
Efficient Spatial Image Watermarking via New
Perceptual Masking and Blind Detection Schemes

Irene G. Karybali, Member, IEEE, and Kostas Berberidis, Member, IEEE

Abstract—The aim of this paper is to improve the performance of
spatial domain watermarking. To this end, a new perceptual mask
and a new detection scheme are proposed. The proposed spatial
perceptual mask is based on the cover image prediction error se-
quence and matches very well with the properties of the human
visual system. It exhibits superior performance compared to ex-
isting spatial masking schemes. Moreover, it allows for a signif-
icantly increased strength of the watermark while, at the same
time, the watermark visibility is decreased. The new blind detec-
tion scheme comprises an efficient prewhitening process and a cor-
relation-based detector. The prewhitening process is based on the
least-squares prediction error filter and substantially improves the
detector’s performance. The correlation-based detector that was
selected is shown to be the most suitable for the problem at hand.
The improved performance of the proposed detection scheme has
been justified theoretically for the case of linear filtering plus noise
attack and through extensive simulations. The theoretical anal-
ysis is independent of the proposed mask and the derived expres-
sions can be used for any watermarking technique based on spatial
masking. It is shown though that in most cases the detector per-
forms better if the proposed mask is employed.

Index Terms—Blind detection, copyright protection, image wa-
termarking, spatial perceptual masking.

I. INTRODUCTION

COPYRIGHT protection and authentication of digital data
via watermarking is an issue of intense research world-

wide in recent years. As the Internet serves the mass distribution
of digital data, everyone has access to such data without paying
any compensation to the actual owners. Consequently, the
piracy proliferates and the development of techniques that pro-
vide copyright protection becomes a necessity. Cryptography
and watermarking are two such techniques that work comple-
mentarily [1]. Cryptography protects the digital data during
its transmission, but at the receiver, the data are identical to
the original ones and, thus, no longer protected. Watermarking
comes to solve this problem, by embedding an imperceptible
signal, a watermark, directly into the original data, in such a
way that it is difficult to be removed. There are also perceptible
watermarks, but the imperceptible ones are more suitable for
becoming part of a copyright protection system for obvious
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reasons. The watermarks are usually key-generated pseudo-
random patterns. The keys identify legal owners and should
have a secure length to be robust to cryptographic attacks.

There are some contradictory requirements in the water-
marking process. The embedded watermark should not affect
the image quality in a visible manner, but, at the same time, it
has to be robust to attacks. Obviously, a high energy watermark
is more robust than a low energy one, but the acceptable value
of a watermark’s energy depends on the image characteris-
tics. Loosely speaking, the image capacity is the amount of
information that can be reliably embedded in an image without
producing visible artifacts. Thus, a compromise between water-
mark robustness and visibility has to be made. The employment
of perceptual masks, which take into account the properties of
the human visual system (HVS), turns out to be an effective
way to improve the robustness of a watermark without affecting
the image quality [2].

The HVS is less sensitive to distortions around edges and in
textured areas. In [3], a masking function based on local image
properties is proposed. In [4], the watermark is embedded in the
blue channel, exploiting the fact that the human eye is less sen-
sitive to this particular channel. In [2], the watermark is added
to a number of low frequency discrete cosine transform (DCT)
coefficients, adapted by the coefficients’ strength. In [5], the
Watson’s model [6] is employed for watermark embedding in
the transform domains. The authors of [7] propose an alternative
transform watermarking approach that takes into account spa-
tial domain constraints. Delaigle et al. [8] consider the masking
of bandlimited noise in texture regions and around contours.
Recently, the authors of [9] have presented a perceptual model
that takes into account the sensitivity and masking behavior of
the HVS by means of a local isotropic contrast measure and a
masking model. More references regarding masking techniques
can be found in [10] and [11].

