
Chapter 1

A Middleware Architecture for Ambient

Adaptive Systems

C. Goumopoulos

Abstract Ambient adaptive systems have to use mechanisms to regulate themselves

and change their structure in order to operate efficiently within dynamic ubiquitous

computing environments. First of all we outline a survey on existing middleware

solutions for building ambient adaptive systems. After, discussing the limitations

of the existing approaches, we present our propositions for a middleware architec-

ture to support dynamic adaptation within ambient environments. Our approach is

based on the Service-Oriented Architecture (SOA) paradigm which can be consid-

ered as an evolution of the component-based design paradigm. The aim is to use

component interfaces for the identification and automated connection of compo-

nents acting as service providers/consumers. The proposed middleware provides a

solution that supports the adaptation of applications at the structural level, where the

structure of the application can change through dynamic service composition. We

call this adaptation ‘polymorphism’ in analogy with the synonymous term found in

the object-oriented programming paradigm. Besides SOA, we use a set of intelli-

gent agents to support adaptive workflow management and task realization based

on a dynamically composed ontology of the properties, services and state of the

environment resources. An experimental prototype is provided in order to test the

middleware developed.

1.1 Introduction

Intelligent environments (IE), like smart homes, offices and public spaces, are fea-

tured with a large number of devices and services that help users in performing effi-

ciently various kinds of tasks. Combining existing services in pervasive computing

environments to create new distributed applications can be facilitated by middleware

architectures, but this should accomodate special design considerations, including

Christos Goumopoulos

Research Academic Computer Technology Institute, Patras, Greece, e-mail: goumop@cti.gr

1

2 C. Goumopoulos

context awareness, adaptation management, device heterogeneity, and user empow-

erment [6].

Traditional middleware, such as Remote Procedure Calls [4], OMG CORBA

[11], Java Remote Method Invocation (RMI) [44] and Microsoft Distributed Com-

ponent Object Model (DCOM) [20] facilitate the development of distributed appli-

cations and help to resolve problems such as tackling the complexity of program-

ming inter-process communication and the need to support services across heteroge-

neous platforms. However, traditional middleware is limited in its ability to support

adaptation.

Ambient adaptive systems which are a special category of distributed systems

operate in a dynamic environment. The dynamicity of the environment may relate

with evolving user requirements and varying execution context due to the diversity

of available devices, user preferences and services. Consequently there is a need

for both applications and infrastructure to be designed for change. The evolution of

user requirements calls for system evolution. The dynamic execution environment

calls for dynamic adaptation. In order to allow evolution, the internal structure of

the system must be made open in order to support proactive and reactive system

reconfiguration.

In this work, we present firstly a survey of the state-of-the-art on existing middle-

ware solutions for building adaptive ambient systems. After, discussing the limita-

tions of the existing approaches, we present our propositions for middleware archi-

tecture to support dynamic adaptation within ambient environments. Our approach

uses the service-oriented architecture paradigm coupled with agents and ontolo-

gies. The aim is to use component interfaces for the identification and automated

connection of components acting as service providers/consumers. The proposed

middleware provides a solution that supports the adaptation of applications at the

structural level, where the structure of the application can change through dynamic

service binding. Behavioural adaptation, not examined here, is also possible when

the application logic is changed as a result of learning. An experimental prototype

is provided in order to test the middleware developed.

1.2 Related Work

Three key paradigms that can be used to build adaptive systems are computational

reflection, Aspect-Oriented Programming (AOP) and service oriented architectures.

Researchers have also explored the possibility to combine different paradigms such

as AOP and reflection in middleware systems to increase support for the develop-

ment of dynamic distributed systems [19]. In the following we examine how each

one of these paradigms can support the development of adaptive systems.

1 A Middleware Architecture for Ambient Adaptive Systems 3

1.2.1 Reflective Middleware

In principle computational reflection allows a program to observe and modify its

own structure and behavior at runtime, by providing a self-representation that can

be accessed and changed by the program [31]. More importantly, these changes

must be causally reflected to the actual computations performed by the program.

In particular, the architecture of reflective systems follows a kind of “white-box”

approach that provides comprehensive access in the internal details of a system al-

lowing dealing with highly dynamic environments, for which run time adaptation

is required. This is conceptually contrary to the encapsulation principle in objec-

toriented programming followed by traditional middleware that adopt the remote

object model. The reflection technique was used initially in the domain of program-

ming languages as a means to help designing more open and extensible languages.

The reflection is applied also in other domains including operating systems and dis-

tributed systems. Recently, reflection has been also applied in middleware, which

needs to adapt its behavior to changing requirements when operating in a dynamic

environment [27]. The dynamic modification of the middleware implementation al-

lows for the adaptation of the behavior of distributed applications that are based on

this middleware. Typically, reflective middleware provides adaptation of behavior

of distributed applications in terms of non-functional requirements such as QoS,

security, performance and fault tolerance.

A reflective system is organized into two levels called base-level and meta-level.

The former represents the basic functionality of the system. The latter models the

structural and computational aspects of the base level in order to observe or modify

the behavior of the objects that exist in the base level, assuming an object-oriented

system. The reflective approach supports the inspection and the adaptation of the

underlying implementation (base-level) in run-time. A reflective system provides a

meta-object protocol (MOP) in order to determine the services that are available in

meta-level and their relationship to the base-level objects[26]. The meta-level can

be accessed via a process called reification. Reification is the disclosure of certain

hidden aspects of the internal representation of the system in terms of programming

entities that can be manipulated at runtime. The “opening of” implementation offers

a simple mechanism in order to interpose some behavior (e.g., add a method in an

object, save the state of the object, check security issues, etc.) with a view to watch

or alter the internal behavior of the system.

Reflection enables an application to adjust its behaviour based on a reflective

middleware that allows inspecting and adapting its own behavior according to ap-

plication’s needs. Figure 1.1 shows schematically a simple example of this situa-

tion. A meta-object (mObj) has been defined at the meta-level and is associated

through MOP to a base-level object (Obj) belonging to some middleware imple-

mentation. An application calls a method of the middleware (Obj.Method())

which is reified through MOP and a defined object with a specified reference

(ref). This object is passed to the associated meta-object that executes a method

(mObj.mMethod(ref)). This method executes a logic specified by the MOP in-

terface and then passes control to the original method through a reflection method

4 C. Goumopoulos

(base_Method(ref)). The meta-object receives the results, performs any post-

processing specified by the MOP and returns to the calling application.

Fig. 1.1 An application calling a method in a reflective middleware.

A category of reflective systems support a higher level reflection in the sense that

they can add or remove methods from the objects and classes dynamically and even

change the class of an object in run-time. The practical result is to be able to restrict

the size of middleware with a minimal total of operations that can run in devices with

limited resources. On the contrary, other systems are focused in simpler reflective

forms in order to achieve a better performance. Their reflective mechanisms are not

part of the normal flow of control and are only called when needed.

Middleware systems that integrate reflection in their architecture have been de-

veloped as research prototypes. In the following we cite a few examples of reflective

middleware. A number of early systems such as FlexiNet [22], OpenCorba [30], dy-

namicTAO [28] and OpenORB [5] were based on CORBA and targeted flexibility

and dynamic reconfigurability of Object Request Broker (ORB). However, these

systems suffered from the heavy computational load imposed by CORBA. Capra et

al in [7] discuss CARISMA, which uses reflection to support dynamic adaptation

of middleware behaviour to changes in context (e.g., adapting a streaming encoder

binding in variable QoS conditions) and ReMMoC, which uses reflection to han-

dle heterogeneity requirements imposed by both applications and underlying de-

vice platforms. Both approaches target a minimal reflective middleware for mobile

devices where pluggable components can be used by developers to specialize the

middleware to suit different devices and environments, thus solving heterogeneity

issues. QuA middleware explores the principle of mirror-based reflection to design

a reflective API according to the programming abstractions defined by a language

1 A Middleware Architecture for Ambient Adaptive Systems 5

[14]. In the QuA middleware approach a mirror can be defined to reflect a service, in

terms of middleware abstractions like type, interface, service and binding, without

being dependent the running instances.

Even though reflection is a powerful mechanism to construct adaptive systems

there are still issues that need to be understood and solved. The performance of re-

flective middleware is a matter that is open for further research. The majority of

reflective systems impose a rather heavy workload that would cause significant per-

formance deterioration in devices with limited resources and there is always a trade-

off issue between performance and scope of adaptability. Another issue that needs

to be addressed is dynamically tuning the scope of changes when reconfiguring the

system based on adaptation semantic information.

1.2.2 Aspect Oriented Programming

Aspect-Oriented Programming (AOP) [24] is a software development paradigm

that emphasizes decomposition of complex programs in terms of intervened cross-

cutting aspects, such as QoS, security, persistence, fault-tolerance, logging and re-

source utilization. This is different from other programming paradigms which em-

phasize functional decomposition breaking a problem into units like procedures,

objects and modules. For instance, object-oriented programming uses inheritance

hierarchies to abstract commonalities among classes, however global aspects (affect

many classes) are implemented in an ad-hoc manner and become tightly intermixed

with classes, which makes changes to the program difficult and error prone. On

the other hand, AOP supports the concept of separation of concerns to counter this

problem. AOP defines the methods and tools to separate cross-cutting aspects dur-

ing development time. The source program consists of modules that deal with the

different aspects that are described independently. All these modules are integrated

during compile (statically) or run time (dynamically) to form a global application

with new behaviour using a composition tool called aspect weaver.

AOP combines principles of object-oriented programming and computational re-

flection discussed in the previous section. AOP languages have functionality similar

to, but more restricted than meta-object protocols and use a few key concepts: join

points, point cuts, and advices. A join point is a place, in the source code of the pro-

gram, where aspect-related code can be inserted. A join point needs to be address-

able and understandable by an ordinary programmer to be useful. It should also be

stable across typical program changes in order for an aspect to be stable across such

changes. Aspect weaving relies on the concept of point cut, i.e. the specification of a

set of join points according to a given criterion, and advice, i.e. the definition of the

interaction of the inserted code with the base program. An advice specifies whether

the inserted code should be executed before, after, or in replacement for the opera-

tions located at the point cuts. Two Java based composition tools that implement the

AOP paradigm are AspectJ [25] and JAC [34].

6 C. Goumopoulos

AOP benefits outlined above are important to adaptive middleware. Such ap-

proach enables the separation of middleware cross-cutting concerns (e.g., security,

logging) at development time and later at compile or run time, where these con-

cerns can be selectively woven into application code. Using AOP, tailored versions

of middleware can be generated for application-specific domains. In the following

we cite a few examples of adaptive middleware developed based on AOP principles.

