
DESIGN AND IMPLEMENTATION OF A SECURE MOBILE WIKI SYSTEM

Costantinos Kolias, Stefanos Demertzis, Georgios Kambourakis

Laboratory of Information and Communication Systems Security
Department of Information and Communication Systems Engineering

University of the Aegean, Karlovassi, GR-83200 Samos, Greece

Corresponding author email: gkamb@aegean.gr

ABSTRACT
During the last few years wikis have emerged as one of
the most popular tool shells. Wikipedia has boosted their
popularity, but they also keep a significant share in e-
learning, intranet-based applications such as defect track-
ing, requirements management, test-case management,
and project portals. However, existing wiki systems can-
not fully support mobile clients due to several incompati-
bilities that exist. On the top of that, an effective secure
mobile wiki system must be lightweight enough to sup-
port low-end mobile devices having several limitations. In
this paper we analyze the requirements for a novel multi-
platform secure wiki implementation. XML Encryption
and Signature specifications are employed to realize end-
to-end confidentiality and integrity services. Our scheme
can be applied selectively and only to sensitive wiki con-
tent, thus diminishing by far computational resources
needed at both ends; the server and the client. To address
authentication of wiki clients a simple one-way authenti-
cation and session key agreement protocol is also intro-
duced. The proposed solution can be easily applied to
both centralized and forthcoming P2P wiki implementa-
tions.

KEYWORDS
Wiki; Security; XML; Mobile Systems; SSL.

1. Introduction

Wikis, also known with the term wiki-wiki, are nothing
more than a special category of web sites that not only
allow the editing of their content but also in many cases
encourage it. The basic principles that wikis follow are:
(a) facilitation for someone to access knowledge, (b) fa-
cilitation for someone to contribute to that knowledge.
Due to these features wikis have been established as one
of the most prominent collaboration platforms over the
last years, especially among research groups. Indeed, in
most of the existing wiki implementations access is as
easy as browsing on a simple web page. Editing is also
straightforward and it can be done by inserting informa-
tion written in a specific (usually very simple) syntax, in
the appropriate web forms that the wiki interface offers.

However, the excessive freedom that wikis support is not
always desirable. In fact, the more users interact with a
wiki the greater the chance that someone inserts wrong

information unintentionally or insert irrelevant or offen-
sive content, just to sabotage it. Moreover, in many cases,
due to the very nature of the information that the wiki
maintains (e.g. a new corporate strategic plan) it is desir-
able that only certain users have full access and permis-
sion to alter all of its contents, while all the rest have less
privileges. Thus, the majority of existing wikis can be
configured and utilized either as public or as private, i.e.
corporate/enterprise, education, intranet etc [1].

On the other hand, in spite the excessive progress that
have been made in mobile technology, there exits a great
pluralism of standards supported by different device ven-
dors. This fact really acts as a drawback, when comes to
application portability. In most cases, a web application,
say a wiki, that has been designed to run on a desktop
environment will, in the best case scenario, face several
problems when someone tries to access it from a mobile
device. Also, until now, some efforts have been made to
develop wiki systems that provide increased security in
terms of access policy. Once again, the common ground
of all these attempts was that they relied on technologies
and protocols designed specifically for desktop systems,
ignoring the idiosyncrasies of low-end mobile devices, i.e.
limited processing and memory resources, battery re-
serves, unreliability of wireless connections etc.

In this paper we present and analyse a novel wiki engine
that is appropriate for both desktop systems and mobile
devices/clients. Additionally, our wiki system can be op-
tionally configured to be secure, supporting confidential-
ity and integrity of wiki data in transit, and accessible
only by its legitimate users. As far the portability charac-
teristic is concerned, we have tried so the only true re-
quirements from the mobile device to run the wiki will be
to have some sort of access on the network, and a front-
end application developed for device’s native operating
system. The application will act as the user interface for
the data received from the backend wiki web application.
Secondly, our goal is to minimize cryptographic opera-
tions and the associated protocol demands but without
sacrificing security much at the same time.

The rest of this paper is organized as follows: next section
defines and analyses the problem in further detail. Section
3 addresses previous work on the topic and examines wiki
architectural issues. Our solution is presented and dis-

hellboy
Draft

cussed in detail in section 4. Last section draws a conclu-
sion and gives some pointers to future work.

