
A Framework for Exploiting Security Expertise in
Application Development

Theodoros Balopoulos1, Lazaros Gymnopoulos1, Maria Karyda1, Spyros Koko-
lakis1, Stefanos Gritzalis1, Sokratis Katsikas1

1 Laboratory of Information and Communication Systems Security (Info-Sec-Lab),
Department of Information and Communication Systems Engineering,

University of the Aegean, Samos, GR-83200, Greece
{tbalopoulos, lazaros.gymnopoulos, mka, sak, sgritz,

ska}@aegean.gr
http://www.icsd.aegean.gr/info-sec-lab/

Abstract. This paper presents a framework that enables application developers
make use of security expertise. This is succeeded with the help of security on-
tologies and the employment of security patterns. Through the development of
a security ontology developers can locate the major security-related concepts
and locate those relevant to the application context. Security patterns provide
tested solutions for accommodating security requirements. Finally, the main
features of the framework are listed with respect to related work.

1 Introduction

Incorporating security features in the development of applications is an issue that has
been attracting the attention of both researchers and developers. To address this issue
many solutions have been proposed; some of which are described in section 3 of this
paper. However, these solutions are either not always easily applicable in practice, or
limited in scope. Therefore, incorporating security requirements in the application
development process still remains an open issue. This paper proposes a framework
that allows developers to make use of the available security expertise by employing
ontologies and security patterns that enable the capture, articulation and reuse of
designated solutions to known security issues and requirements.

The paper is structured as follows. Section two reports on the method of work fol-
lowed, which resulted in the framework proposed in this paper. Section three de-
scribes the related work. Section four provides a detailed description of the frame-
work and section five compares the proposed framework to related approaches. Fi-
nally, the last section provides our overall conclusions and the directions for future
research.

2 Method of work

The framework proposed in this paper is the outcome of a research project exploring
ways for the effective introduction of security attributes in the process of application
development. Within the research process, security ontologies were first employed in
order to explore how they can help developers better understand the application con-
text and communicate with security experts. Results of these efforts have already
been published in ([1], [2], [3]). Following this, our research indicated that security
patterns would be an appropriate tool for capturing security expertise, and that this
can be formalized by employing security ontologies. Thus, based on the ontologies
developed, we explored the use of security patterns in the specific application con-
texts: we designed an appropriate structure for security patterns and a security pat-
terns repository [4]. This paper presents the holistic framework employed, which we
believe can provide a useful solution for developers, especially those involved in the
development of security critical applications.

3 Related approaches

3.1 UMLsec

UMLsec [5] is a standard UML extension. It allows for the incorporation of security-
related information in UML diagrams and supports mechanisms that verify that the
security requirements are indeed fulfilled. However, it does not provide step-by-step
instructions for reaching this end. The security requirements that can be expressed
and validated using UMLsec include confidentiality, integrity, secure information
exchange and access control. The major UML diagrams that UMLsec builds upon are
the following [6]:

• Class diagrams, which are used to assure that information exchange satisfies
the security level stated in the requirements.

• Statechart diagrams, which are used to avoid covert information paths be-
tween higher and lower security level entities.

• Interaction diagrams, which are used to verify secure interaction between en-
tities.

• Deployment diagrams, which are used to deal with the security of the physi-
cal layer.

3.2 The Ontology-Driven Approach to Information Security

Raskin et al [7] advocate an ontological semantic approach to information security.
Both the approach and its resources, the ontology and lexicons, are borrowed from
the field of natural language processing and adjusted to the needs of the security do-
main. This approach pursues the following goals: (i) the inclusion of natural language
data sources as an integral part of the overall data sources in information security
applications, and (ii) the formal specification of the information security community

know-how for the support of routine and time-efficient measures to prevent and coun-
teract computer attacks.

3.3 The Tropos Approach to Modeling Security

Mouratidis et al [8] have presented extensions to the Tropos ontology to enable it to
model security issues of agent-based systems. They have introduced the concept of
security constraints that allow functional, nonfunctional and security requirements to
be defined together, yet being clearly distinguished. They argue that their work makes
it easy to identify security requirements at the early requirements stage and propagate
them until the implementation stage.

4 Framework for Secure Applications Development

This paper presents a holistic framework, which is depicted in Figure 1, for incorpo-
rating security characteristics and accommodating security requirements in applica-
tion development.