In this paper, a new spatial perceptual mask is proposed, which
is based on the least-squares (LS) prediction error sequence of
the cover image. The LS prediction error sequence matches quite
well the characteristics of the HVS, since the errors are expected
to be smaller in smooth areas than in edges and textured areas.
The new mask has been derived so as to enhance the robustness of
the embedded watermark against the so-called denoising attack.
The denoising attack is assumed to be performed using the adap-
tive LS prediction error filter. Such an attack is based directly
on the data, without invoking any assumptions concerning the
image statistics [12], [13]. The proposed mask exhibits superior
performance compared to existing ones. It allows substantially
increased watermark strength while, at the same time, watermark
visibility is decreased. Its improved performance is also verified
by the detection procedure, in which the proposed embedding is
shown to be more robust.



Many detectors have been proposed in literature with the
correlator being the most common. Their optimality mainly
depends on the assumptions made about the distribution of
the original image data. For instance, the DCT coefficients
(excluding the dc coefficient) can be reasonably well approx-
imated by the generalized Gaussian distribution, as shown in
[14] and [15]. This distribution is employed for designing de-
tectors for additive watermarks [16], [17] and for multiplicative
watermarks [18]. In [19], where a multiplicative watermark is
embedded in the discrete Fourier transform (DFT) domain, a
Weibull distribution is used for the description of the coeffi-
cients’ magnitude and the construction of the corresponding
detector. These detectors exhibit improved performance com-
pared to the conventional correlator, which is optimal for data
with Gaussian distribution.

In many cases, however, it is difficult to find a satisfactory
statistical model for the data [20], [21]. For example, for real
images in spatial domain, it is reasonable to assume that flat
regions have a Gaussian distribution, but textured areas or re-
gions containing edges have some other highly peaked near zero
distribution. In such cases, a common strategy is to consider a
Gaussian model for the noise (the original image in our case)
and use a correlation-based detector [20]. This strategy is often
followed in spread-spectrum communications. In this work, we
propose the use of an improved correlation-based detector by
incorporating an efficient scheme that whitens effectively the
noise process (i.e., the image itself). Specifically, in the detec-
tion process, the normalized correlation between the LS predic-
tion error sequence of the received image and the filtered (with
the LS prediction error filter) estimation of the masked water-
mark is computed.

The proposed detector’s improved performance has been jus-
tified theoretically for the case of linear filtering plus noise at-
tack, and has also been verified through extensive simulations.
The theoretical analysis is independent of the proposed mask
and is valid for any watermarking technique based on spatial
masking. It should be noted though that in most cases, the de-
tector performs better if the proposed mask is employed. Exten-
sive experiments have shown that the proposed watermarking
scheme is robust not only to linear filtering plus additive white
noise attack but to several other attacks as well (nonlinear at-
tacks, JPEG compression, etc.).

This paper is organized as follows. In Section II, the problem
is formulated, the new perceptual mask is derived, and its perfor-
mance is studied. In Section III, the proposed detection scheme
is presented and theoretical results concerning its performance
are derived. Section IV discusses the suitability of the correlator
for the problem at hand compared to another detector based on
the generalized Gaussian distribution. Experimental results are
presented in Section V, where the beneficial effect of the pro-
posed mask on detection is also verified. Finally, in Section VI,
the work is concluded.

II. PROPOSED WATERMARK EMBEDDING

A. Problem Formulation

Let be a cover image and the watermark, which is a
Gaussian distributed pseudorandom pattern with zero mean and
variance . The watermark is of the same size (and uncorre-
lated) with the cover image. The watermarked image in the most

Fig. 1. General denoising scheme.

simple case, where the image content is not taken into account
(i.e., no perceptual masking is used), can be written as

(1)

If spatial perceptual masking is used, then denoting the involved
mask by , the watermarked image can be written as

(2)

where stands for pointwise multiplication. The strength of
the watermark (i.e., its standard deviation) is incorporated into

. The masked watermark is a zero mean white
process. It depends on (via ), but is uncorrelated with
because has zero mean.