2. Problem Statement

Today, mobile devices such as Personal Digital Assis-
tance (PDA) or cell phones are widely proliferous. Their
capabilities have been dramatically upgraded, i.e. they
have greater computational power and memory, bigger
screen with more colors, and most of them have access to
the Internet. Of course, their employment for quick com-
munication and collaboration is almost synonymous to
their name. As already mentioned, the main target of a
wiki should be the facilitation of the user for accessing
and altering information preferably at any time and place.
Thus, whatever its usage, the possibility of accessing a
wiki through mobile devices is considered nowadays
more than ever necessary. Nevertheless, there are several
obstacles that must be carefully considered.

The first problem is actually the number of different stan-
dards and technologies supported by today’s mobile de-
vices. It seems that mobile device vendors cannot easily
agree on certain standards and each one has tried to de-
velop their own. This situation has led to serious compati-
bility issues among mobile devices of different vendors.
Secondly, the vast majority of wikis today have been de-
signed for access from desktop systems. They usually
employ standards such as the Hyper Text Markup Lan-
guage (HTML) and technologies such as JavaScript for
enabling the users to access and alter their pages. While
these technologies and standards have proven their value
on desktop systems, yet the majority of mobile devices do
not fully support them. For instance, certain HTML con-
tent will not be displayed properly on mobile devices de-
signed to support Compact HTML (C-HTML) [2] or i-
mode HTML, and probably will not be displayed at all in
mobile devices that incorporate browsers based on Wire-
less Markup Language (WML) [3]. Even worse, most
wikis have evolved from simple script based implementa-
tions written in Perl, thus making them difficult to extend.
Thus, one goal is the implementation of a truly portable
wiki.

On the other hand, although the true spirit of the “wiki
way” is to allow for the online collaboration of documents
for visitors or contributors to be able to create their own
pages or to edit existing pages, security is often essential
for many wiki implementation scenarios. Actually, as
already mentioned the majority of existing wikis can be
configured and utilized either as public or as private [1].
For example, consider a software organization that is cur-
rently working on a new project. A good collaboration
practice would be the utilization of a wiki among the de-
velopers so that they add / amend documentation or gen-
eral information for the project on each step of the devel-
opment process. But should all contributors have the same
amount of privileges? Probably the employees that are not
immediately involved with the development process

should not have the right to alter or add content. Another
example is the one of a university wiki. Consider the hy-
pothetical scenario where a faculty member wants to be
able to provide general information for her lesson and
students or others would be welcome to contribute to that
knowledge. But what if the instructor would also want to
provide the semester grades for this lesson through the
wiki? Obviously, students must not have the right to alter
them. Moreover, how the instructor must be rest assure
that her grades were not altered when in transit from her
desktop (or mobile device) to the wiki server. It is thus
obvious that the need for a wiki engine that suffices the
basic security principles is of great importance. For these
cases, a mechanism for authentication and authorization is
mandatory; also confidentiality and integrity for the trans-
ferred data might be desirable.

Until now, very few works try to intertwine wiki webs
with security [4],[5],[6]. Moreover, to the best of our
knowledge, none of them explicitly focus on mobile
wikis, that is, wikis that can be accessed from low-end
mobile devices. So, the following question arises: Is it
possible to implement security on a wiki that among oth-
ers will be appropriate for mobile devices with very lim-
ited resources? It is obvious that if security is desirable
then it is certain that we will have to execute some sort of
functions (e.g. data encryption) which will be very de-
manding in computational power affecting also battery
reserves. Thus, a second goal is the implementation of a
wiki that will provide security in the environment of mo-
bile devices with as fewer requirements in computational
power as possible.

3. General Issues

Currently many implementations of wiki engines [1] in-
clude a set of static web pages placed on a folder of a web
server. The client receives a specific page upon request.
Any attempt for securing such a system is basically rely
on: (a) user’s authentication process, (b) the use of ACLs
supported by the operating system running on the web
server for authorization, and (c) Secure Socket Layer
(SSL) protocol for providing confidentiality.

Nevertheless, there are serious doubts concerning the effi-
ciency of such an ACL approach in large wikis where
hundreds or even thousands of users access the wiki si-
multaneously. According to this scenario, when a client
queries for a topic each static HTML page would have to
be opened and searched for that specific term. Probably,
this approach might still be useful only in environments
with very few clients and very limited wiki topics.