Yang et al in [45] proposes a systematic approach for preparing an existing pro-

gram for adaptation and defining dynamic adaptations. The approach uses a static

AOP weaver at compile time and reflection during run time. This basic scheme has

been followed by others researchers also. Frei et al in [13] present an architecture

supporting dynamic AOP that establishes an event infrastructure to extend existing

application’s behavior at runtime. When the application extension is activated, the

dynamic AOP platform inserts an AOP aspect into the AOP platform which inter-

cepts the application’s execution and monitors its progress. Whenever the applica-

tion reaches selected points in the execution, the AOP platform redirects the execu-

tion to the appropriate application extension. The memory footprint of the platform

is however quite heavy (1MB) to run on resource-constrained devices. Similarly,

Maciel da Costa et al in [9] discuss an adaptive middleware architecture, based on

aspects, which can be used to develop adaptive mobile applications. A mail server

prototype was implemented based on Web Services, Java and AspectJ technologies

to evaluate the architecture regarding operation adaptation depending on resource

utilization (e.g., power consumption).

AOP has advantages, such as separation of cross-cutting concerns, but presents

also difficulties. Programming in terms of aspects requires much more than just

identifying the different aspects of concern. It requires being able to express those

aspects of concern in a way that is precise and that makes the relations among the

aspects of concern precise. This is what enables the aspect weaver to work, and is

also what makes possible reasoning about the code or debugging the code. Another

important problem related to AOP is the composition of aspects. For instance, if

different pieces of aspect-related code are inserted at the same join point, the order

of insertion may be relevant if the corresponding aspects are not independent. Such

issues cannot usually be settled by the weaver and call for additional specification.

Finally, most AOP approaches do not support adequate point cut descriptions to

capture join points based on context data and business-level semantics.

1.2.3 Service-Oriented Architecture

The Service Oriented Architecture (SOA) paradigm has been envisioned as an evo-

lution of the component-based engineering paradigm centered on the concept of

service [12]. This can be applied in the design of distributed applications that are

seen as a composition of services. In addition, the service concept can be applied

recursively, since a system component can provide a service, but simultaneously it

can encapsulate a composition of services from its service requestors.

1 A Middleware Architecture for Ambient Adaptive Systems 7

In an SOA environment, resources on a network are made available as inde-

pendent services that can be accessed without knowledge of their underlying plat-

form implementation. A provided service is usually embodied in a set of interfaces,

each of which represents an aspect of the service. In general this set contains the

operations that a service supports, and some information on how to access these

operations. Service interfaces can be published in registries, which also provide ser-

vices themselves (publish and discovery services), allowing the potential service

requestors to discover and access these services (Figure 1.2).S e r v i c eD i r e c t o r yS e r v i c eC o n s u m e r S e r v i c eP r o v i d e rR e g i s t e r sI n v o k e sF i n d s S e r v i c eR e q u e s t o r S e r v i c eB r o k e rS O A P S e r v i c eP r o v i d e rW S D L W S D LU D D IS O A M o d e li m p l e m e n t e d w i t hW e b S e r v i c e sT e c h n o l o g i e s
Fig. 1.2 SOA conceptual model.

The independent deployment of services enables late binding which is essential

for adaptive systems. Late binding provides the opportunity for dynamic composi-

tion of services or for swapping two compatible services at run time through a well

defined interface. In the SOA paradigm, we can view two abstraction levels of the

service concept. Elementary services are basic functionalities, usually provided by

resources (e.g., devices) in an AmI environment. Composite services assemble a set

of functionalities in relation to user tasks, and thus are closer to user actual goals.

Service composition has widely been addressed in the Web Service field. Existing

composition frameworks [8] enable expressing and enacting complex service com-

positions. However, they rely on explicitly named services, which are not discovered

dynamically. On the contrary, the Semantic Web Services (SWS) approach [32] is

a step toward dynamic service discovery and composition [40], [10], where intelli-

gent systems try to build composite services from abstract user requirements with or

without manual selection of services. SWS leverage knowledge representation tech-

niques, with ontologies describing a domain in a formal manner, and AI planning

methods to make composition systems more autonomous.

Although, Web Services are a key implementation technology of the SOA

paradigm, the main standards defined to implement the SOA paradigm (i.e., WSDL,

UDDI, SOAP) emphasize interoperability rather than the capability to accommodate

seamless changes at runtime. Frameworks based on ontologies, such as METEOR-S

[42], also lack flexible mechanisms for the distribution of information about services

as they require the adoption of shared ontologies that impose the distribution pol-

icy. Regarding composition, Business Process Execution Language (BPEL) is the

de-facto standard [1]. It takes a workflow-oriented approach to the coordination of

8 C. Goumopoulos

cooperating services and provides a good solution for the design-time composition

of heterogeneous components wrapped as WSDL services. However, runtime iden-

tification of partner services is not addressed and thus the degree of dynamism and

flexibility is limited.

1.2.4 Overview

Based on the above discussion we give in the following table an overview of the rel-

ative advantages/shortcomings of the three middleware design paradigms regarding

their support to the development of adaptive systems.

Table 1.1 Pros and cons of the three middleware design paradigms.

Paradigm Pros Cons

Reflective Mid-

dleware

• a system can modify its structure and

behavior at runtime

• achieves variable system size to suit

different devices and environments

• changes made to the self-

representation are immediately mir-

rored in the underlying system’s ac-

tual state and behavior (causally con-

nected)

• conceptually contrary to the encap-

sulation principle

• usually heavy computational load

and low performance

• dynamically tuning the scope of

changes based on adaptation semantic

information is still an open issue

Aspect Ori-

ented Program-

ming

• supports the concept of separation of

concerns

• separates cross-cutting aspects dur-

ing development time (e.g., security,

logging)

• combines principles of object-

oriented programming and compu-

tational reflection

• may give large memory footprint

• programming in terms of aspects is

not easy

• the order of insertion may be rele-

vant if the corresponding aspects are

not independent (composition of as-

pects)

• does not support adequate point cut

descriptions to capture join points

based on context data and business-

level semantics

Service-

Oriented Ar-

chitecture

• modular design appropriate for adap-

tation and reconfiguration

• late binding of services

• composite services can be defined

from simple ones

• main standards defined to implement

SOA provide support for interoperabil-

ity

• automatic service composition is not

trivial

• main standards defined to implement

SOA provide limited capability to

accommodate seamless changes at

runtime

• limited degree of dynamism and

flexibility

In this work, we describe an approach based on the SOA paradigm. Besides SOA

a novel mechanism is proposed to achieve different kinds of adaptation centered

upon the management of knowledge, which is encoded in multi-layered ontologies,

which are used by intelligent agents.

1 A Middleware Architecture for Ambient Adaptive Systems 9

1.3 ATRACO Architecture

Ambient Intelligence (AmI) is a paradigm that puts forward the criteria for the de-

sign of the next generation of UbiComp environments [37]. In this context we have

introduced the Ambient Ecology (AE) metaphor to conceptualize a space populated

by connected devices and services that are interrelated with each other, the environ-

ment and the people, supporting the users’ everyday activities in a meaningful way

[16].

In the context of the EU funded R&D project ATRACO [18] we aim to extend

the AE concept by developing a conceptual framework and a system architecture

that will support the realization of adaptive and trusted AEs which are assembled

to support user goals in the form of Activity Spheres (ASs). Our approach is based

on a number of well established engineering principles, such as the distribution

of control and the separation of service interfaces from the service implementation,

adopting a SOA model combined with intelligent agents and ontologies. Agents sup-

port adaptive planning, task realization and enhanced human-machine interaction

while ontologies provide knowledge representation, management of heterogeneity,

semantically rich resource discovery and adaptation. ATRACO ASs are dynamic

compositions of distributed, loosely-coupled and highly cohesive components that

operate in dynamic environments.

Therefore the architecture and the system we propose operate in an AmI envi-

ronment, which is populated with people and an AE of devices and services. Our

basic assumption is that the AE components are all autonomous, in the sense that (a)

they have internal models of their properties, capabilities, goals and functions, and

(b) these models are proprietary and “closed”, that is, (i) they are not expressed in

some standard format and (ii) they can only be changed by the owner components.

However, each component can be queried and will respond using a standardized

protocol.

1.3.1 ATRACO World Model

The concepts discussed below constitute a critical subset of the ATRACO concep-

tual framework defined for building AmI applications.

The basic terms and concepts of the ATRACO world model are encoded in the

ATRACO Upper Level Ontology (ULO). In general, ontology is used as the means

to share information among heterogeneous parties in a way that is commonly un-

derstood [21]. An ontology is a network of concepts and entities, which can be

associated with different types of relations (the most common being the hierarchi-

cal association, or is-a relation). More concrete (or domain) ontologies contain also

instances of these entities with specific properties and values. More powerful on-

tologies contain constraints and rules that cause inferences for the entities. Figure

1.3 illustrates in UML representation the AS domain model which is also encoded

as ontology in the ATRACO ULO.

10 C. Goumopoulos

Table 1.2 ATRACO main concepts and corresponding descriptions.

Concept Description

Ambient Ecol-

ogy (AE)

The set of heterogeneous artefacts with different capabilities and provided ser-

vices that reside within an Intelligent Environment (IE).

Activity

Sphere (AS)

It is formed to support an actor’ specific goal. An AS represents both the model

and the realization of the set of information, knowledge, services and other

resources required to achieve an individual goal within an IE. The concept

of AS is a “digitization” of the concept of “bubble” used by the psychologist

Robert Sommer [39] to describe a temporary defined space that can limit the

information coming into and leaving it.

Intelligent

Environment

(IE)

A territory that has both physical properties and offers digital services. It is the

container of AE. ASs are instantiated in an IE using the resources provided by

its AE.

Artefact A tangible object which bears digitally expressed properties; usually it is an

object or device augmented with sensors, actuators, processing, networking

unit etc. or a computational device that already has embedded some of the

required hardware components.

Actor Any member of AE capable of setting and attaining goals by realizing activi-

ties. Within the AE actors are users or agents.

Goal Each actor may have its own set of goals and plans to achieve them. A goal is

described as a set of abstract tasks, which is described with a task model.

Task Model It may be abstract or concrete. An abstract task model describes what should

be done, without details of how it should be done or by the use of what kind

of modality; these are described in the corresponding concrete model. The

abstract task model may also contain several decomposition rules modelled as

a set of subtasks.

Local Ontol-

ogy (LO)

Each member of the AE stores locally descriptions of its properties, services

and capabilities. It is a sub-class of the class Ontology.

Sphere Ontol-

ogy (SO)

The SO results from the LO of those AE members that are required to achieve

the AS’s goal based on the resolution of its task model. Apart from device and

service ontologies, it may contain user profiles, agent rule bases and policies.

It is another sub-class of the class Ontology.

Agent A software module (is a kind of actor) capable of pursuing and realizing plans

in order to achieve specific goals based on tasks. It includes three types of

agents: Task Agent (e.g., Fuzzy systems based Task Agent or FTA), who ma-

nipulates sensors and actuators in order to realize specific tasks; Planning

Agent (PA), who resolves an abstract task hierarchy into concrete tasks using

the resources of the AE; and Interaction Agent (IA), who manages user-system

interaction using a mixed-initiative dialogue model.

User The actor that uses the available services and devices in order to perform a task.