Fig. 1. The framework for secure application development

In [2] we have proposed a methodology for developing security ontologies that can
by used to support the process of applications development. In [3] we have presented
the use of the developed ontologies in two different application contexts in the area of
electronic government. Furthermore, in [4] we have elaborated on the use of security

patterns for secure application development and presented the security patterns re-
pository that has been developed throughout this research project.

The framework proposed in this paper constitutes an integrated approach that is
addressed to developers that face the need for employing specialized knowledge, and
helps them to make use of recorded solutions to known security issues. This holistic
framework for application development, builds on the use of ontologies and security
patterns, as presented in our previous work that was described above.

Key actors in this framework include (a) the information system stakeholders, i.e.
the application users, the administrators and the management, (b) security experts
whose knowledge and expertise is needed to enhance the application development
process by successfully introducing security features in applications, and (c) the ap-
plication developers. The latter are the ones that can use this framework for accom-
modating all different requirements and objectives with regard to security.

Information system stakeholders along with security experts and the software de-
velopers set the business and security objectives for the specific application. Existing
security expertise is used along with the knowledge of the environment in which the
specific application is going to be deployed in order to introduce environment spe-
cific security requirements. To achieve this, the basic concepts populating the appli-
cation context need to be captured and articulated; this is done through the develop-
ment of the corresponding ontology. Developers can also use existing ontologies or
ones that have been developed for similar contexts, as suggested in [3].

4.1 The Security Ontology

An ontology is a description of the entities and their relationships and rules within a
certain domain [9]. Ontologies have been widely used within the fields of artificial
intelligence, expert systems and the semantic web, mainly for knowledge representa-
tion and sharing. Computer programs can use ontologies for a variety of purposes
including inductive reasoning, classification, a variety of problem solving techniques,
as well as to facilitate communication and sharing of information between different
systems. Ontologies are a great tool for defining and communicating the different
ways in which people perceive a specific domain. Security ontologies are ontologies
covering the domain of security [10].

The Security Ontology depicted in Figure 1 aims at capturing and recording avail-
able knowledge regarding business and security objectives of a specific application
development environment. The process followed for developing the security ontol-
ogy, based on the method proposed in [11], was iterative and included four phases:
determining competency questions, enumerating important terms, defining classes
and the class hierarchy, and finally, the instantiation of the hierarchy.

The competency questions which guided the security development process were
loosely structured security oriented questions that the developed security ontology
should be able to answer. These questions were taken from typical situations devel-
opers face when confronted with security requirements. Next, the most important
terms with regard to security were enumerated; the most important of them formed
ontology classes; others formed properties of classes and some were not used at all.

In the next phase, the class hierarchy was developed. There are three different ap-
proaches in developing a class hierarchy: (a) the top-down approach, where one starts
with the definition of the most general concepts of the domain and then goes to the
more specialized ones, (b) the bottom-up approach, which starts with the definition of
the most specific classes that constitute the leaves of the hierarchy while grouping of
these classes into more general concepts follows, and (c) a combination of the two.

To develop the security ontologies presented in [2] and [3] we followed the third
of the strategies described previously; our rich set of competency questions fitted well
with the top-down approach and resulted in a class hierarchy close the final. Then the
bottom-up approach was employed to fit in the remaining concepts.

To examine the rigor of the Security Ontology developed we used queries ex-
pressed in the new Racer Query Language (nRQL). This language can be directly
used with databases produced by instantiated ontologies through the use of the Pro-
tégé software [12] and its Racer interface engine [13]. Further details concerning
nRQL queries can be found in [14].

4.2 Security Patterns Repository

Patterns are characterized as solutions to problems that arise within specific contexts
[15]. The concept was first used in architecture, but it gained wide acceptance in
software engineering with the book “Design Patterns” [16]. The motivation behind
the introduction and use of patterns can be summarized as a wish to exploit the possi-
bility of reusability. Thus, patterns are used as “a basis to build on, and draw from,
the collective experience of skilled designers” [15].

Security patterns were first introduced by Yoder and Barcalow [16] who based
their work on [17]. A security pattern can be defined as a particular recurring security
problem that arises in a specific security context, and presents a well-proven generic
scheme for its solution [18].

In the proposed framework patterns are used for the same reasons expressed
above. Moreover, having in hand the respective ontology – that is a generic descrip-
tion of the security context – developers can easily choose patterns that correspond to
that context from a generic list of patterns.