B. Image Denoising and Perceptual Masking

Consider now the problem of watermark estimation. The wa-
termark in (1) can be estimated by subtracting the estimated
cover image from the watermarked image . The estimation
of the cover image corresponds to the image denoising problem.
A linear filter can be used for denoising, the impulse response
of which should be selected so as to minimize some properly
chosen distance between the original and the estimated image.
A common scheme for image denoising is shown in Fig. 1. The
mean value of the noisy image is subtracted, ensuring that

will be an unbiased estimate of , [22]. The estimate of the
original image is given by

(3)

where is the denoising filter in vector form, is a vector
containing the corresponding pixels of the noncausal
neighborhood of taken row-wise, and vector
contains the respective local mean values.

We observe in (3) that the image is decomposed into a low-
frequency part and a high-frequency part . The
denoising filter mainly affects the high-frequency part of the
image (a fact that should be taken into account during water-
mark embedding). We would like to amplify the watermark in
the high frequencies, which correspond to textured image areas
and edges, in order to make a watermark robust to the denoising
attack. This strategy matches the properties of the HVS, since
noise is less noticeable in such areas. So, the next step is con-
centrated on finding a proper perceptual mask to compensate for
denoising.



C. Derivation of the New Perceptual Mask

When a perceptual mask is designed so as to make the em-
bedded watermark resistant against denoising, the way a de-
noising filter acts on an image should be taken into account.
In [3], the denoising attack is performed using adaptive Wiener
filtering [22], that is, the original image is pixel-by-pixel esti-
mated via the relation

(4)

where and denote the local variances of the
original image and the watermark, respectively. Assuming a
nonstationary Gaussian model, the perceptual mask is defined
as

(5)

where NVF is the noise visibility function.
In this paper, the denoising attack is assumed to be performed

using the adaptive LS noncausal prediction error filter. Such an
attack is based directly on the data, without invoking any as-
sumptions concerning the statistics of the image [12], [13], as
in the case of adaptive Wiener filtering where the original image
is assumed to be a locally white process.

The LS prediction error filter is computed by minimizing the
cost function

(6)

where denotes linear prediction, is the
number of pixels, and is the predicted value of
given by

(7)

where is a -length vector containing the linear
predictor’s coefficients taken row-wise, and vector con-
tains row-wise the corresponding pixels of the noncausal
neighborhood of (except for the central one at ),
with assumed odd. Minimization of the cost function of (6)
with respect to leads to the following system of normal
equations:

(8)

where is the sample auto-correlation
matrix of input , and is the respective sample cross-cor-

relation vector, computed as and
, where

The solution of the above system yields the linear predictor
[12]. The prediction error filter is a array having 1 in the
center and the coefficients in the other positions. It is
reshaped in vector form and is denoted hereafter as . Then,
the prediction error sequence is derived as

(9)

or

(10)

Using the prediction error filter in the denoising process, the
estimation of the original image is

(11)

where is the LS prediction error filter computed over the
noisy image, and and are defined similarly to

.
The LS prediction error filter can also be computed adap-

tively using a recursive algorithm, for example, a two-dimen-
sional (2-D) recursive least squares (RLS) [23] or a 2-D least
mean squares (LMS) [24]. Then, the estimate of the original
image is given by

(12)

where contains the filter’s coefficients for the
pixel. A more efficient procedure would be to compute the



filter’s coefficients for blocks of the image instead of computing
them for each pixel.

Let us now study the way that an LS prediction error filter
(adaptive or not) acts on an image in order to remove its noise.
Note that the terms and

in relations (11) and (12) correspond to the predic-
tion error sequence based on the nonadaptive and adaptive pre-
dictor, respectively. Note, however, that independently of the
way the LS prediction error filter’s coefficients are computed,
the resulting LS prediction error sequence is image adaptive.
Actually, if the image is smooth, it is more predictable and the
prediction error takes values near to zero. Thus, from (11) [or
(12)], we can easily deduce that the estimated pixel
tends to its local mean. If the image is textured or has too many
edges, it is not particularly predictable and, as a result, the pre-
diction error takes high values. In fact, in such areas, the pixels
in a neighborhood will be (ideally) uncorrelated, in (8) will
have zero values, will be a diagonal matrix and the solution
of the system will be zero (i.e., the coefficients of the predictor

will be zeros). Thus, (11) [or (12)] implies that the estimated
pixel is practically the noisy pixel .

