5 88.2+

4000 47.1+ 64.7 82.4+ 88.2+ 88.2+ 88.2+ 88.2+ 88.2+

5000 47.1+ 64.7 76.5+ 88.2+ 88.2+ 82.4 88.2+ 88.2+

6000 47.1+ 64.7 76.5+ 88.2 88.2+ 88.2+ 82.4+ 88.2

7000 47.1+ 64.7 76.5+ 88.2 82.4 88.2+ 88.2+ 88.2+

8000 47.1+ 64.7 76.5+ 88.2 82.4 88.2+ 88.2+ 88.2+

9000 47.1+ 64.7 76.5+ 88.2 82.4 88.2+ 88.2+ 88.2+

10,000 47.1+ 64.7 76.5+ 88.2 82.4 88.2+ 88.2+ 88.2+
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The resulting dataset is referred to as JavaLayout. The
accuracy levels achieved in author attribution with this
data set are shown in Table 9. Comparing these results with
the JavaNoCom benchmark results, we can see that perfor-
mance was worse in all 72 cases, by about 38.6% on aver-
age. In other words, for this data set at least, the impact
that the layout-related features have on authorship attribu-
tion is significant. In many cases the accuracy drops below
40%.

4.2.3. Contribution of identifiers

As for the Common Lisp data set, we addressed the
influence of Identifiers on Java program authorship attri-
bution through three experiments, dealing with the effect
of user-defined identifiers, package name identifiers and
then their combination in turn.

4.2.3.1. Contribution of user-defined identifiers. The aim of
the first experiment was to assess the degree to which the
names defined by the programmer contributed to author-
ship identification. This category included all simple vari-
able names, method names, class names, class variable
names and so on that were defined within the program by
the programmer. All instances of these names were changed
to a unique identifier comprised of a letter and a number. If
the same name was used in more than one program, these
were changed to different unique identifiers in order to elim-
inate the common byte-level n-grams based on these vari-
ables (thus creating a conservative test). The only
identifiers that were left unchanged for this experiment were
those that were not user defined but were imported using the
import statement at the beginning of the program.

The results achieved with this data set (referred to as
JavaUserNam) are shown in Table 10. By comparing these
results to those obtained from the analysis of the JavaNo-
Com benchmark, it can be observed that accuracy
remained the same in 23 of the 72 cases and was in fact
improved in the other 49 cases (by 9.0% on average). This
indicates that, in this case, the names defined by the user
did not contribute positively to authorship attribution.
This apparent improvement in accuracy for many of the
n, L combinations is explained by the fact that, as evident
in the programs in this sample, many programmers use the
same names for simple variables or class variable names or
methods. Some examples of the commonly used names
encountered across different programmers were name, e,
file, text, and x. The byte-level n-grams derived from these
commonly used names were responsible for the incorrect
classification of some programs in the JavaNoCom dataset.
By making each user-defined identifier unique in each pro-
gram, we eliminated all these common n-grams across the
different programmers, thus improving overall classifica-
tion accuracy.

4.2.3.2. Contribution of package-related name identifiers.

This experiment was performed to evaluate the degree to
which package-related naming contributed to accurate
authorship attribution. Any program written in Java can
have a number of import package statements (with associ-
ated naming) at the beginning of the file. The import state-
ments allow all classes and methods of the associated
packages to be visible to the classes in the current program.
These packages could be either project-related (an example
could be the org.alltimeflashdreamer.util.

StringUtils package) or one of the numerous stan-
dard packages defined in Java (for instance the java.io.
FileInputStream package). The second case is the
more commonly used. The project-related packages in
our sample were a very small percentage – less than 1%
of all packages. Among the standard classes and their
related methods defined by Java that were ‘neutralized’
were the class String, File and IOException, which
are used heavily by all programmers. This experiment
was performed in a similar way as the previous one, the
only difference being that in this experiment we changed
only names within the program that were related to all
imported packages, leaving all user-defined names
unchanged. This data set is referred to as JavaPackNam.
The authorship attribution results for this experiment are
shown in Table 11. In general, they indicate that pack-
age-related naming does reflect authorship identification.
Comparing these outcomes with the JavaNoCom bench-
mark, the results are worse (by about 11% on average) in
55 of the 72 cases, in 7 cases performance was improved
(by typically 5.9%) and in 10 cases the same levels of accu-
racy were achieved.