Employing an ontology for the specific application context enables developers to
deal with security requirements more effectively. To make use of existing knowledge
however, a more concrete solution is needed. Security patterns provide this solution,
as they contain both the description of security issues (which can correspond to the
requirements) and the indicated method or tool that addresses these issues.

Not all patterns have the same granularity or address security requirements at the
same level. For designing the Security Patterns Repository depicted in Figure 1, we
have adopted the categorization proposed in [18]. The different categories include:

1. Architectural patterns that refer to the high level software development process.
2. Design patterns that refer to the medium level and refine the components of an

application as well as the relationships between them.
3. Idioms are patterns at the lowest level and are related and affected by the pro-

gramming language that is used each time.

In [4] we have presented a detailed description of the security patterns comprising
the Repository built. Table 1 presents a detailed description of each one of them while
Table 2 indicates the category they belong to.

Table 1. Security Patterns Comprising the Repository

Pattern Name Description of the pattern
Authentication This pattern allows users to access multiple components

of an application without having to re-authenticate con-
tinuously. It incorporates user authentication into the
basic operation of an application.

Password authentication This pattern concerns protection against weak passwords
and automated password guessing attacks.

Credentials propagation This pattern requires that users’ authentication creden-
tials are verified by the database before access is pro-
vided.

Cryptographic storage This pattern uses encryption for storing sensitive or
security-critical data in the application.

Encrypted Communica-
tions

This pattern uses encryption for the secure transmission
of sensitive or security-critical data over a network.

Session Management
(protection of specific
session)

This pattern provides that users cannot skip around
within a series of session regarding a specific function
(task) of an application. The system will not expose
multiple functions but instead will maintain the current
task that the users desire.

Hidden implementation This pattern limits an attacker’s ability to discern the
internal workings of an application—information that
might later be used to compromise the application.

Partitioned application This pattern splits a large, complex application into two
or more simpler components. Thus, dangerous privileges
are restricted to a single, small component. Each compo-
nent has tractable security concerns that are more easily
verified than in a monolithic application

Patching During the application lifetime, bugs and vulnerabilities
are discovered; patches must be provided to address
these issues.

Logging - auditing Applications and components offer a variety of capabili-
ties to log events that are of interest to administrators and
other users. If used properly, these logs can help ensure
user accountability and provide warning of possible
security violations

Table 2. Patterns’ Categorization

Pattern Name Pattern category
Authentication Architectural
Password authentication Architectural
Credentials propagation Architectural
Cryptographic storage Design
Encrypted Communications Design
Session Management Idiom
Hidden implementation Architectural
Partitioned application Architectural
Patching Design
Logging - auditing Design
SandBoxing Idiom

5 Comparison with other approaches

The proposed framework has the following features:
• It captures the knowledge of security experts, and aims to use it to address

the needs of the software developer. Other approaches, such as [5] and [7]
are not focused on the software developer, but on the security expert.

• It employs an ontology to model information. This ontology deals with
objects of higher structure than other approaches (such as [7] or [8]),
namely security patterns, thus being able to suggest solutions and promote
reusability more effectively.

• It proposes a different instantiation of the ontology per security context.
This allows it to model the fine details that a general ontology such as the
one proposed in [7] is much more difficult to capture.

• It is not limited in context, unlike approaches such as [4], which is dedi-
cated to agent-based systems.

• It can be utilized to search among the possible solutions for the one that
best fits the context, unlike approaches such as [5] that are utilized to vali-
date an already chosen solution.

6 Conclusions and Further Research

This paper presents a combined approach to incorporating security knowledge and
expertise in the application development process. It advocates the development and
employment of security ontologies, which (a) can facilitate the communication among
the different parties involved, i.e. developers, security experts and the application
stakeholders and (b) provide a way to capture and describe the basic security-related

concepts, e.g. the security requirements the application should comply with. More-
over, the use of ontologies helps aggregate different views on the security features of
the application. However, the use of ontologies has some limitations, since their con-
struction is hard and time-consuming, and there is no standardized procedure to fol-
low. Finally, the use of security patterns, through the creation of a repository, enables
developers use standard solutions for accommodating these requirements.