The above analysis indicates that the prediction error is a good
descriptor of the local image properties and, as a result, we can
use it as a perceptual mask. It varies spatially in a manner well
suited to the HVS, a fact that will be also verified by the study
conducted in Section II-D concerning the perceptual quality of
the watermarked images. In fact, the proposed mask is a normal-
ized version of the prediction error magnitude, so as its values
are in the range [0,1], that is

(13)

Although this mask increases substantially the strength of the
watermark, it decreases its visibility more than the mask
defined in (5) and an HVS-based mask [9], so-called .
Moreover, its superior performance as compared to
demonstrates that the LS prediction error can provide a good
estimation of the local masking capabilities. It should be noted
that the computation of the LS prediction error filter, which is
necessary for the mask’s computation, is a user-defined issue.
For simplicity, in our implementation, we do not compute the
filter adaptively.

D. Study of the Proposed Mask’s Performance

We tested the performance of the proposed mask through ex-
tensive simulations. We present here some experiments, applied
to the well-known images of Lenna (512 512) and Mandrill
(478 500), shown in Fig. 2. Lenna is an image with large,
smooth areas, while Mandrill is a rather textured image. The ex-
periments were performed for two cases, that is, the direct wa-
termark embedding case, where image content is not taken into
account (i.e., no masking is used), and the perceptual masking-
based watermark embedding case.

In the second case, the proposed mask was compared to
the and the masks. The mask contains
parameters, the values of which are determined by means of

Fig. 2. Original images: Lenna and Mandrill.

subjective experiments. This is rather impractical for automatic
watermarking techniques. In our experiments, for these param-
eters, we used the values provided in [9], which were deter-
mined via the evaluations of three subjects. More information
concerning the construction of the mask can be found
in [25] and [26]. We also note that a normalized version of

was used (i.e., was divided by its maximum mag-
nitude value), in order to be comparable to the other masks as
far as the watermark strength is concerned. This normalization
does not have any effect on the mask’s performance. For the

and masks’ computation, we utilized 5 5 non-
causal neighborhoods. The masks of the two examined images
are shown in Fig. 3. seems to be overloaded in textured
areas and around edges, especially for Mandrill, in contrast with
the and the proposed mask , which have their high
values more concentrated in those regions.

In order to obtain identical values for the peak signal-to-noise
ratio (PSNR) defined as

(14)

where is the Euclidean norm, we adjusted properly the
strength (i.e., the standard deviation) of the watermark for the
compared embedding methods. As we can see in Table I for
Lenna and in Table II for Mandrill, the new mask allows the in-
sertion of substantially higher watermark strengths. This results
in very robust watermarks as will be seen later in experiments
concerning the watermark detection process.

But what happens with the watermark visibility? In fact, there
are two ways of measuring the perceptual quality of the data,
namely, subjectively and objectively. The subjective method in-
volves a panel of viewers, to whom host, watermarked, and
received data are presented for grading. But since subjective
quality assessment methods involve human interaction, they are
obviously not suitable for automatic benchmarking. For an au-
tomatic benchmarking of the visual quality of the data, we have
to rely on numerical measurements [27]. For objective quality
assessment, advanced visual quality metrics have to take into ac-
count the fundamental aspects of the visual perception. Ideally,
a perceptual model intended for automatic fidelity tests should
match the results performed with human observers. However,
for comparing different watermarking algorithms, it is sufficient
for the model to provide a value that is monotonically related to



TABLE I
LENNA-WATERMARK STRENGTH AND VISIBILITY FOR DIFFERENT EMBEDDING METHODS

Fig. 3. The NVF-based masks (a) and (b), the HVS-based masks (c) and (d),
and the prediction-error-based (proposed) masks (e) and (f), for the images
Lenna and Mandrill. The HVS mask and the proposed mask are amplified by a
factor of 2 and 20, respectively, for viewing purposes.

the results of human tests. That is, it is not necessary for the
model to match the exact results of tests performed with human

observers, but simply to predict the relative performance of dif-
ferent algorithms in those tests [28].