When a user performs a task, this can be subdivided into different activities.

Users use devices, which provide them with services. Devices run these ser-

vices in a physical environment (context). Users use these services according

to personal conditions (user profile) and within a physical context.

Aim It is attributed to a user; it is decomposed into a set of interrelated goals, which

are distributed to the components of the AS.

Policy Actors specify high-level rules for granting and revoking the access rights to

and from different services. Examples of policy ontologies are privacy policy

ontology, interaction ontology and conflict resolution policy ontology.

Service The entity which describes the service offered by a device.

Device The entity that has physical/digital properties and offers a specific service.

Resource A resource can be the space, an entity, or a component, such as managers (e.g.

Ontology Manager, Sphere Manager) or other basic components.

1 A Middleware Architecture for Ambient Adaptive Systems 11A c t i v i t y S p h e r eU s e rR e s o u r c e F T AD e v i c e S e r v i c e I A P AA i mS p h e r e O n t o l o g y 1 11 . . N 1 11 . . N 1 . . N G o a l 1T a s k M o d e l1 . . NP o l i c yP r i v a c y C o n f l i c t R e sA d a p t a t i o n
1 . . N

Fig. 1.3 Activity Sphere domain model (part of ATRACO ULO).

1.3.2 System Requirements

For the requirement analysis and design of the ATRACO architecture we followed a

process where initially application scenarios were defined and application require-

ments from a user perspective were identified. In addition as a separate process we

defined high-level requirements on system perspective. Then initial requirements

were used as input for a process of abstraction that allowed identifying a set of chal-

lenges that the architecture has to address, in order to frame further design [18].

These challenges are organized in the following categories:

Challenge 1: Assemble/Dissolve The first challenge has naturally to do with the

formation and the dissolution of ATRACO applications (ASs). ASs encapsulate

the Ambient Ecology resources that are necessary to serve the goal for which

the AS has been created. ATRACO supports adaptation and trust requirements of

ASs by integrating into the AS services of the system components that develops.

Challenge 2: Adaptability Adaptability implies that an AS should attempt to

continuously provide expected behaviour by adapting to unexpected conditions

such as changes to the resources constituting the system or changes in the behav-

ior of the user.

To this effect, the ATRACO system components are defined that adapt task-based

usage of the sphere to the changing user behaviour, environment conditions and

context. ATRACO implements mechanisms that support adaptability in several

forms:

• activity sphere adaptation, in terms of structural adaptation: the persistent

achievement of the goal when changes on the type or cardinality of the avail-

able resources occur

• behavioural adaptation, where the application logic is changed as a result of

changes in the user and/or device behavior. This category is specialized as

12 C. Goumopoulos

– artefact adaptation (the system examines how an artefact can adapt its

model of operation in reaction to changes in the device characteristics e.g.,

handling a partial failure of a heater) and

– user behaviour model adaptation (an agent will learn and adapt its rule

base to face the changes in the user desires and preferences by monitoring

the user actions e.g., the user decides to read in bed, therefore requires her

bedside lamp to be on instead of her reading light).

• user interaction adaptation specifies adaptation interacting with the user using

different devices/modalities depending on available resources, environment

characteristics, tasks and user profile.

• network adaptation to allow the uniform and transparent access to devices

and services present in the networked environment supporting the realization

of activity spheres across a mixture of heterogeneous networks.

Challenge 3: Semantic heterogeneity A basic assumption is that an AmI space

is available to host an ambient ecology and devices and services are inherently

heterogeneous and contain heterogeneous descriptions of their capabilities and

services in the form of local ontologies. Thus, in order to achieve collaboration

among them, firstly one has to deal with these forms of heterogeneity. However,

the issue raised by the heterogeneity of ontologies and how to achieve seman-

tic interoperability between systems using different ontologies is a challenge. In

ATRACO, the approach that is followed in order to address this challenge is to

research, develop and test theories of ontology alignment to achieve task-based

semantic integration of heterogeneous devices and services.

To this effect, a Sphere Ontology is defined and an Ontology Manager adminis-

trates its use by performing ontology updating, ontology querying and ontology

matching services.

Challenge 4: Trustworthiness The interactions in the activity sphere should be

trustworthy. The ambient ecology will behave in a dependable manner and will

not adversely affect information, other components of the system or people.

To this effect, policies and rules are defined in the ontology and mechanisms

are defined for the management of the identity of service requestors and service

providers as well as access control on services and context information.

Summarizing the above discussion, ATRACO architecture should provide:

• support for realizing user goals (activity spheres), by resolving abstract tasks to

a workflow of concrete tasks;

• support for executing workflows by applying service composition and control

policies in the form of rules (obligation policies);

• support for establishment and management of associations between service

clients and service providers (as described in task workflows);

• support for maintaining the sphere ontology which contains the contextual knowl-

edge necessary to realize the concrete tasks;

• support for ontology alignment and lookup;

• support for adaptation of the given tasks according to the user desires and be-

haviour (personalization and learning over-time);

1 A Middleware Architecture for Ambient Adaptive Systems 13

• support for use of heterogeneous network capabilities for communication (net-

work adaptation);

• support for discovery of services, devices, networks and resources;

• support for usage of services offered within ATRACO infrastructure or by third

parties (e.g., external Web Services);

• support for privacy enforcement and access control through policies;

• support for the possibility of adapting the user interaction depending on available

interactive devices and objects;

• support for management of user profiles and preferences;

• support for gathering, processing and distribution of context information;

In the next section we outline the ATRACO system design that accommodate the

system requirements and then we discuss in more detail the service composition

framework for deploying adaptive workflows in IEs to achieve structural adaptation

of ATRACO applications, which is the focus of this presentation.

1.3.3 System Design

In ATRACO, we propose a combination of the SOA model with agents and ontolo-

gies (Figure 1.4). We adopt SOA both at the resource level to integrate resources,

such as devices, sensors and context in applications and at the system level to com-

bine ATRACO services that provide adaptation and trust features into applications.

ATRACO aims to empower users with the ability to interact in environments with

many resources such as devices (UPnP devices), web-services, content (music/video

file, contacts) and applications (e.g., media player) using adaptive user interfaces.

The functionality in these environments is exposed as semantically rich services

which an actor (either a user or an agent) can discover and then compose to form

ATRACO Activity Spheres.

Each service is associated with at least one semantic description which shields

the actor from the complexity of the Resource Layer realization and makes it easy

for the actor to employ these services in accomplishing interesting and useful tasks.

Figure 1.4 shows a conceptual layered view of the ATRACO architecture. The AT-

RACO infrastructure consists of SOA services. On the one hand, these context-

aware services are built on “Core distributed middleware” and rely on “‘Network

and resources” layer. On the other hand, the ATRACO infrastructure supports basic

services such as context management and reasoning, communication management,

user profiling and service (discovery), as well as adaptation and privacy services that

form the basis for ATRACO systems (i.e., ASs).

The ATRACO architecture consists of ontologies, active entities, passive entities,

and the user who as the occupant of the IE is at the centre of each AS. Active entities

are agents and managers. The role of the ATRACO agents is to provide task plan-

ning (Planning Agent or PA), adaptive task realization (Fuzzy systems based Task

Agent or FTA) and adaptive human-machine interaction (Interaction Agent or IA).

14 C. Goumopoulos

A T R A C O S e r v i c e s(s e r v i c e d i s c o v e r y , c o n t e x t p r o c e s s i n g , a c t i o n s e r v i c e s , u s e rp r o f i l i n g , o n t o l o g y a l i g n m e n t , o n t o l o g y l o o k u p , p o l i c y a n d c o n t r o le x e c u t i o n , p r i v a c y e n f o r c e m e n t a n d a c c e s s c o n t r o l , c o n n e c t i v i t ys e r v i c e s , p e r s o n a l i z a t i o n a n d l e a r n i n g o v e r � t i m e , a d a p t i v e i / om o d a l i t y p r o v i s i o n , p l a n n i n g t a s k w o r k f l o w s , e t c .)
D e v i c e W e b � s e r v i c e C o n t e n t A p p l i c a t i o n

S O AL a y e r
R e s o u r c eL a y e r S e r v i c e S e r v i c e S e r v i c eS e r v i c eU P n P M i d d l e w a r e W e b � S e r v i c e sM i d d l e w a r e O t h e r M i d d l e w a r eC o r e D i s t r i b u t e dM i d d l e w a r e L a y e r

I n t e r a c t i o nA g e n t (I A) F u z z y T a s kA g e n t (F T A) S p h e r eM a n a g e r (S M) O n t o l o g yM a n a g e r (O M)A T R A C OC o m p o n e n t s P l a n n i n g A g e n t(P A) P r i v a c yM a n a g e r (P M)
S ph ereO nt ol ogy(SO)E n d � U s e r N e t w o r k A d a p t .(N A)

Fig. 1.4 ATRACO architecture.

The PA encapsulates a search engine that exploits hierarchical planning and partial-

order causal-link planning to select atomic services that form a composite service

(workflow) [3]. One or more FTAs oversee the realization of given tasks within a

given IE. These agents are able to learn the user behavior and model it by moni-

toring the user actions. The agents then create fuzzy based linguistic models which

could be evolved and adapted online in a life learning mode [43]. The IA provides a

multimodal front end to the user. Depending on a local ontology it optimizes task-

related dialogue for the specific situation and user [35]. The IA may be triggered

both by the FTA and the PA to retrieve further context information needed to realize

and plan tasks by interacting with the user. On the other hand, ontologies comple-

ment agents regarding adaptation by tackling the semantic heterogeneity that arises

in IEs by using ontology alignment mechanisms to generate the so-called, Sphere

Ontology (SO). There are two main kinds of ontologies: local ontologies, which are

provided by both active and passive entities and encode their state, properties, capa-

bilities, and services and the SO, which serves as the core of an AS by representing

the combined knowledge of all entities [38].

The Sphere Manager (SM) and Ontology Manager (OM) components are re-

sponsible for the formation, adaptation and evolution of the user applications (mod-

eled in ATRACO as ASs) and will be further examined in this paper. In the current

version of the system there is also a Privacy Manager (PM) that provides a set of

privacy enhancing techniques in order to support privacy in an adaptive and individ-

ualized way. Finaly, devices in the IE that may come from heterogeneous networks

(e.g., LonWorks, ZigBee, Z-Wave, etc.) and services (e.g., Network Time, VoIP,

Real Time Streaming, etc.) are accessed transparently through a service represen-

1 A Middleware Architecture for Ambient Adaptive Systems 15

tation layer exporting them to the ATRACO clients as UPnP services. This layer is

implemented in the Network Adaptation (NA) component [33].

1.4 Adaptive Workflows and Structural Adaptation

In many respects, a composite service can be modeled as a workflow [36]. The def-

inition of a composite service includes a set of atomic services together with the

control and data flow among the services. Similarly, a workflow is the automation

of a business process, in whole or part, during which documents, information, or

tasks are passed from one participant to another for action, according to a set of

procedural rules [23]. Workflows have been used to model repeatable tasks or op-

erations in a number of different industries including manufacturing and software.