Table 11
Accuracy of classification for the JavaPackNam data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 47.1� 52.9� 64.7� 52.9� 70.6 70.6� 70.6� 70.6�
3000 41.2 64.7� 64.7 64.7� 70.6� 70.6� 70.6� 70.6�
4000 41.2 70.6+ 58.8� 70.6� 70.6� 70.6� 70.6� 70.6�
5000 41.2 70.6+ 64.7� 70.6� 64.7� 64.7� 64.7� 70.6�
6000 41.2 70.6+ 64.7� 70.6� 70.6� 64.7� 64.7� 70.6�
7000 41.2 70.6+ 64.7� 70.6� 70.6� 64.7� 64.7� 70.6�
8000 41.2 70.6+ 64.7� 70.6� 70.6� 64.7� 64.7� 70.6�
9000 41.2 70.6+ 64.7� 70.6� 70.6� 64.7� 64.7� 70.6�

10,000 41.2 70.6+ 64.7� 70.6� 70.6� 64.7� 64.7� 70.6�

Table 13
Summary of results for the set of CLisp programs

Dataset Worse Same Better Mean accuracy (%)

CLisp 78.0
CLispNoCom 61 (�10.5%) 11 0 69.0
CLispLayout 54 (�5.5%) 15 3 (5.3%) 65.1
CLispSymbols 17 (�13%) 33 22 (6.7%) 68.0
CLispPackNam 34 (�9.1%) 23 15 (5.6%) 65.9
CLispAllNam 34 (�8.2%) 11 27 (6.4%) 67.3

Table 14
Summary of results for the set of Java programs

Dataset Worse Same Better Mean accuracy (%)

Java 79.3
JavaNoCom 50 (�14.5%) 5 17 (12.5%) 72.2
JavaLayout 72 (�38.6%) 0 0 33.7
JavaUserNam 0 23 49 (9.0%) 78.3
JavaPackNam 55 (�11%) 10 7 (5.9%) 64.5
JavaAllNam 29 (�8.3%) 9 34 (17.8%) 77.3
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4.2.3.3. Contribution of all identifiers. For this experiment,
all names were changed. This included simple variables,
class variables and methods defined by the programmer
and all class names and method names imported with the
import package statement(s) at the beginning of each pro-
gram. The resulting data set is referred to as JavaAll-
Names. The purpose of this experiment was to assess the
extent of influence that all names used within a program
had on authorship attribution. The programs were changed
so that all names were replaced by unique identifiers. If the
same name appeared in more than one program, it was
replaced by a different identifier in each case. The results
achieved from the analysis of this data set are given in
Table 12. In comparing these levels of accuracy against
those obtained for the JavaNoCom benchmark, it appears
that the likelihood of improvement and deterioration are
roughly equivalent – in 9 cases the results were the same,
in 34 they were better (by about 17.8%) and in 29 cases they
were worse (by about 8.3% on average).
Table 15
High-level features and mean accuracy deviation – Common Lisp
programs
4.3. Summary of performance

We here provide a set of summary tables that illustrate
the various levels of accuracy achieved under the different
experimental scenarios for each data set.

In Tables 13 and 14, the numbers shown in the second,
third and fourth columns are out of the 72 considered in
total in each experiment, with the number in parentheses
indicating the mean deviation from the associated bench-
Table 12
Accuracy of classification for the JavaAllNames data set

Profile
size (L)

n-gram size

3 4 5 6 7 8 9 10

2000 76.5+ 82.4+ 76.5+ 70.6� 70.6 70.6� 70.6� 70.6�
3000 64.7+ 88.2+ 82.4+ 82.4+ 70.6� 70.6� 70.6� 70.6�
4000 64.7+ 88.2+ 88.2+ 82.4 76.5 70.6� 70.6� 70.6�
5000 64.7+ 88.2+ 88.2+ 88.2+ 82.4 70.6� 64.7� 70.6�
6000 64.7+ 88.2+ 88.2+ 88.2 88.2+ 76.5� 64.7� 70.6�
7000 64.7+ 88.2+ 88.2+ 88.2 88.2+ 76.5� 64.7� 70.6�
8000 64.7+ 88.2+ 88.2+ 88.2 88.2+ 76.5� 64.7� 70.6�
9000 64.7+ 88.2+ 88.2+ 88.2 88.2+ 76.5� 64.7� 70.6�

10,000 64.7+ 88.2+ 88.2+ 88.2 88.2+ 76.5� 64.7� 70.6�
mark data set. For the ‘comments removed’ experiment
(row 2 in each table), the benchmark data set is the original
all-features set (referred to as ‘CLisp benchmark’ and ‘Java
benchmark’ respectively). For the remaining experiments,
the benchmark data set is the ‘NoCom’ version for each
language.

The relative contribution of the various high-level pro-
gram features to authorship attribution are summarised
in Tables 15 and 16 (for the Lisp and Java programs,
respectively). Again, the values for the ‘Comments’ entries
reflect the difference between the original all-features pro-
grams and those excluding comments. The remaining dif-
ferences are between the ‘NoComments’ versions and
those produced through manipulation of the other
features.