Carrying out subjective tests for the images’ quality assess-
ment is a useful but also very complicated task since such exper-
iments are statistical in nature. Different observers will behave
differently. Thus, a large number of subjects is needed and a
large number of trials should be performed. Such a procedure, if
not done properly, may be quite misleading. As a result, in order
to assess the watermarked images’ quality, we used some quality
metrics from Checkmark [29], [30], which is an open-source,
Web-accessible [31] benchmark.

The first quality metric was the weighted PSRN (wPSNR),
which is an adaptation of the classical PSNR that introduces dif-
ferent weights for the perceptually different regions, as opposed
to the PSNR where all regions are treated with the same weight.
So, the weighted PSNR is a more reliable quality measure. In
Checkmark, the PSNR weighting is done using NVF. We can
see in our experiments that the proposed masking offers higher
wPSNR values, which implies improved performance as far as
the watermark visibility is concerned. Note also that the values
of wPSNR for the Mandrill image are higher than in the Lenna
case, which is quite reasonable since a watermark is less visible
in a textured image rather than in a smooth one.

In order to further investigate the watermark visibility, two
more quality metrics were used: the total perceptual error
(TPE), which is a global perceptual measure, and the NLPE2
(number of blocks greater than the second local perceptual
error threshold), which is a local one. These metrics have
been derived from the Watson’s model [6] and are included
in Checkmark. TPE is a global perceptual error independent
of the image size. NLPE2 evaluates the image quality locally,
in blocks of the image. Here, blocks of dimensions 32
32 were employed. The thresholds for these metrics that are
default in Checkmark have been determined by subjective
tests for different types of images and then taking the average
values [30]. In all experiments we conducted, the smallest TPE
values were achieved for the proposed watermark embedding.
Thus, in addition to the wPSNR, TPE also indicates that the
performance of the new mask, in terms of image quality, is
better than that of and , despite the fact that the



TABLE II
MANDRILL-WATERMARK STRENGTH AND VISIBILITY FOR DIFFERENT EMBEDDING METHODS

proposed mask allows the insertion of watermarks with much
higher strengths.

However, in some cases, even if the total perceptual error is
small, the image is locally distorted in a visible manner. We
use the NLPE2 in order to evaluate the local image quality. Ac-
cording to NLPE2, if the quality of a single block is unaccept-
able, the whole image is rejected as unacceptable. This seems to
be excessively demanding since if the distortions take place in
textured areas, they are hardly perceptible. Usually, an image is
considered to be acceptable if PSNR is at least 45 dB. In Tables I
and II, heavier embedding cases are also included. For a PSNR
equal to 35 dB, our method seems to be inferior with respect to
the local image quality, as more blocks of the watermarked im-
ages appear to have unacceptable quality compared to the other
three methods. This obviously occurs because, in some regions,
the watermark is “overembedded.” However, these regions are
textures and edges and the distortion is hardly visible. On the
other hand, if the images are watermarked with the other three
methods, although they appear to have better local quality, they
have such values for the wPSNR and the TPE that indicate worse
global quality, which is a more serious problem. This statement
is verified by the images shown in Fig. 4. The three compared
masks have been used for embedding and the PSNR of the re-
sulting watermarked images is equal to 35 dB. For the NVF- and
the HVS-based masks, the images are shown to be noisy (less
noisy for the HVS case), while for the proposed mask, there are
no really perceptible artifacts. In Tables I and II, we also pro-
vide results for the cases that PSNR is 30 dB and 25 dB (i.e.,
the images are heavily watermarked). As can be seen, in those
cases, our method offers better global as well as local quality.