In recent years, workflows have increasingly used distributed resources and Web

services through resource models such as grid and cloud computing. In this section,

we argue that workflows can be used to model how various services should interact

with one another as well as with the user in IEs depending on available resources,

environment characteristics, user tasks and profile.

In this section we describe how SOA can support AS adaptation. The structural

adaptation (a form of polymorphism) is possible because the workflow model repre-

sents abstract services and binding to real devices can be accomplished at runtime.

ATRACO-BPEL, a streamlined version of BPEL, has been defined as the specifica-

tion language to describe workflows of abstract services.

1.4.1 Scenarios

In order to test our framework and to illustrate how workflows can be used to fit

user interaction with an IE, as well as the structural adaptation mechanism of ASs,

we use two simple scenarios. The first example corresponds to an AS that supports

the realization of goal named “Feel comfortable upon arrival at home”.

Martha arrives at the door of her smart apartment. The system recognizes her,

through an RFID card, and opens the door. On entering the space the system greets

Martha by saying “Welcome home” and then when she has entered the living space

the lights and A/C are switched on and brightness and temperature are automati-

cally adjusted according to her profile, season, and time of day, to make her feel

comfortable. Martha then sits at the sofa to relax and after a while, the system asks

”Would you also like some music?” Martha responds positively and the music plays

(according to predetermined preferences). Following this, the system asks “Would

you like to view yesterday’s party photos?” Martha responds positively and a rolling

slide show appears in a picture frame in front of her. After a while, Martha gets up,

walks towards the window and opens it. Fresh air pours into the room. Tempera-

ture level drops. Brightness level increases. Some of the lights are automatically

16 C. Goumopoulos

switched off, in an attempt to maintain the previous level of brightness in the room.

After a while, the A/C is switched off because of the open window. Suddenly, the pic-

ture frame goes off! The system finds a proper replacement and as a result, photos

are displayed in the TV set, while Martha is informed on the event.

The second example corresponds to an AS that supports the realization of goal

named “Studying AS”.

Suppose that John is using a number of objects to support the studying activity at

his writing desk, according to his profile (his preferable level of light, temperature,

etc.). In this case, John has set as a goal to study. This goal can be decomposed

in a hierarchy of abstract tasks that constitute a task model for the goal: sit on a

chair, move the chair in proximity to the desk; take the book; place the book on top

of the desk; turn on the light. In the AmI environment an AS is formed to support

the specific goal, by using four artefacts, a lamp, a chair, a desk and a book. The

application logic can be stated as follows: when the chair is occupied and it is near

the desk and the book is open on the desk, the lamp is turned on (reading activity has

been inferred). The implementation of such a task specification can be represented

as a graph of connected services provided by the artefacts.

Furthermore, John can move in the room and change his reading spot at the

sofa. This causes an adaptation in the configuration of the Studying AS since a

new artefact (sofa) is added and one is removed (desk). Another implication of this

mobility is that the light service will adapt to the new reading spot. While reading at

the desk the desk light is used, and when he moves to the sofa the lamp near the sofa

is used. This implies that device selection for instantiating/adapting an AS depends

on user location.

Since workflows are essentially graphs of activities, it is useful to express those

using UML activity diagrams. 1.13 describes the sequence of activities for the exam-

ple scenario. Note that the tasks “AdjustLights”, “AdjustAC”, “ShowPhotos”, and

“PlayMusic” can run in parallel and therefore they have been enclosed in a fork-join

block. Note also that the exception events are not part of the workflow description

but they are handled by the corresponding ATRACO active entities.

1.4.2 Late Binding

We have developed a service composition mechanism which includes 3 phases: task

workflow planning, dynamic service binding and execution management and control

as illustrated in Figure 1.5.

The planning problem can be stated as “discover an execution path of services

(tasks) given some state of the world to achieve a goal”. In ATRACO, we use a li-

brary of abstract plans which model specific user goals. An abstract plan contains

a sequence of abstract services which are actually ontological descriptions of ser-

vice operations that cannot be directly invoked, but will be resolved by the SM

during runtime. Having an abstract service workflow description, which is given in

a BPELlike language, the Dynamic Service Binding module of the SM applies a

1 A Middleware Architecture for Ambient Adaptive Systems 17

t a s k w o r k f l o wp l a n n i n g(P l a n n i n g A g e n t) d y n a m i cs e r v i c e b i n d i n g(S p h e r e M a n a g e r) e x e c u t i o n m a n a g e m e n ta n d c o n t r o l(S p h e r e M a n a g e r)
S p h e r e O n t o l o g ye x e c u t a b l es e r v i c ew o r k f l o wo n t o l o g y u p d a t i n g a n dq u e r y i n g(O n t o l o g y M a n a g e r)

I E r e s o u r c e s (a g e n t s , d e v i c e s ,s e n s o r s , a c t u a t o r s , r e g i s t r i e s e t c .)
a b s t r a c ts e r v i c ew o r k f l o w

r e p l a n n i n g e x c e p t i o n
Fig. 1.5 Late service composition process in ATRACO.

semanticbased discovery mechanism and uses information about available services

and context to discover suitable services or devices in registries able to perform

each abstract service. The output of this process is an executable service workflow.

In the execution management and control phase the SM executes and continuously

monitors the deployed services and the termination condition of the workflow.

This adaptation has been inspired by the subtype polymorphism found in the

object-oriented programming paradigm [2]. The concept is that we can adapt the

instantiation of the AS to different environments provided that a late binding mech-

anism is in place that determines the exact resources that will be used in the AS

(i.e. the specific artefacts, e.g. “the lamp in the corner”). The different resources that

may be involved only need to present a compatible interface to the clients (i.e., in our

case, a UPnP interface). Figure 1.6 gives a conceptual view of the dynamic service

binding process. A workflow is mapped into a number of tasks and a workflow task

is mapped into one or more abstract services. In addition, each service would also

require certain physical resources for its implementation. Mapping of the task to the

services can be specified at design time by the PA as per users’ functional require-

ments. However, mapping of the service to the actual human and physical resources

is done at runtime, in keeping with service orientation. This dynamic binding is

therefore dependent on the context in which the binding occurs.W o r k f l o w T a s k1 * S e r v i c e1 1 . . * R e s o u r c e1 1 . . *P A r e s p o n s i b i l i t y“ d e s i g n t i m e ” S M r e s p o n s i b i l i t y“ r u n t i m e ”
Fig. 1.6 Conceptual model for dynamic service binding.

18 C. Goumopoulos

In the absence of the Sphere Ontology, which has not been yet instantiated, the

SM implements a lightweight Resource Discovery Protocol for artefacts or eEnti-

ties (eRDP) where the term resource is used as a generalization of the term service.

eRDP is a protocol for advertisement and location of network/device resources with

a semantic description. The assumption here is that there is a local ontology to de-

scribe the services/resources that each artefact can provide and as such assist the

service discovery mechanism. In order to support this functionality, an Ontology

Manager (OM) is assumed present that provides methods that query this ontology

for the services that the artefact provides. The details of the eRDP design and im-

plementation can be found in [17]. The matching resources are returned by eRDP

and the SM selects the best set of device(s)/service(s) based on a scoring mecha-

nism that will be explained later. Subsequently, the SM invokes the OM to create

the Sphere Ontology (SO) which will include links to all the relative devices to the

AS that have been discovered.

After service binding the SM starts any interaction task in conjunction with the

IA and also any FTA task and executes the workflow preserving the precedence con-

straints or the conditions that are specified in the workflow. At runtime a Workflow

object aggregates a number of Task objects where each object represents a task in

the workflow. The services that this task requires for running are divided into input

and output services and are connected with the appropriate resources. The resources

that are bound to the Task object can be either devices that the Task directly controls

(i.e., input sensors and actuation devices) or agents, such as the IA or the FTA. In

either case the Task object is informed on the status of the resource and operates

according to the pattern specified by its type. The sequence diagram in Figure 1.7

shows the basic interaction of the software components during the instantiation of

the “Feel Comfortable” AS, which employs the dynamic service binding process

mentioned earlier. In the diagram, this process is implemented by the methods used

inside the two loops.

l o o p l o o p
: W o r k f l o w : D e v i c e M a n a g e r

: T a s k
: S p h e r e M a n a g e r : O n t o l o g y M a n a . . .G U I

Fig. 1.7 Example AS instantiation and binding of devices to services.

1 A Middleware Architecture for Ambient Adaptive Systems 19

The Task object “AdjustLights” is assigned to the FTA component to generate

adaptive models for the individual devices/artefacts and for the user behaviours.

Figure 1.8 illustrates the initialization of the FTA component to control the room

lights in the example AS. The FTA is initialized by passing the input/output, light

level related devices as well as light controls which are in turn retrieved from the

Sphere Ontology which has been populated with the required ontologies during the

AS instantiation. In addition, if the user profile stores initial light preferences (for

example from previous executions of the FTA) these can be passed to the FTA in

the form of a rule base.: S p h e r e M a n a g e r : S p h e r e O M
: F T A

1 : g e t S e r v i c e s F o r T a s k (" L i g h t S e n s o r " , " L i v i n g r o o m ")2 : l i g h t _ s e n s o r s (i n S p a r q l X M L)3 : g e t S e r v i c e s F o r T a s k (" L u m i n o s i t y " , " L i v i n g r o o m ")4 : l a m p s (i n S p a r q l X M L)5 : g e t S e r v i c e s F o r T a s k (" D i m m e r C o n t r o l " , L i v i n g r o o m ")6 : d i m m e r _ c o n t r o l s (i n S p a r q l X M L)7 : c r e a t e N e w F T A (d i m m e r _ c o n t r o l s , l i g h t _ s e n s o r s , l a m p s , l o g g i n g P a t h)8 : F T A _ I D9 : g e t F u z z y R u l e S e t s (u s e r I d , F T A _ I D)1 0 : R u l e s (i n X M L)1 1 : s e t C u r r e n t R u l e b a s e (F T A _ I D)1 2 : s t a t u s
Fig. 1.8 FTA initialization for the AdjustLights task of the “Feeling Comfortable” AS.

In addition, the SM handles exception events that affect the configuration of the

AS. For example, exceptions during the execution of the workflow, such as dis-

connection or failure of devices trigger an adaptation of the workflow by rebinding

services to alternative devices. Context changes during the execution of the work-

flow may invalidate preconditions that were valid during the workflow instantiation.

For example, if the user changes location and a follow-me property has been defined

for a display service, then the execution state needs to be updated and a new display

service instance to be scheduled. In order to achieve workflow adaptation, replan-

ning capabilities may be required by the PA. Replanning comes into play when

the dynamic binding fails during workflow execution or update. When replanning

20 C. Goumopoulos

is requested a new planning problem is defined with the services that are actually

available, and the PA solves the problem and delivers a new workflow.