In examining the results presented in Tables 15 and 16, it
is evident that, as might be expected, comments play a sig-
nificant role in authorship attribution, an outcome that
Original/Comments 9.0%
NoComments/Layout 3.9%
NoComments/Identifiers:Symbols 1.0%
NoComments/Identifiers:Package 3.1%
NoComments/Identifiers 1.7%

Table 16
High-level features and mean accuracy deviation – Java programs

Original/Comments 7.1%
NoComments/Layout 38.5%
NoComments/Identifiers:User Defined (6.1%)
NoComments/Identifiers:Package 7.7%
NoComments/Identifiers (5.1%)
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holds across both the Common Lisp and Java experiments.
Layout is the next most influential feature, but was much
more significant in our Java analysis than in our experi-
ments with Common Lisp code. The use of Identifiers pro-
duced mixed outcomes. In assessing its impact on Common
Lisp authorship, naming had a small but evident impact on
the ability to identify an author using the SCAP approach.
While the same outcome was found in relation to Package
Naming in Java code in fact the removal of user-defined
names enhanced the levels of classification accuracy. While
initially unexpected, an explanation for this was identified
in terms of the incidence of coincidentally common names
in programs written by different authors.

5. Conclusions

A number of experiments have been performed in order
to identify and assess the impact of high-level program fea-
tures that contribute to source code authorship attribution,
using the Source Code Author Profile approach. In these
experiments, programs written in two languages that repre-
sent two different programming styles were used: Java,
which uses objects, and Common Lisp, which uses a func-
tional/imperative programming style. We acknowledge
that this is just one set of experiments, and that further
work could be done with larger samples, other languages
and so on. Having said that, we intentionally selected lan-
guages that represent two different programming styles, so
that insights into a range of languages might be gained.
Given language similarities it could be expected that pro-
grams written in C++ would have similar results to those
achieved with Java code, and Prolog programs should
behave similarly to Lisp programs. The code used in the
data sets was Open Source, which also implies that it fol-
lows (without being mandatory) the code conventions rec-
ommended by the Open Source Community (Spinellis,
2006), thus reducing the distinctions that might arise if pro-
grammers were allowed to use their ‘natural’ approach.

In each case one feature at a time was either removed or
‘neutralised’, in order to provide a means of measuring the
difference between classification accuracy with and without
the feature available. The results of these experiments (pre-
sented in summary form in Tables 13–16) have shown the
following for the data sets assessed here:

• The accuracy of source code authorship attribution is
improved by the existence of comments in the code.

• Layout-related features play a role in determining pro-
gram authorship, but the extent to which this is an influ-
ential characteristic may vary from language to
language. In our experiments, the level of impact for
the programs written in Java was substantial, but this
level was much lower for the programs written in Com-
mon Lisp. (The contribution of layout-related features
in identifying the author of a Java program is also a con-
clusion reached by Ding and Samadzadeh (2004).)
• Variable and function names defined by the programmer
do not seem to influence classification accuracy – and in
fact in some cases accuracy might be improved by ‘neu-
tralizing’ these names. This is due to the fact that pro-
grammers have been shown to use the same names for
simple variables, class variable names, methods or func-
tions. In our case, this conclusion certainly applied to
the Java programs, and to those written in Common
Lisp to a lesser extent.

• Package-related naming influences accuracy, an out-
come evident for programs written in both languages.

Overall, the authorship of Java programs was generally
more susceptible to influence, with particularly high influ-
ence from program layout. In comparison, the authorship
of Common Lisp programs did not appear to be as
strongly influenced by the features we considered. This
could be explained by the fact that the programming struc-
ture features that remained unchanged, influence author-
ship identification more in Common Lisp than in Java,
perhaps because Common Lisp has a richer vocabulary
than Java.

This study did not examine the influence that program-
ming structure features had on authorship identification.
As these features are influenced heavily by the program
topic, it would be necessary to create a special data set in
order to check their contribution. This data set should con-
tain sufficient programs from each author (8–10 programs)
where each program has been written by all the authors of
interest. Thus, by examining the contribution of each lan-
guage keyword, the result will be related to each author’s
choice and not to the underlying program algorithm.

One of the implications of our work is that future
authorship identification systems, which are intended to
explain ‘why’ it is claimed that a piece of code is written
by a particular author, should concentrate on the features
that are the most important in determining authorship
based on the findings of this study.

On the other hand, systems that deal with plagiarism
detection could use the findings of our work in order to
locate the features of a piece of code that could be plagiar-
ised. For example, when looking for plagiarism in a piece
of code written in Java one should first concentrate on
the comments and the layout of the program and not on
the user-defined identifiers which might be otherwise one
of the most obvious first choices.

Analysis of code written in other languages would add
to our understanding of the influence of particular pro-
gramming features – as the SCAP method is language-inde-
pendent it is ideally suited to such work. Further research
could include applying the SCAP approach to programs
written by the same authors in different languages. Finally,
another useful direction worthy of research investigation
would be the discrimination of different programming
styles – and authors – in collaborative and community-
authored projects.
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