To justify the performance of the proposed mask, we should
recall that it is a normalized version of the prediction error se-
quence. The prediction error is possible to have some very high
(positive or negative) values if good prediction is not possible.
This results in the “overembedding” of a watermark in such un-
predictable regions. However, such values of error appear with
very low probability. Refer, for example, to the histograms of
the prediction errors for Lenna and Mandrill in Fig. 5. The max-
imum value of the prediction error for Lenna is 58.1253, while
the minimum one is 33.1791. The corresponding values for
Madrill are 108.0902 and 114.8250. Note though that the

Fig. 4. Images after watermark embedding: (a) and (b) for the NVF-based
masking, (c) and (d) for the HVS-based masking, and (e) and (f) for the pre-
diction-error-based (proposed) masking. The PSNR is 35 dB.

prediction error values range from 12 to 12 for Lenna and from
50 to 50 for Mandrill for the majority of the image’s pixels.



Fig. 5. Histograms for the prediction errors of (a) Lenna and (b) Mandrill.
(a) Min: val: = �33:1791, Max: val: = 58:1253; (b) Min: val: =

�114:8250, Max: val: = 108:0902.

Fig. 6. Histograms for the prediction error-based masks of (a) Lenna and
(b) Mandrill. (a) Mean value = 0:0195; (b) Mean value = 0:0476.

Hence, we could apply appropriate thresholds to the error values
in order to cope with this local “overembedding” phenomenon.

As we have already mentioned, our aim is to provide a good
tradeoff between watermark visibility and watermark robust-
ness. As it is concluded from the above analysis, the proposed
mask exhibits efficient visibility properties. Even more inter-
esting is that it also yields very high watermark energies. This
results in rather robust watermarks, a fact which will be verified
later, in the detection stage analysis. The new mask’s capability
of providing high watermark energies is easily explained by the
histograms of the masks for the examined images in Fig. 6. Note
that their mean values are 0.0195 and 0.0476, for Lenna and
Mandrill, respectively. Even in the case that each mask may
be computed by the thresholded prediction error, as it was de-
scribed above, the masks’ mean values are 0.0895 and 0.1087.
Observe now the histograms of the NVF-based masks in Fig. 7
where the mean values are 0.8276 and 0.9501. The NVF-based
mask’s values are concentrated in the opposite direction com-
pared to the proposed mask. This explains why this latter mask
cannot provide very high watermark strengths and why it seems
to be overloaded around the edges. In Fig. 8, the histograms of
the HVS-based mask’s magnitude (in order to be comparable to
the other masks’ histograms) are shown. They resemble the pro-
posed mask’s histograms, but the mean values are 0.1435 and
0.2287, indicating lower watermark strengths.

Concluding the above study, we could say that the advantages
of the proposed masking scheme are significant. Very high wa-
termark energies are provided, while, at the same time, the wa-
termark visibility is quite improved compared to the other three
embedding methods. Moreover, the results of the comparison

Fig. 7. Histograms for the NVF-based masks of (a) Lenna and (b) Mandrill.
(a) Mean value = 0:8276; (b) Mean value = 0:9501.

Fig. 8. Histograms for the HVS-based masks of (a) Lenna and (b) Mandrill.
(a) Mean value = 0:1435; (b) Mean value = 0:2287.

with the HVS-based mask indicate that the proposed mask de-
scribes the HVS very well, having also the advantage of not re-
quiring any parameters’ evaluation.

III. PROPOSED DETECTION SCHEME

Usually, the blind watermark detection procedure employs a
similarity measure based on the correlation between the wa-
termark and the received image. Recently, more sophisticated
detectors have been developed based on the simple hypothesis
testing problem [32]. However, since in the spatial domain it
is difficult to find a satisfactory statistical model that properly
describes a real image, we adopted here a correlation-based de-
tector and we focused on improving its performance.