During AS instantiation in IEs there could be multiple devices or services pro-

viding similar functionality from which the system will have to choose. Thus, the

ATRACO system must provide mechanisms for selection between similar devices

or services and decide which of them is the most suitable to participate in the AS.

Device selection is based on criteria such as: task suitability, efficiency (as device’s

proximity to the user, quality of the service or device and stability), user distraction

(the inconvenience a user experiences when the system selects different groups of

devices than those that the user prefers or is used to use for a specific task) and

conflicts with other tasks (more details are given in the Appendix). For calculating

the rank for each device we use a scoring mechanism that is similar to that proposed

in [29] and is based on multi-attribute utility theory (MAUT). The overall rank of

a device given a specific task is defined as a weighted sum of its evaluation with

respect to its relevant orthogonal value dimensions (attributes). For ATRACO the

relevant value dimensions are scores for task suitability, efficiency, negative of user

distraction and negative of conflicts with other tasks.

A ranking policy defines weights between zero and one for each of the above

metrics. The scoring policies are defined per task (or task category) by the user

and give priority to some of the metrics. E.g., if a task is urgent, the suitability and

efficiency ranks must have priority over user distraction, and inter-task conflicts. The

weights are normalized to add up to one. The rank of a given device D according to

policy P is computed as the dot product of the vector weights specified by the policy

with the vector of scores for each one of the metrics. Applying MAUT, the device

rank is computed as shown in (1).

DR(D,TP) =
4

∑
i=1

wi(TP)∗D(mi) (1.1)

where DR is the overall rank of device D according to ranking policy TP for the task

T , wi(TP) is the weight of metric i according to policy TP and D(mi) is the rank of

device D for the metric mi.

For the task suitability and efficiency we have D(m) = DS(m), while for user

distraction and inter-task conflict that have a negative meaning we have D(m) =
1−DS(m), where DS(m) is the device’s score for the metric normalized from 0 to

1.

1.4.3 Ontology Manager

The Ontology Manager (OM) component provides an interface to the SM to ac-

cess AS related data, including personal and contextual information, represented

in ontologies. The OM provides methods for querying and modifying User Pro-

file Ontologies, Device Ontologies, the Privacy and Policy Ontology as well as the

1 A Middleware Architecture for Ambient Adaptive Systems 21

eventual Sphere Ontology (SO) that emerges from the alignment of all the previous

ontologies. The ontology alignment process can be described as: given two ontolo-

gies, each describing a set of discrete entities (which can be classes, properties,

rules, predicates, or even formulas), find the correspondences, e.g., equivalences or

subsumptions, holding between these entities. Thus, under the request of the SM,

the OM produces ontology alignments, responds to queries regarding the state or

properties of sphere resources, and creates inferences in order to enrich the SO as

specified in [38].

The OM has been developed as a wrapper around the Jena Framework (http:

//jena.sourceforge.net/). The OM interface provides comprehensive and

simple methods for creating an RDF/OWL based ontology, importing and remov-

ing other RDF/OWL based ontologies, updating the ontology at run time, query-

ing of the ontology using SPARQL, and saving the modifications in OWL files.

Ontology alignment has been applied by using the Java Alignment API (http:

//alignapi.gforge.inria.fr/align.html). After the alignment, in-

ference and querying is performed on a grid of imported ontologies, given the align-

ment points that have been produced using OWL class and individual equivalence

assertions.

Figure 1.9 illustrates a small sample of the OM interface that is used, for example,

to query an ontology using SPARQL syntax, and methods related to the User Profile

Ontology e.g., for importing and exporting rules from the FTA.p u b l i c S t r i n g q u e r y F o r S p a r q l X M L (S t r i n g q u e r y , b o o l e a n a u t o P r e f i x ,S t r i n g q u e r y T y p e)P e r f o r m s a q u e r y t o t h e o n t o l o g y . a u t o P r e f i x d e t e r m i n e s i f O M w i l l t r y t o r e s o l v e k n o w n p r e f i x e s a n dt h e q u e r y T y p e c a n b e A S K o r S e l e c t . R e t u r n s t h e r e s u l t s i n S p a r q l X M L f o r m a t .p u b l i c S t r i n g [] g e t F u z z y R u l e S e t s (S t r i n g u s e r I d , S t r i n g F T A _ I D) t h r o w sE x c e p t i o nR e t u r n s i n X M L f o r m a t t h e s t o r e d f u z z y r u l e s e t s t h a t m a t c h t h e g i v e n u s e r I d a n d F T A _ I D . U s e d b yS M t o r e t r i e v e s t o r e d f u z z y r u l e s e t s d u r i n g i n i t i a l i z a t i o n o f t h e c o r r e s p o n d i n g F T A .p u b l i c S t r i n g g e t S e r v i c e s F o r T a s k (S t r i n g s e r v i c e D e s c r i p t i o n , S t r i n gl o c a t i o n) t h r o w s E x c e p t i o nR e t u r n s a S p a r q l X M L s t r i n g c o n t a i n i n g t e c h n i c a l p a r a m e t e r s f o r e a c h d e v i c e a n d s e r v i c e t h a t m a t c h e st h e s e r v i c e D e s c r i p t i o n d e s c r i p t i o n t a g a n d i s w i t h i n t h e l o c a t i o n s p e c i f i e d b y t h e s e c o n d p a r a m e t e r .U s e d b y S M f o r r e s o l v i n g t a s k s t o s p e c i f i c d e v i c e s , s e r v i c e s , a c t i o n s , v a r i a b l e s a n d v a l u e s .
Fig. 1.9 A sample of the OM interface.

A number of ontologies have been developed for and used in the prototype for

the representation of AS high level concepts (Figure 1.3), devices and their services,

and users and their profile information.

The User Profile ontology holds personal information about the user. It consists

of a local, private OWL ontology file that contains the actual user information in

the form of individuals and assertions and a publicly accessible (via HTTP) ontol-

ogy that contains the generic classes, properties and restrictions that describe a user

profile. Currently User Profile Ontology contains assertions about the Social Profile

22 C. Goumopoulos

(name, nickname, email, address etc.), the location, the activities (Goals and Plans)

and the preferences of the user (in the form of stored fuzzy rule sets).

Figure 1.10 illustrates part of an instance of a device ontology for one of the

spot lamps used in the prototype. The Service concept represents an abstract service

that the device can provide enriched with descriptive tags e.g., a lamp can provide

lighting service. In general, a device may offer more than one service and thus more

Service instances may be defined. The StateVariable concept represents the

abstract states of the corresponding Service. It encapsulates the linguistic variable

and labels that are required by the FTA for the creation of adaptive device models.

The device ontology includes technical characteristics and information about com-

munication with the device in the context of a UPnP environment. Finally, the name,

the owner, the location and physical properties of the device are included.D e v i c e“ S p o t L a m p ”n a m e “ L i v i n g r o o m ”l o c a t i o n
“ D a r k ”“ M o d e r a t e ”“ B r i g h t ” l i n g u i s t i cL a b e ll i n g u i s t i cL a b e l

“ L i g h t A d j u s t m e n t ”t a g
S t a t e V a r i a b l e“ L i g h t L e v e l ”n a m e V a l u e R a n g ev a l u e R a n g e“ 0 " “ 1 0 0 ”m i n m a x

U P n Pa c c e s s e d“ L u m i n o s i t y ” t a gl i n g u i s t i cL a b e l “ u u i d : 0 3 5 4 e 5 a 5 � . . . ”u d n“ u r n : . . . : D i m m a b l e L i g h t : 1 ”s e r v i c e I ds w i t c h P o w e rd i m m i n gc o n t r o lA c t i o nc o n t r o lA c t i o n “ 1 5 5 . 2 4 5 . 2 3 . 1 2 4 : 4 0 0 9 ”I P
“ L i g h t ” t a g S e r v i c e o f f e r sf e a t u r e s

“ i S p a c e ”o w n e r P h y s i c a l P r o p e r t i e sc o n t a i n s“ w h i t e ”c o l o r “ o v a l ”s h a p e
Fig. 1.10 Part of an instance of a device ontology for a spot lamp.

1.4.4 ATRACO-BPEL Workflow Specification

BPEL defines a model and a grammar for describing the behavior of a business

process based on interactions between the process and its partners. It allows for cre-

ating complex processes by creating and wiring together different activities that can,

for example, perform Web services invocations (<invoke>), waiting to be invoked

by someone externally (<receive>), generate a response (<reply>), manipulate data

(<assign>, throw faults (<throw>), or terminate a process (<exit>). In our case, the

business process represents the process model of an AS and the partners can take

the form, either of a service of a simple device, or the service of an ATRACO agent.

1 A Middleware Architecture for Ambient Adaptive Systems 23

While BPEL is a suitable language for describing workflows, an ATRACO work-

flow description presents requirements that cannot be completely covered by BPEL.

This is due to the following:

i. BPEL partners (partnerLinks) are bound statically to specific Web services. In

the context of ATRACO, however, services are not bound at design time but

dynamically during the execution of the workflow. Thus, there is a need to

describe services in the workflow by their semantics which mainly define onto-

logical related searching terms (for example, “Luminosity” for a light service).

ii. The limitation of the one-to-one mapping of services between communicating

partners, supported by BPEL. On the other side, ATRACO tasks may need to

handle two or more services that provide input or output to the task.

iii. BPEL supports a single coordinator that executes the orchestration logic. AT-

RACO workflows normally are centrally handled by the Sphere Manager which

implements the workflow execution engine; however a more distributed scheme

can also be followed by sharing parts of the workflow with collaborating agents

(e.g., IA and FTA). This collaboration sets some special requirements in the

description of the workflow.

Given the above requirements a variant of BPEL, called ATRACO-BPEL, was de-

fined in order to provide those ATRACO specific features needed in order specify

workflows. In the following we explain how using the ATRACO-BPEL formalism

an example task is bound with the appropriate service(s). The task AdjustLights is

associated with the parnterLink AdjustLightsPL as part of the orchestration logic

section:

1 <bpel:invoke

2 name="AdjustLights" partnerLink="AdjustLightsPL">

3 </bpel:invoke>

The partnerLink AdjustLightsPL has an input role called ATRACO:lightStatus and

an output role (partnerRole) called ATRACO:triggerLight. The Continues type de-

notes that the execution of the activity is to be treated as a task that is running

continuously, i.e., the workflow does not wait its termination.

1 <bpel:partnerLink

2 name="AdjustLightsPL"

3 partnerLinkType="ATRACO:Continuous"

4 myRole="ATRACO:lightStatus"

5 partnerRole="ATRACO:triggerLight">

6 </bpel:partnerLink>

The input role ATRACO:lightStatus denotes the appropriate abstract service that

must be bound to fulfill the role (Luminosity) along with any other application spe-

cific details that are needed for its operation e.g., the task will be monitored by an

ATRACO agent for learning user behavior with respect to light adjustments and all

found light devices are to be used.