Today, the majority of wiki engines are based on a cen-
tralized, multi-tier architecture which typically includes
presentation, application, and data tiers. For example,
wikipedia has a set of PHP scripts which reside in the
logic tier that access a MySQL database (the data tier).
After that the data may be delivered to the client for pres-

entation. In wikipedia for example, editing a page does
not require registration, but the IP address of every unreg-
istered user is recorded. In case that an unregistered user
is deliberately trying to undermine the content of a page
then his IP is inserted into a black list. However, an ad-
versary could easily change his IP and continue causing
damage. Usually implementations that follow this particu-
lar model employ the SSL protocol in order to provide a
higher level of security.

The drawbacks of such an approach are many. First of all,
the data transferred between the client and the server is in
HTML format. As known, an HTML file consists of two
parts; data and markup information. The latter determines
the exact way the actual data must be displayed in the
client’s browser. Whilst HTML is a de-facto standard for
desktop machine browsers the overwhelming majority of
mobile devices today support only a subset of it or other
standards solely. As a result, some of the information
(markup) being transferred to the mobile device is use-
less, while at the same time the data is not displayed
properly. Secondly, utilizing SSL means that all HTML
files being transferred are scrambled without exceptions.
In practice however, only some sensitive or private por-
tions of the actual data must be cryptographically pro-
tected; not all. This unfortunately means that the mobile
device side, where processing power matters, must de-
crypt / encrypt more information (markup, non sensitive
data) than it actually needs to.

An additional implementation that appeared recently,
wants wikis to be based on a decentralized architecture
[7],[8]. Peer-to-Peer (P2P) approach attempts to deal with
the problem of huge amounts of information stored and
administered in a single database. This means increased
cost for physical means, e.g. backup, decreased perform-
ance etc. On the contrary, the P2P approach is based on
hosting only part of data on clients and not on a central-
ized database. The amount of data that a client can host
depends on its power (many data on server, less data on
desktops etc). Thus, the more nodes that are connected,
the more the total capacity of the system becomes. Al-
though still immature, this model seems to be based on
solid theoretical foundations and justify its raison d'etre.
Despite the fact that a secure P2P implementation does
not yet exist, it is obvious that the use of SSL protocol
could not be the best approach. SSL provides point-to-
point security; not end-to-end. Data are encrypted at one
end and it is securely transferred at the other end, where it
is decrypted. Information in this way remain secure dur-
ing transfer but in no way within clients. Thus, if one
wants to transfer some data securely, from A to C through
B then she should accept that B would have access to
those data.

4. The Proposed Solution

The proposed model is mainly based on the centralized
three-tier architecture that was described earlier and has

been adopted by most wiki implementations nowadays.
The changes we propose focus on: (a) portability, thus
making it appropriate for devices with limited resources,
(b) higher level of security, thus making it appropriate for
closed or confined environments. Moreover, as explained
further down, the theoretical model in which our solution
is based on fits well to P2P wiki architectures too. We
relied on existing technologies and standards for our im-
plementation. To achieve the portability goal we relied on
XML language. One the other hand, to satisfy security
needs we used XML security, i.e. XML Encryption and
XML Signatures as well as on a custom authentication
and key establishment protocol described in the follow-
ing.

4.1. Overview and technologies employed

XML is a markup meta-language, i.e. a language that is
used for the creation of other languages. Languages that
are based in XML do not carry information related to the
presentation of data, as in the case of HTML, but only for
the data itself. This feature makes XML an ideal choice
for our case since no unnecessary presentation informa-
tion, part of which might not be needed at all in various
platforms, is transferred. More specifically, it is adequate
to define a very simple XML-based language which is
able to describe wiki data. Naturally, the exact way the
wiki data is organized on databases is specific to each
implementation per se and its special needs. However, the
language should have the following characteristics: (a) be
simple enough for someone to recognise the representa-
tional structure of the data to be transferred, (b) include
no unnecessary tags, (c) provide information about which
elements have been chosen for encryption or signature
and (d) fully conform with the XML Security and XML
Signature specifications. A generic example of such a
language is illustrated in figure 1.