The proposed detection scheme consists of two steps. In the
first step, a proper prewhitening procedure is applied to the re-
ceived image and the estimation of the masked watermark, while
in the second step, the normalized correlation measure for the
resulting prewhitened sequences is computed. The prewhitening
filter is the LS prediction error filter that has also been used in
Section II for the computation of the perceptual mask. The nor-
malized correlation employed in the second step is one of the
most common detection measures and is preferred (instead of
the linear correlation) due to its robustness to amplitude changes
in the image.

There are two characteristics of the proposed detection
scheme that deserve particular attention. The first one is that
the estimation of the perceptually masked watermark is em-
ployed in detection, instead of the watermark itself. This is
very important for the detector’s performance, since we have
proved in [33] and [34] that if , where is the
mask’s power and is its mean value, then it is preferable
to use the masked watermark (its estimation actually) in the
detection procedure. Obviously, the condition is



always true, except for the case that the mask is a constant.
Assuming that the received image retains (approximately) the
predictability properties of the cover image, we can obtain
a satisfactory estimate of the mask at the receiver’s end.
The second characteristic of the proposed detection scheme is
that it incorporates an efficient prewhitening step based on the
2-D noncausal linear prediction error filter. In fact, it turns out
that the proposed scheme is an extension of well-established
techniques in communications for detecting signals in colored
noise. Note that in our case, the signal to be detected is the
masked watermark, while the colored noise is the attacked
image. Of course, prewhitening techniques have already been
presented in literature for the problem at hand (see [28] and the
references therein). For example, the use of a prewhitening filter
for image watermarking was first suggested in [35], where a
horizontal difference filter is applied to the image rows. The LS
prediction error filter proposed here has the important property
that its output tends to a white process. Thus, it adapts itself to
the input by absorbing all of its color. Actually, it reduces the
image’s effect on the watermark detectability.

In the following, the performance of the proposed detector is
studied and compared against the conventional one (without the
prewhitening step). Note that ideal conditions are usually con-
sidered in the detection procedure. That is, each watermark is
assumed to be a white process completely uncorrelated with the
other watermarks and the cover image. However, in a practical
situation, the above assumptions are only approximately true.
As a result, quantities that are ideally assumed to be zeros must
now be taken into account, since they may affect the decision
that is made about a watermark’s existence, mainly after heavy
attacks. In fact, in all of the involved auto- and cross-correlation
quantities, the expectation operators should be replaced by time
averages (i.e., empirical correlations). Also, the empirical cor-
relation between the received image (or its prediction error) and
another watermark (different from the embedded one) will no
longer be zero. The analysis presented here has been conducted
for the general case of linear filtering plus noise attack. In such
a case, the image is given by

(15)

where vector contains the coefficients of a linear filter of size
taken row-wise. It is assumed that, in general, . In

our analysis, is considered to be the truncated central part of
an filter that has dimensions (i.e., equal to those
of the prediction error filter). Sequence is additive white
Gaussian noise, with zero mean and variance .

Three detection scenaria have been investigated (that is, a) de-
tecting a nonmasked watermark using , b) detecting a masked
watermark using , and c) detecting a masked watermark, using

, where the mask is estimated from the re-
ceived image. The third scenario is presented here, which is
actually the most general one and also the most effective as
mentioned above. The aim is to compare the derived corre-
lation measures when either the image itself and the estima-

tion of the masked watermark (conventional scheme, without
prewhitening) or the prediction error of the image and the fil-
tered estimation of the masked watermark (proposed scheme)
are used in the detection procedure. The prediction error for
the received image is given by ,
while the filtered estimation of the masked watermark is given
by .

The performance analysis has been conducted following i) a
deterministic approach, and ii) a statistical approach, which
will be presented in the following two subsections.