1 <ATRACO:role

2 name="lightStatus" type="input" Agent="yes" IAmode ="none">

24 C. Goumopoulos

3 <ATRACO:service semantics="Luminosity" trigger="Low" reset

="none" quantity="all" rules="">

4 </ATRACO:service>

5 </ATRACO:role>

The corresponding definition for the output role will be:

1 <ATRACO:role

2 name="triggerLight" type="output" Agent="yes" IAmode="

withAgent">

3 <ATRACO:service semantics="Actuate Light" trigger="On"

reset="Off" quantity="all" rules="">

4 </ATRACO:service>

5 </ATRACO:role>

In ATRACO-BPEL each partnerLink role is specialized as an ATRACO:role which

is a new definition in ATRACO-BPEL. In each ATRACO:role the attributes listed

in Table 1.3 are defined.

Table 1.3 ATRACO:role semantics in ATRACO-BPEL.

Attribute Semantics

name The name of the role.

type Denotes the type of the role. Accepted values are input/output.

Agent This attribute defines whether the task is monitored by an ATRACO agent or

not. Accepted values are yes/no.

IAmode Specifies the interaction mode with the ATRACO Interaction Agent. Accepted

values are:

none no interaction is needed;

pure this value is used to indicate that a single interaction with the user

through a dialog interface (spoken, tangible or software) needs to be pro-

vided either to provide a message or to receive an input for the system from

the user in a form of question;

direct this value is used when the IA needs to create an interface for an

output device;

withAgent this value is used to indicate that there is a need to find proper

user inputs for the Agent monitored tasks.

Each ATRACO:role envelopes a set of services that are bound to it. Each role

can have more than one abstract service. If the role type is input then the activity

waits for all the services to deliver their result before proceeding. If the role type

is output then, upon activity completion, all the services enveloped in this role are

triggered. For each abstract service specific attributes are defined, providing the nec-

essary support for device discovery and service operation. Table 1.4 summarizes the

service-specific attributes in ATRACO-BPEL.

1 A Middleware Architecture for Ambient Adaptive Systems 25

Table 1.4 Service-specific attributes in ATRACO-BPEL.

Attribute Semantics

semantics The semantics of the service as a set of keywords – these are used to find the

specific device that can be bound to this abstract service.

trigger input role: denotes a linguistic value that triggers the service.

output role: denotes a linguistic value passed to the service.

reset The reset state (linguistic value) that the service should apply in the case that

the activity cannot be performed.

quantity A number that defines how many devices providing this service are needed for

the specific activity. If the value is “all” then all found devices are used.

rules Any special constraints need to be met for binding the corresponding device(s).

IAdlg This attribute is associated with the direct or pure interaction modes with IA in

order to give it the proper interaction dialog type. Examples of accepted values

are: GreetingMessage, LightInstructions, GrantGuestAccess, MusicQuestion,

MusicControl, PhotoFrameQuestion, SlideshowControl.

1.5 Deployment

In order to test the AS adaptation mechanisms we have implemented an experimen-

tal prototype in the AmInOffice testbed. The AmInOffice is a testbed developed

in the premises of Dynamic Ambient Intelligent Systems Research Unit at RACTI

(daisy.cti.gr) and consists of a variety of sensors deployed in the office envi-

ronment, a set of smart objects that support office tasks and the appropriate network

infrastructure. In order to implement the above scenario we have set up AmInOffice

with the following devices:

• An RFID reader near the door of the office to read RFID tags

• Two light sensors each one reading light level in a different spot in the office

• Two ceiling lamps controlling the ambient light

• Two lamps one placed at the desk and one near the sofa

• Speakers connected to the main PC for playing music and producing vocal mes-

sages

• A smart chair (eChair) able to sense if someone is sitting on it

• A smart sofa (eSofa) that can sense if someone is sitting on it and at which spot

(left or right)

• Smart books (eBooks). Apart from smart readers (eReaders) this includes a typi-

cal book instrumented with bending sensors that can sense if the book is opened

or closed.

• A smart desk (eDesk) that can sense objects on it and near it.

Figure 1.11 illustrates how the devices have been placed in the AmInOffice.

The ATRACO components that implement the necessary functionality in order to

support AS formation and adaptation based on mechanisms discussed in this work

are the Sphere Manager (SM) and Ontology Manager (OM). Interaction with other

ATRACO components such as Planning Agent and Privacy Manager is assumed

26 C. Goumopoulos

L i g h t S e n s o r L i g h t S e n s o r
D e s k L a m p

C o u c h L a m pS o f a

C h a i r

D o o r R F I DS e n s o r
C e i l i n g L a m p s

S p e a k e r sT V S e t
R F C o n t r o l l e r D e s k R F I DS e n s o rL i g h t S w i t c hK i t

T e m p e r a t u r eS e n s o rT e m p e r a t u r eS e n s o r
Fig. 1.11 AmInOffice setup for the experimental prototype.

and requires the interfaces specified in [15]. Third-party tools have been also used

for performing alignment. The ontologies for all the artefacts used have been de-

veloped and a semantically rich UPnP device ontology was developed to support

workflow-driven inclusion of UPnP compatible devices in a sphere. In the experi-

mental prototype we have tested the following functionality:

• Sphere initialization: Initiate an AS through an ATRACO-BPEL file. Test work-

flow creation and execution.

• Late binding of the devices: Bind abstract services needed for each task to specific

devices that exist in AmInOffice in collaboration with the OM at runtime.

• Runtime application behavior: Validate that the running tasks correspond to the

scenario of the experiment.

• Handling of adaptation events: Test system response to adaptation events that

affect the configuration of the AS categorized in the following types:

– User location change: test system reaction when the location of the user asso-

ciated with the AS changes.

– Resource not available: test system reaction when a device bound to a task

fails. Check if the system can find an appropriate replacement.

– New resource (service/device): test system reaction when a new device rele-

vant to the task that is running is available.

1 A Middleware Architecture for Ambient Adaptive Systems 27

– New person: test system reaction (in terms of security and privacy) when a

new user is recognized by the system

Figure 1.12 illustrates in the form of an activity diagram the main tasks to be exe-

cuted by the Sphere Manager component in order to handle each one of the above

adaptation events. The starting point for running an AS is the generation of the cor-R e c e i v eE v e n t Q u e r y R e s o u r c eO n t o l o g y f o ra v a i l . s e r v i c e s C h e c k w o r k f l o wf o r c o m p a t i b l em i s s i n g s e r v i c e s B i n d s e r v i c e t o t h e w o r k f l o wC h e c k c o m p a t i b i l i t yw i t h w o r k f l o w b i n d e ds e r v i c e s A s s e s s r e p l a c e m e n t w r tQ O S p a r a m e t e r s , c o n t e x ta n d u s e r d i s t u r b a n c e R e b i n d s e r v i c e W o r k f l o we x e c u t i o nu p d a t eQ u e r y R e s o u r c eO n t o l o g i e s f o ra l t e r n . s e r v i c e s A s s e s s r a n k i n g w r tQ O S p a r a m e t e r s , c o n t e x ta n d u s e r d i s t u r b a n c eM a r k s e r v i c ea s m i s s i n g C a l l P A f o rr e p l a n n i n g R e b i n d q u a l i f i e ds e r v i c e D i s s o l v e c u r r e n t a c t i v i t ys p h e r e a n d s t a r t n e w o n eI n f o r m u s e rt h r o u g h I AR e t r i e v e P r o f i l e C h e c k p r i v a c y i m p l i c a t i o n s C a l l P r i v a c yM a n a g e rU p d a t e a l l A g e n t s W o r k f l o we x e c u t i o nu p d a t eQ u e r y U s e r P r o f i l ef o r n e w l o c a t i o n C h e c k r o a m i n gi m p l i c a t i o n s Q u e r y R e s o u r c eO n t o l o g i e s f o ra l t e r n . s e r v i c e s" n e a r " t h e u s e r R e b i n d f i r s ts e r v i c e f o u n d W o r k f l o we x e c u t i o nu p d a t eM a r k s e r v i c ea s m i s s i n g
Fig. 1.12 Adaptation events handling.

responding workflow. Workflows are described in ATRACO-BPEL, but they can be

represented in a more user friendly way with activity diagrams. The diagram in Fig.

1.13 illustrates the workflow for the “Feel Comfortable” AS of the example sce-

nario. The diagram is annotated with labels from the source file in an attempt to

close the gap between the high-level view of the diagram and the low-level view

of the file. For example, the annotation in each box shows the activity type in the

main sequence and the task name, the ontological searching term, as well as which

ATRACO component, besides SM, has responsibility for running parts of this task.

The technical requirements for the deployment and testing of the ATRACO sys-

tem include: the runtime versions of the ATRACO components with the specified

service interfaces; the devices serving the scenarios, wrapped as UPnP devices; the

domain and resource ontologies; the workflows specifying the tasks in each AS; and

various third-party run-time libraries. The deployment of the system has been done

in two IE testbeds using scenarios similar to the one discussed in this paper.

28 C. Goumopoulos

The implementation technologies and tools used are based on open frameworks

and are compatible with the SOA paradigm. Java is the main programming language

and UPnP enhanced with semantic descriptions [41] is used as the communication

middleware for the integration of devices and services, instead of Web services.

OWL has been used for the development of the ontologies as it provides a strong

logical reasoning framework for the expression and enforcement of ATRACO poli-

cies and rules.

Although there are available (open source) execution engines for BPEL “pro-

grams” in ATRACO we need to build a layer upon such engines as a proxy in order

to process the parts of the workflow description that are ATRACO-specific. In addi-

tion, most engines do not allow for dynamic binding and discovery of services. To

address this limitation, the framework uses the SM as a proxy to communicate with

service registries to obtain operational descriptions (e.g., UPnP or WSDL files) and

instantiate services. This is achieved by encapsulating service search parameters in

ATRACO-BPEL (see Table 1.4) as an input to the dynamic service binding process.

When the user changes position in the room the ATRACO system is notified for

that change. While this location context can be provided either by using motion

detection devices, or specific services such as Ubisense (used in iSpace), for our

experiment we emulated such a device by using a WoZ interface and selecting the

appropriate location. When the SM receives a location change event, it queries OM

for the new location. Then for each service that is bound to the active task it checks if

there are any requirements for device replacement. This is done by querying the OM

with the new user location context. If the device that OM returns is not equal to the

currently bound then it proceeds with service replacement for the appropriate task.

The sequence diagram in Figure 1.14 shows the exact messages that are exchanged

for the task “Reading” when the user changes location to the sofa.

1.6 Discussion

The SOA approach appears to be a convenient architectural style towards meeting

one of the key objectives of the ATRACO project that is the need for adaptable and

reconfigurable systems. Analyzing contemporary software technologies complying

with the SOA architectural paradigm, such as OSGi, UPnP, and the Web services

architecture appears that current software technologies do not meet the adaptability

and interoperability requirements for the ATRACO project.