<Message>
 <Title>
 Xml Encyrption
 </Title>
 <Description ToEncrypt='true'>
 Xml Encryption is a specification that defines...
 </Description>
 <Title>
 Xml Signature
 </Title>
 <Description ToSign='true'>
 Xml Signature is a specification that defines...
 </Description>

Figure 1. An example of a wiki XML message

Upon receiving a wiki request the server will query for
the matching data stored in the database. After that, it will
transform the data back to XML form (which the client
can also understand) and forward it to the client. The ex-
act way the data should be presented on the client’s screen
is up to the client itself. On the other hand, the client must

also understand this custom tailored XML-based language
and fabricate its queries accordingly, i.e. building the ap-
propriate XML file before transmitting it to the server.

As far as the confidentiality and integrity of the data in
transit are concerned, we utilize the XML Encryption [9]
and XML Signature specifications [10]. XML Encryption
is a specification recommended by W3C that defines a
process for encrypting data and representing the result in
XML. In XML Encryption the data that may be encrypted
can be a XML Document, a XML Element or the contents
of a XML Element [9]. This characteristic proves to be a
great advantage, since it provides the possibility of en-
crypting part or the whole of the data to be transferred.
This advantage is much appreciated especially on a secure
wiki environment where most of the time there is need for
securing only a small chunk of the information to be
transmitted. Thus, no unnecessary data go through the
resource consuming process of encryption.

XML-signature is a specification recommended by W3C
that defines processing rules and syntax for digitally sign-
ing an XML Document, an element, or just the contents of
an element. XML Signature has many similarities with
PKCS #7 [11] but is far more extensible for signing XML
documents. It is also used by various Web technologies
such as Simple Object Access Protocol (SOAP) [12] and
Security Assertion Markup Language (SAML) [13].

Since the SSL/TLS protocol [14] is currently the first
choice for secure data transport in web applications, a
comparison between SSL and XML is necessary. In con-
trast to XML Encryption, the following are two important
areas not addressed by SSL: (a) encrypting part of the
data being exchanged, (b) secure sessions between more
than two parties. As already said, if the application re-
quires that the whole communication be secure, then SSL
is the proper choice. On the other hand, XML Encryption
is an excellent choice if the application requires a combi-
nation of secure and insecure communication; which
means that some of the data will be securely exchanged
and the rest will be exchanged as plaintext. This feature
fits best in our case ensuring maximum portability and
improved performance for low-end mobile devices. Also,
the same feature makes XML Encryption appropriate for
future secure P2P wiki implementations as well.

4.2. Architecture

Our implementation follows the centralized multi-tier
model described earlier in section 3 (see also figure 2).
More specifically it comprises from the data tier, the logic
tier and the presentation tier. The data tier hosts a data-
base in which all information about the topics of the wiki
is stored, like titles and contents of topics, pictures etc.
The retrieval of data is done with simple SQL select com-
mands, while topics are updated by SQL update and insert
commands. Supposing that the database is secured (from
outsiders), data can be stored in it in unencrypted form.

Upon registration to the wiki system a new user is created
to the database using the credentials {username, pass-
word} of his choice. Particular rights are assigned to her
by utilizing a role-based system. There might be roles that
allow a user to execute select queries on the database,
roles that allow select and update, and roles that provide
full privileges.

In the logic tier lies our application that is in charge of the
following operations: (a) retrieval of data from the data-
base after a corresponding client’s request, (b) transfor-
mation of the data into XML files (c) forwarding the pro-
duced files (containing the data) to the client (d) parsing
the data contained in the files and (e) storing data to the
database. Where necessary, the application performs en-
cryption of data. The application retrieves from the data-
base the sensitive data (e.g. a paragraph of a topic that its
content has to remain confidential), it symmetrically en-
crypts it and finally places it on the corresponding XML
file appropriately.

In the client side resides a wiki application too. The client
application receives XML files from the server and parses
them to extract the data from the rest of the XML tags. In
case the XML file contains some cryptographically pro-
tected sensitive fields then the application deciphers them
by utilizing the session key (see next section). After that it
displays the data on appropriate controls (labels, text
fields etc) of the application. The procedure of decryption
follows the reverse path. Ciphering/Deciphering proce-
dure on the client is based on a symmetric session key and
it is flexible by the means that it can be optionally applied
only to some certain sensitive fields.