Up to now, this research project has produced a set of security ontologies for simi-
lar application environments that mostly relate to electronic government, as well as a
series of patterns, covering different aspects of security requirements in applications,
that correspond to the ontologies. The next steps in the research process include cov-
ering different domains (e.g. the domain of health applications), as well as designing
the basic mechanisms for adding functionality to the security patterns repository, and
more specifically enabling their management (adding, comparing, deleting, associa-
tion etc.).

Acknowledgments

This work was co-funded by 75% from the European Union and 25% from the Greek
Government, under the framework of the “EPEAEK: Education and Initial Voca-
tional Training Program—Pythagoras”.

References

1. Balopoulos T., Dritsas S., Gymnopoulos L., Karyda M., Kokolakis S. and Gritzalis S., “In-
corporating Security Requirements into the Software Development Process’, in Proceedings
of the 4th European Conference On Information Warfare And Security, University of Gla-
morgan (ECIW 05), UK, 11-12 July 2005.

2. Dritsas S., Gymnopoulos L., Karyda M., Balopoulos T., Kokolakis S., Lambrinoudakis C.,
Gritzalis S., “Employing Ontologies for the Development of Security Critical Applications:
The Secure e-Poll Paradigm”, in Proceedings of the IFIP I3E International Conference on
eBusiness, eCommerce, and eGovernement, October 2005, Poznan, Poland, Springer Ver-
lag.

3. Karyda M., Balopoulos T., Dritsas S., Gymnopoulos L., Kokolakis S., Lambrinoudakis C.,
Gritzalis S., "Using Security Ontologies for the development of secure e-Government appli-
cations", in Proceedings of the DeSeGov'06 Workshop on Dependability and Security in
eGovernment (in conjunction with ARES 2006 1st International Conference on Availability,
Reliability, and Security) A. Tjoa, E. Schweighofer (Eds.), April 2006, Vienna, Austria,
IEEE Computer Society Press

4. Gymnopoulos L., Karyda M., Balopoulos T., Dritsas S., Kokolakis S., Lambrinoudakis C.
and Gritzalis S. “Developing a Security Patterns Repository for Secure Applications De-
sign” in the Proceedings of the 5th European Conference on Information Warfare and Secu-
rity (ECIW 2006), National Defence College, Helsinki, Finland.

5. Jurjens, J. (2001) Towards development of secure systems using UMLsec, Lecture Notes in
Computer Science, 2029:187.

6. Stevens, P. et al (2000) Using UML. Addison-Wesley.
7. Raskin, V., Hempelmann, C., Triezenberg, K., and Nirenburg, S.: Ontology in Information

Security: A Useful Theoretical Foundation and Methodological Tool. In Viktor Raskin and

Christian F. Hempelmann, editors, Proceedings of the New Security Paradigms Workshop,
New York. ACM, (2001).

8. Mouratidis, H., Giorgini, P., Manson, G.: An Ontology for Modelling Security: The Tropos
Project. Proceedings of the KES 2003 Invited Session Ontology and Multi-Agent Systems
Design (OMASD'03), United Kingdom, University of Oxford, (2003).

9. Gruber T. R., “Toward principles for the design of ontologies used for knowledge sharing,”
Presented at the Padua workshop on Formal Ontology, March 1993.

10. Filman R. and Linden T., Communicating Security Agents, In Proceedings of The Fifth
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises, Stanford,
CA, USA, 1996, pp. 86-91.

11. Noy, N.F. and Mc Guinness, D.L. "Ontology Development 101: A Guide to Creating Your
First Ontology", Stanford Knowledge Systems Laboratory Technical Report KSL-01-05.
2001.

12. Protégé, http://protege.stanford.edu/
13. Racer Inference Engine, http://www.sts.tu-harburg.de/~r.f.moeller/racer/
14.The New Racer Query Language, http://www.cs.concordia.ca/~haarslev/racer/racer-

queries.pdf
15. Schumacher M., Fernandez-Buglioni E., Hybertson D., Buschmann F., and Sommerland P.,

Security Patterns: Integrating Security and Systems Engineering, John Wiley & Sons, 2006.
16. Yoder, J., Barcalow, J.: Architectural Patterns for Enabling Application Security. In: Proc.

4th Conference on Pattern Languages of Programs (PLoP 1997), Monticello, IL, USA,
1997.

17. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns – Elements of Reusable
Object-Oriented Software, Addison-Wesley Professional, 1995.

18.Schumacher M. (2003), Security Engineering with Patterns : Origins, Theoretical Models,
and New Applications, Paperback, 2003