In the first case SOA provides little support on how adaptive services can be used

to allow people to interact with an AmI environment in a seamless and unobtrusive

manner. In other words, research into service composition has mainly focused on

the composition mechanism rather than on guiding composition to enable the user

to perform activities in the way they wish to do. A challenge here is how to automate

the service composition process, so that the service offered to users appears to be

1 A Middleware Architecture for Ambient Adaptive Systems 29M a r t h a e n t e r st h e a p a r t m e n tR e c e i v e (R F I D S t a t u s) : R F I D R e a d e r (S M)
R e c e i v e (D o o r S t a t u s) : D o o r T r a p (S M)R e c o g n i z eM a r t h a ?I n v o k e (O p e n D o o r) : M a i n D o o r L o c k (S M)]R e p l y (W e l c o m e M s g) : G r e e t i n g M e s s a g e (I A)I n v o k e (A d j u s t L i g h t s) : [R e c e i v e : L u m i n o s i t y]= > [R e p l y : A c t u a t e L i g h t] (F T A) M a r t h a a ts o f a ?I n v o k e (P l a y M u s i c) : [R e c e i v e : A s k Q u e s t i o n (I A)]= > [R e p l y : M u s i c P l a y e r] (I A)I n v o k e (S h o w P h o t o s) : [R e c e i v e : A s k Q u e s t i o n (I A)]= > [R e p l y : D i s p l a y] (S M)I n v o k e (A d j u s t A C) : [R e c e i v e : T e m p e r a t u r e]= > [R e p l y : A c t u a t e A C] (F T A)M a r t h a l e a v e st h e a p a r t m e n t

Fig. 1.13 Annotated activity diagram for the “Feel Comfortable” AS.

adaptive, in the sense that the service provided changes dynamically according to

the task the user wishes to perform and the context in which they wish to perform it.

In the second case, current solutions provide little support for semantic-based

interoperability, hence dealing with interaction between services based on syntac-

tic description for which common understanding is hardly achievable in an open

environment. The latter issue may be addressed using semantic modeling through

ontologies. Ontologies can provide an extensible and flexible way of expressing

the basic terms and their relations in a domain, task or service. However, the issue

that can be raised by the heterogeneity of ontologies and how to achieve seman-

tic interoperability between systems using different ontologies remains a challenge.

In ATRACO the approach that is followed in order to address this challenge is to

research, develop and test theories of ontology alignment to achieve task based se-

mantic integration of heterogeneous devices and services. This issue is examined

thoroughly in a separate chapter.

30 C. Goumopoulos: u s e rP r o f i l e R e a d i n g: T a s kU b i s e n s eS y s t e m : O n t o l o g yM a n a g e r: S p h e r eM a n a g e r1 : u s e r l o c a t i o nc h a n g e e v e n t 2 : g e t U s e r L o c ()3 : n e w _ l o c = " s o f a "5 : g e t S e r v i c e s F o r T a s k (" e B o o k " , " s o f a ")6 : " u u i d : U P n P D e v i c e : e B o o k "7 : c h e c k S e r v i c e (" u u i d : U P n P D e v i c e : e B o o k ")8 : s e r v i c e c u r r e n t l y b o u n d t o t a s k9 : g e t S e r v i c e s F o r T a s k (" l i g h t S e n s e " , " s o f a ")1 0 : " u u i d : U P n P D e v i c e : L i g h t S e n s o r s "1 1 : c h e c k S e r v i c e (" u u i d : U P n P D e v i c e : L i g h t S e n s o r s ")1 2 : s e r v i c e c u r r e n t l y b o u n d t o t a s k1 3 : g e t S e r v i c e s F o r T a s k (" r e a d i n g S p o t " , " s o f a ")
4 : p a r s e W o r k f l o w ()

1 4 : " u u i d : U P n P D e v i c e : e S o f a "1 5 : c h e c k S e r v i c e (" u u i d : U P n P D e v i c e : e S o f a ")1 6 : s e r v i c e N O T b o u n d t o t a s k1 7 : r e p l a c e S e r v i c e (" r e a d i n g S p o t " , u u i d : U P n P D e v i c e : e C h a i r , u u i d : U P n P D e v i c e : e S o f a)1 8 : g e t S e r v i c e s F o r T a s k (" l i g h t S o u r c e " , " s o f a ")1 9 : " u u i d : U P n P D e v i c e : e F l o o r L a m p "2 0 : c h e c k S e r v i c e (" u u i d : U P n P D e v i c e : e F l o o r L a m p ")2 1 : s e r v i c e N O T b o u n d t o t a s k2 2 : r e p l a c e S e r v i c e (" l i g h t S o u r c e " , u u i d : U P n P D e v i c e : e D e s k L a m p ,u u i d : U P n P D e v i c e : e F l o o r L a m p)
Fig. 1.14 Replacing the light providing device as a result of user mobility.

ATRACO concrete plans are described as mentioned previously by workflow

specifications using an extension of BPEL (ATRACO-BPEL). Normally, workflow

management systems have not been used for dynamic environments requiring adap-

tive behaviour. Typically an intranet-based workflow system executes, by using a

collection of services that are owned and managed by the same organization. In this

setting, service interruptions are rare and typically they are scheduled during system

maintenance. On the contrary, in ATRACO we require adaptive workflows which

need to react to varying environmental conditions. This transition from the static

to dynamic and adaptive nature of workflows increases the runtime complexity of

the management system, since the coordination mechanism must become more fault

tolerant. On the other side our approach is viewed as collaborative problem solving

1 A Middleware Architecture for Ambient Adaptive Systems 31

approach where a set of autonomous agents work together to achieve a common

goal. Our general idea then is that since a workflow describes the relationship be-

tween services and if an agent is represented by such a service, then the relationship

between the agents would be possible to specify. Following such a combined agent-

based and SOA approach means that a workflow could be used to establish the initial

relationships of the ATRACO components. Applications can be specified then first

with a workflow description using ATRACO-BPEL that defines the most common

scenario and fault conditions. Once the basic system has been deployed, the agents

could be working proactively so they can adapt to unforeseen circumstances and

automatically handle the extension of the workflow description.

1.7 Conclusion

ATRACO supports the deployment and execution of applications that need to be

adapted and reconfigured in dynamic environments. The need for adaptation and re-

configuration calls for a modular design approach, which the SOA paradigm tends

to provide. Following this architectural style, each device provides services through

which other components can obtain information or control its behaviour. When an

application has to be adapted, either during application transition to a new envi-

ronment or when a device running a service fails, a description of the structure of

the application, which is modelled as a workflow of abstract services, is used by an

adaptation module which makes use of ontologies, context information and defined

policies to generate a new structure for the adapted application. The agent approach

complements the SOA modular and flexible infrastructure by providing high level

adaptation to user’s tasks, as an intelligent control layer above SOA.

32 C. Goumopoulos

Appendix

Table 1.5 Metrics for device selection.

Metric Description

Task suitability This quantifies, as a percentage, how well a specific device or service is suit-

able for a specific task. Its value is calculated based on the semantic relevance

between the task’s description as it is presented in an abstract plan, and the

device’s or service’s description provided by the device’s ontology. E.g., for

a service of providing light, both a lamp and a computer monitor can be can-

didates. The fact that the lamp’s ontology states as primary purpose of the

device the supply of light while the monitor’s ontology state the light emission

as a secondary attribute gives the lamp a higher score for this metric.

Efficiency This metric measures the efficiency of a device or service for a certain goal.

It expresses how well or to what degree the device is able to contribute in

achieving a goal. Its value is calculated over a combination of other measures

such as the device’s proximity to the user (based on location info from User

Profile Ontology (UPO) and device ontology), the quality of the service or

device (as inferred from the specifications of the device that are encoded in

its ontology) and the stability that quantifies how well a device will be able

to perform a task to completion. The exact measures that participate in the

calculation of efficiency are depended on the nature of the task and are derived

from the policies encoded in the ATRACO ontologies. E.g., if the goal is to

provide enough light for the user to read a book for an hour, a lamp located

closer to the user has a strong potential to be selected. But if its light is weaker

than the minimum needed for reading and another lamp exists a little more far,

but in the range of the user, and can provide the desirable light level, the later

should get a higher efficiency score. In a similar way if a device runs out of

battery and will not last to achieve fully the goal its efficiency score should be

discounted.

User distraction User distraction expresses the inconvenience a user experiences when the sys-

tem selects different groups of devices than those that the user prefers or is

used to use for a specific task. User’s preferences and habits are expected to

be stated at the UPO or inferred from it. E.g., if a lamp with strong light is

available near the user as he reads his book, but the user has expressed (di-

rectly or indirectly) its preference to use a specific one with weaker light when

reading at this part of the room, the system should penalize the first lamp by

increasing its user distraction score.

Conflicts with

other tasks

This quantifies the number of other running tasks that will be blocked by se-

lecting a device. E.g., if a monitor is currently used for watching a film, its

conflicting score for selecting it for the task of displaying incoming emails

should be greater than zero because it will obstruct the film watching task.

1 A Middleware Architecture for Ambient Adaptive Systems 33

References

1. Alves, A., Arkin, A., Askary, S., Barreto, C., Ben, Curbera, F., Ford, M., Goland, Y., Guízar,

A., Kartha, N., Liu, C.K., Khalaf, R., König, D., Marin, M., Mehta, V., Thatte, S., van der

Rijn, D., Yendluri, P., Yiu, A.: Web Services Business Process Execution Language Version

2.0. Tech. rep., OASIS Web Services Business Process Execution Language (WSBPEL) TC

(2007). URL http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.

0-OS.html

2. Armstrong, D.J.: The quarks of object-oriented development. Commun. ACM 49, 123–

128 (2006). DOI http://doi.acm.org/10.1145/1113034.1113040. URL http://doi.acm.

org/10.1145/1113034.1113040

3. Bidot, J., Schattenberg, B., Biundo, S.: Intelligent planner. Tech. rep., University of Ulm

(2010)

4. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans. Comput. Syst.

2, 39–59 (1984). DOI http://doi.acm.org/10.1145/2080.357392. URL http://doi.acm.

org/10.1145/2080.357392

5. Blair, G.S., Coulson, G., Andersen, A., Blair, L., Clarke, M., Costa, F., Duran-Limon, H.,

Fitzpatrick, T., Johnston, L., Moreira, R., Parlavantzas, N., Saikoski, K.: The design and im-

plementation of open orb 2. IEEE Distributed Systems Online 2, – (2001). URL http:

//portal.acm.org/citation.cfm?id=1435643.1436507

6. Brønsted, J., Hansen, K.M., Ingstrup, M.: Service composition issues in pervasive computing.

IEEE Pervasive Computing 9, 62–70 (2010). DOI http://dx.doi.org/10.1109/MPRV.2010.11.