Figure 2. The proposed architecture

4.3. Authentication and Key Agreement Protocol

In this section we describe a simple lightweight Authenti-
cation and Key Agreement protocol which enables a user
to securely authenticate himself to the wiki server. The
protocol also produces a 256 bits length key to serve as
the session key. Our protocol utilizes both symmetric and
asymmetric cryptographic operations. The well-known
Advanced Encryption Standard (AES) with a key length

of 256 bits is used for symmetric ciphering / deciphering,
while the Rivest Shamir Adleman (RSA) algorithm with a
key length of 1024 bits for public key operations. It is also
assumed that all clients hold a copy of the server’s public
key in the form of a base-64 encoded X.509 certificate
issued by a Certification Authority (CA). Note that a
base-64 encoded certificate is very easy to manage and
transfer to virtually every mobile device as it is in plain
text. The way the client receives the certificate is out of
the scope of this paper, thought it can be installed manu-
ally on the client application or received via e-mail.

The authentication protocol is one-way. This means that it
is used to authenticate the client to the server but not the
opposite. Actually, mutual authentication is not necessary
here since fake or rogue wiki servers cannot harm clients
by any means, except causing Denial of Service (DoS).
That is, the client repeatedly attempts to authenticate to a
fake server unsuccessfully. The server is not in a position
to eavesdrop on any valuable information transmitted, so
this attack is considered harmless. Upon authentication
the following steps are performed: (a) The client produces
a random 256 bits session key, (b) the client encrypts the
session key with the server’s public key retrieved from
the server’s certificate, (c) Upon receiving the encrypted
session key the sever decrypts it using its own private
key, (e) the client encrypts user’s credentials, i.e. {user-
name, password} with the session key and sends them
towards the server, (f) as soon as the encrypted credentials
of the user are received the server decrypts them with the
session key.

Up to this point the protocol is very simple and light-
weight but has the disadvantage that is extremely weak in
man in the middle / replay attacks. More specifically, as-
suming that the attacker eavesdrops on the link between
the server and the client he can record all the messages
transmitted. After that, at a later time, he can replay them
towards the server and become successfully authenticated
Thus, some more steps must be executed in order to guar-
antee that the client attempting to authenticate is the le-
gitimate one, i.e. does have the proper session key: (h) the
server generates a random number and sends it to client,
(i) the client is required to encrypt it with the session key
(j) server receives the encrypted session key and decrypts
it with the session key (k) if the result matches with the
original random number the client is considered authenti-
cated. Figure 3 depicts the overall protocol messages
flow.

4.4. Confidentiality

Confidentiality of the data is achieved through a simple
procedure of symmetric encryption. The mechanism as-
sumes that both the client and the server hold the session
key, which in turn means that the procedure of authentica-
tion and key establishment has completed successfully.
The one end encrypts the data and inserts them into the
XML file following the syntax described by the XML

encryption standard. After that the XML file is transmit-
ted towards the other end which follows the opposite pro-
cedure to acquire the original content.

Figure 3. The authentication and key agreement protocol

4.5. Integrity – Non repudiation

Our system offers the possibility for signing data (XML
files, elements, contents of elements) for ensuring the
integrity of the data. It can also provide non repudiation
services to the user, if desirable. In the following, when
referring to hash calculation the use of SHA-1 [15] is im-
plied. If the client wishes to sign a XML document then
the procedure is as follows: (a) a hash of the document to
be sent is calculated, (b) the client encrypts the hash with
the session key established during authentication, (c) the
client sends the encrypted hash within the XML file as a
special tag according to the XML Signature specifica-
tions, (d) The other part verifies the acquired signature by
recalculating the hash of the file and comparing it with the
received one after decryption.

Contrariwise to all know implementations where the hash
gets encrypted with the private key of the entity who
wishes to sign, here there is no reason to subject the client
to the process of acquiring its own public-private key
pairs as well as the demanding process of asymmetric
encryption. In our case there is only one entity (the
server) that will ever wish to confirm the signature. The
server has already acquired the (symmetric) session key -
through the previously discussed process of authentication
- and since both parties share a unique secret key, they
can use it to sign the message (client-side) and then verify

it (server-side). The overall integrity procedure is illus-
trated hereunder in figure 4.