URL http://dx.doi.org/10.1109/MPRV.2010.11

7. Capra, L., Blair, G.S., Mascolo, C., Emmerich, W., Grace, P.: Exploiting reflection in mobile

computing middleware. SIGMOBILE Mob. Comput. Commun. Rev. 6, 34–44 (2002). DOI

http://doi.acm.org/10.1145/643550.643553. URL http://doi.acm.org/10.1145/

643550.643553

8. Chakraborty, D., Joshi, A.: Dynamic service composition: State-of-the-Art and research di-

rections. Tech. rep., University of Maryland, Department of Computer Science and Electrical

Engineering (2001)

9. Maciel da Costa, C., da Silva Strzykalski, M., Bernard, G.: An aspect oriented middleware

architecture for adaptive mobile computing applications. In: Proceedings of the 31st Annual

International Computer Software and Applications Conference - Volume 02, COMPSAC ’07,

pp. 81–86. IEEE Computer Society, Washington, DC, USA (2007). DOI http://dx.doi.org/10.

1109/COMPSAC.2007.59. URL http://dx.doi.org/10.1109/COMPSAC.2007.

59

10. Dustdar, S., Schreiner, W.: A survey on web services composition. Int. J. Web Grid Serv.

1, 1–30 (2005). DOI 10.1504/IJWGS.2005.007545. URL http://portal.acm.org/

citation.cfm?id=1358537.1358538

11. Emmerich, W.: OMG/CORBA: An Object-Oriented Middleware. In: J.J. Marciniak (ed.) En-

cyclopedia of Software Engineering, pp. 902–907. John Wiley & Sons (2002). URL http:

//www.cs.ucl.ac.uk/staff/w.emmerich/publications/Encyclopedia

12. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall PTR,

Upper Saddle River, NJ, USA (2005)

13. Frei, A., Popovici, A., Alonso, G.: Eventizing applications in an adaptive middleware plat-

form. IEEE Distributed Systems Online 6, 1– (2005). DOI 10.1109/MDSO.2005.20. URL

http://portal.acm.org/citation.cfm?id=1069591.1069686

14. Gjørven, E., Eliassen, F., Lund, K., Eide, V.S.W., Staehli, R.: Self-adaptive systems: A mid-

dleware managed approach. In: SelfMan, pp. 15–27 (2006)

15. Goumopoulos, C., Calemis, I., Togias, K., Kameas, A., Pruvost, G., Wagner, C., Meliones, A.,

Wiedersheim, B., Bidot, J.: Integrated component platform for prototype testing and updated

specification and design report. Tech. rep., Computer Technology Institute, ATRACO ICT

1.8.2 216837 D7 (2010)

34 C. Goumopoulos

16. Goumopoulos, C., Kameas, A.: Ambient ecologies in smart homes. Comput. J. 52, 922–937

(2009). DOI http://dx.doi.org/10.1093/comjnl/bxn042. URL http://dx.doi.org/10.

1093/comjnl/bxn042

17. Goumopoulos, C., Kameas, A.: Smart objects as components of ubicomp applications. In-

ternational Journal of Multimedia and Ubiquitous Engineering, Special Issue on Smart Ob-

ject Systems 4(3), 1–20 (2009). URL http://www.sersc.org/journals/IJMUE/

vol4_no3_2009/1.pdf. SERSC Press

18. Goumopoulos, C., Kameas, A., Hagras, H., Callaghan, V., Gardner, M., Minker, W., Weber,

M., Bellik, Y., Meliones, A.: Atraco: Adaptive and trusted ambient ecologies. In: Proceedings

of the 2008 Second IEEE International Conference on Self-Adaptive and Self-Organizing

Systems Workshops, pp. 96–101. IEEE Computer Society, Washington, DC, USA (2008).

DOI 10.1109/SASOW.2008.13. URL http://portal.acm.org/citation.cfm?

id=1524875.1525041

19. Grace, P., Truyen, E., Lagaisse, B., Joosen, W.: The case for aspect-oriented reflective mid-

dleware. In: Proceedings of the 6th international workshop on Adaptive and reflective mid-

dleware: held at the ACM/IFIP/USENIX International Middleware Conference, ARM ’07,

pp. 2:1–2:6. ACM, New York, NY, USA (2007). DOI http://doi.acm.org/10.1145/1376780.

1376782. URL http://doi.acm.org/10.1145/1376780.1376782

20. Grimes, R.: Professional Dcom Programming. Wrox Press Ltd., Birmingham, UK, UK (1997)

21. Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int.

J. Hum.-Comput. Stud. 43, 907–928 (1995). DOI 10.1006/ijhc.1995.1081. URL http:

//portal.acm.org/citation.cfm?id=219666.219701

22. Hayton, R.: Flexinet open orb framework. Tech. rep., APM Ltd., Poseidon House, Castle Park,

Cambridge, UK (1997)

23. Hollingsworth, D.: Workflow management coalition - the workflow reference model. Tech.

rep., Workflow Management Coalition (1995)

24. Kiczales, G.: Aspect-oriented programming. ACM Comput. Surv. 28 (1996). DOI http://doi.

acm.org/10.1145/242224.242420. URL http://doi.acm.org/10.1145/242224.

242420

25. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An overview of

aspectj. In: Proceedings of the 15th European Conference on Object-Oriented Programming,

pp. 327–353. Springer-Verlag, London, UK (2001). URL http://portal.acm.org/

citation.cfm?id=646158.680006

26. Kiczales, G., Rivieres, J.D.: The Art of the Metaobject Protocol. MIT Press, Cambridge, MA,

USA (1991)

27. Kon, F., Costa, F., Blair, G., Campbell, R.H.: The case for reflective middleware. Commun.

ACM 45, 33–38 (2002). DOI http://doi.acm.org/10.1145/508448.508470. URL http://

doi.acm.org/10.1145/508448.508470

28. Kon, F., Román, M., Liu, P., Mao, J., Yamane, T., Magalhã, C., Campbell, R.H.: Monitor-

ing, security, and dynamic configuration with the dynamictao reflective orb. In: IFIP/ACM

International Conference on Distributed systems platforms, Middleware ’00, pp. 121–143.

Springer-Verlag New York, Inc., Secaucus, NJ, USA (2000). URL http://portal.acm.

org/citation.cfm?id=338283.338355

29. Kumar, R., Poladian, V., Greenberg, I., Messer, A., Milojicic, D.: Selecting devices for aggre-

gation. In: WMCSA, pp. 150–159. IEEE Computer Society, Los Alamitos, CA, USA (2003).

DOI http://doi.ieeecomputersociety.org/10.1109/MCSA.2003.1240776

30. Ledoux, T.: Opencorba: A reflective open broker. In: Proceedings of the Second Interna-

tional Conference on Meta-Level Architectures and Reflection, Reflection ’99, pp. 197–214.

Springer-Verlag, London, UK (1999). URL http://portal.acm.org/citation.

cfm?id=646930.710404

31. Maes, P.: Concepts and experiments in computational reflection. SIGPLAN Not. 22, 147–155

(1987). DOI http://doi.acm.org/10.1145/38807.38821. URL http://doi.acm.org/10.

1145/38807.38821

1 A Middleware Architecture for Ambient Adaptive Systems 35

32. McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Systems 16,

46–53 (2001). DOI http://dx.doi.org/10.1109/5254.920599. URL http://dx.doi.org/

10.1109/5254.920599

33. Papadopoulos, N., Meliones, A., Economou, D., Karras, I., Liverezas, I.: A connected home

platform and development framework for smart home control applications. In: Proceedings of

the 7th IEEE International Conference on Industrial Informatics (INDIN09) (2009)

34. Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: Jac: A flexible solution for aspect-oriented

programming in java. In: Proceedings of the Third International Conference on Metalevel Ar-

chitectures and Separation of Crosscutting Concerns, pp. 1–24. Springer-Verlag, London, UK

(2001). URL http://portal.acm.org/citation.cfm?id=646931.710426

35. Pruvost, G., Kameas, A., Heinroth, T., Seremeti, L., Minker, W.: Combining agents and on-

tologies to support Task-Centred interoperability in ambient intelligent environments. In:

Proceedings of the 2009 Ninth International Conference on Intelligent Systems Design and

Applications, ISDA ’09, pp. 55–60. IEEE Computer Society, Washington, DC, USA (2009).

DOI http://dx.doi.org/10.1109/ISDA.2009.195. URL http://dx.doi.org/10.1109/

ISDA.2009.195

36. Rao, J., Su, X.: A survey of automated web service composition methods. In: J. Car-

doso, A. Sheth (eds.) Semantic Web Services and Web Process Composition, Lecture Notes

in Computer Science, vol. 3387, pp. 43–54. Springer Berlin / Heidelberg (2005). URL

http://dx.doi.org/10.1007/978-3-540-30581-1_5

37. Remagnino P Foresti, G.L.: Ambient intelligence: A new multidisciplinary paradigm. IEEE

Transactions on Systems, Man and Cybernetics, Part A 35(1), 1–6 (2005)

38. Seremeti, L., Goumopoulos, C., Kameas, A.: Ontology-based modeling of dynamic ubiq-

uitous computing applications as evolving activity spheres. Pervasive Mob. Comput. 5,

574–591 (2009). DOI 10.1016/j.pmcj.2009.05.002. URL http://portal.acm.org/

citation.cfm?id=1630161.1630223

39. Sommer, R.: Personal Space: The Behavioral Basis of Design. Prentice Hall Trade, Englewood

Cliffs, NJ, USA (1969)

40. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction and

composition of semantic web services. Journal of Web Semantics 1(1), 27–46 (2003)

41. Togias, K., Goumopoulos, C., Kameas, A.: Ontology-Based representation of upnp devices

and services for dynamic Context-Aware ubiquitous computing applications. In: International

Conference on Communication Theory, Reliability, and Quality of Service, pp. 220–225. IEEE

Computer Society, Los Alamitos, CA, USA (2010). DOI http://doi.ieeecomputersociety.org/

10.1109/CTRQ.2010.44

42. Verma, K., Sivashanmugam, K., Sheth, A., Patil, A., Oundhakar, S., Miller, J.: Meteor-s wsdi:

A scalable p2p infrastructure of registries for semantic publication and discovery of web ser-

vices. Inf. Technol. and Management 6, 17–39 (2005). DOI 10.1007/s10799-004-7773-4.

URL http://portal.acm.org/citation.cfm?id=1047575.1047628

43. Wagner, C., Hagras, H.: Toward general type-2 fuzzy logic systems based on zslices. Trans.

Fuz Sys. 18, 637–660 (2010). DOI http://dx.doi.org/10.1109/TFUZZ.2010.2045386. URL

http://dx.doi.org/10.1109/TFUZZ.2010.2045386

44. Wollrath, A., Riggs, R., Waldo, J.: A distributed object model for the java system. Computing

Systems 9(4), 265–290 (1996)

45. Yang, Z., Cheng, B.H.C., Stirewalt, R.E.K., Sowell, J., Sadjadi, S.M., McKinley, P.K.: An

aspect-oriented approach to dynamic adaptation. In: Proceedings of the first workshop on

Self-healing systems, WOSS ’02, pp. 85–92. ACM, New York, NY, USA (2002). DOI

http://doi.acm.org/10.1145/582128.582144. URL http://doi.acm.org/10.1145/

582128.582144