Figure 4. The integrity service

4.6. Experimental Results

Preliminary measurements showed that the wiki authenti-
cation and key agreement protocol service time span be-
tween 0.9 and 1.25 seconds. Also, measurements were
gathered during repeated wiki-topic secure transactions,
between the wiki server and a PDA client. Each wiki
topic was encrypted, decrypted and signed fifteen times
and only average values were recorded. Specifically, en-
cryption, decryption and signature mean times for a 0.5
Mbytes file were 2, 2.32 and 0.44 seconds correspond-
ingly. Tests were conducted using as client device a Fu-
jitsu – Siemens Loox N560 Pocket PC, which incorpo-
rates a 624 MHz Intel X-scale PXA270 processor, and an
IEEE 802.11b/g wireless connection. The operating sys-
tem running on the device was Windows Mobile in ver-
sion 5.0. A snapshot of the wiki client application inter-
face is depicted in figure 5. As already mentioned and it is
demonstrated in figure 5, confidentiality and integrity
services can be applied selectively; either to the wiki topic
as a whole or to some sensitive parts of it.

Figure 5. A snapshot of the client wiki application (“Se-
cure” means encrypt + sign)

5. Conclusions

In our opinion the ideal wiki should be accessible to an
anywhere, anytime basis and optionally secure to its le-
gitimate users. The former requirement makes wiki acces-
sible from virtually any mobile device affords a web
browser, while the latter ensures that when optionally
extra security is needed the wiki will be able to support it.
In this paper we investigated both aforesaid requirements
discussing ways that can be realizable. Furthermore, a
novel wiki multiplatform prototype implementation was
presented and its major components were analyzed and
shortly tested. Since Ajax technology utilizes mainly
XML (among other choices) for sending and receiving
data it would be desirable to embed Ajax in our imple-
mentation sometime in the future. Taking into account
that Ajax runs from within web browsers (javascript) this
would actually eliminate the need for separate client ap-
plications to be developed and installed on wiki target
devices.

References

[1] Wikipedia, Comparison of wiki software, http://

en.wikipedia.org/wiki/Comparison_of_wiki_software
[2] W3C, Compact HTML for Small Information Appliances,

available at: http://www.w3.org/TR/1998/NOTE-compact
HTML-19980209/

[3] OMA, Wireless Markup Language version 2 Specification,
available at: www.openmobilealliance.org/tech/affiliates/
wap/wap-238-wml-20010911-a.pdf.

[4] Mason, R. and Roe, P., “RikWik: An Extensible XML
Based Wiki”, proceedings of Symposium on Collaborative
Technologies and Systems, pp. 267-273, 2005.

[5] Dondio, P., Barrett, S., Weber, S., Seigneur, J. M., “Ex-
tracting trust from domain analysis: A case study on the
wikipedia project”, LNCS 4158, pp. 362-373, 2006.

[6] Raitman, R., Ngo, L., Augar, N., Zhou, W., “Security in the
online E-learning Environment”, proceedings of the 5th
IEEE ICALT, pp. 702-706, 2005.

[7] Morris, J., Lüer, C., “DistriWiki: A Distributed Peer-to-
Peer Wiki”, 2007, submitted for publication,
http://www.cs.bsu. edu/homepages/chl/P2PWiki/.

[8] Urdaneta, G., Pierre, G. and Van Steen, M., “A Decentral-
ized Wiki Engine for Collaborative Wikipedia Hosting”, In
Proceedings of the WEBIST 2007.

[9] W3C, XML Encryption Syntax and Processing, available
at: http://www.w3.org/TR/xmlenc-core/.

[10] W3C, XML-Signature Syntax and Processing, available at:
http://www.w3.org/TR/xmldsig-core/.

[11] Kaliski, B., PKCS #7: Cryptographic Message Syntax,
Version 1.5, RFC 2315, RSA Laboratories, March 1998.

[12] W3C, SOAP Version 1.2 Part 0: Primer (Second Edition),
W3C Recommendation 27 April 2007.

[13] Ragouzis N. et al., “Security Assertion Markup Language
(SAML) V2.0 Technical Overview, Feb. 2007, available at:
http://www.oasisopen.org/committees/download.php/22553
/sstc-saml-tech-overview-2%200-draft-13.pdf.

[14] Frier A., Karlton P. & Kocher P., The SSL 3.0 Protocol,
http://home.netscape.com/eng/ ssl3/draft302.txt.

[15] W3C, SHA1 Secure Hash Algorithm - Version 1.0,
http://www.w3.org/PICS/DSig/SHA1_1_0.html.