A. Deterministic Approach

In the deterministic approach followed here, the correlation
measures between different watermarks or between a watermark
different from the embedded one and the image, are assumed
to have a magnitude that is upper bounded by a small positive
scalar . The normalized correlation measure computed for two
2-D sequences and of size is defined as

(16)
where is the number of pixels. The magnitude
of tends to zero if and are uncorrelated or tends to
one if and are highly correlated.

The normalized correlation measures for the detection
schemes under comparison (i.e., the conventional and the
proposed one) are denoted as and , respectively.
We compare the magnitudes of and in order to find
under which conditions the proposed scheme provides higher
correlation values. After standard manipulations (details can be
found in Appendix A), we obtain that

if then
(17)

where is a positive number smaller than 1, is a small scalar
(it is zero in the ideal case), is the central element of the linear
filter, and is a matrix of dimensions defined as

...
. . .

...

which is a -Toeplitz matrix with zeros in the primary
diagonal. The quantity equals , where
denotes sample averages. Assuming that is a reliable estimate
of , , with being the power
of mask .

The expressions for the special cases of linear filtering
attack, noise attack, and no attack can be easily derived by
a proper selection of the involved parameters. In the case of



linear filtering attack, it turns out that inequality (17) is valid if
. Such filters are those with a dominant central part

as, for example, the Laplacian, the Gaussian, and the unsharp
filter. On the contrary, for filters with a nondominant central
part (e.g., average filter), the watermark is not detectable. Since
the analysis is independent of the proposed mask’s properties,
the derived result is general and valid for any type of spatial
masking.

Hence, if the condition in (17) holds, then the proposed
correlation measure has higher values compared to the con-
ventional one, indicating that the proposed detector has better
performance. The case of a nonwatermarked image is not
examined here since, in such a case, the outputs of the normal-
ized correlations for both schemes under comparison will be
approximately the same (recall that they are ideally considered
to be zeros).

B. Statistical Approach

To gain more insight in the detectors performance, a statistical
approach follows, in which the normalized correlations’ outputs
are considered as random variables. We formulate the water-
mark detection task as the following binary hypothesis testing
problem:

where . Depending on whether the image is a fil-
tered and noisy version of a watermarked or a nonwatermarked
image, we distinguish the hypotheses and . The perfor-
mance of the watermark detection can be measured in terms of
the false alarm probability and the probability of detection

for a given original image. is the proportion of keys for
which we erroneously decide that the image under test contains
a specific watermark, whereas the image is not watermarked.

is the proportion of keys for which we correctly decide that
the image contains a specific watermark.

Again, the measures for the two detection schemes under
comparison are the normalized correlations and ,
which are now considered as random variables with Gaussian
distributions, conditioned to hypotheses and . Generally,
since the normalized correlations are bounded between 1, they
can be assumed Gaussian only if some constraints are satisfied.
That is, the standard deviations of the competing distributions
must be small relative to 1, the means of these distributions
should not be close to 1 or 1 and the distance between the
means must be of the same order of magnitude as the standard
deviations. These three constraints are satisfied in our case as
verified by the experimental results shown in Section V.

Due to the form of the normalized correlation, the means and
variances of its outputs cannot be expressed by easy-to-interpret
formulas. In order to avoid rather complicated forms, we derive
here relatively simple expressions that approximate the actual

values of the desired means and variances very reliably and also
help us to gain more insight in the attack’s effect on the detec-
tion. More details about the derivation of the expressions and
the approximation’s reliability can be found in Appendix B.

Next, we provide the derived expressions for both detectors
under comparison, under each hypothesis

where are terms of order , where is a very small
scalar. Such quantities are ideally considered to be zeros. Some
of the quantities involved in the above computations are known
and others can be estimated. For example, is the power of the
received image . Also, knowing the key, we can reproduce the
watermark and after estimating the mask from the received
image , we can find . The prediction error filter can also
be estimated from , enabling the computation of the predic-
tion error sequence and the filtered estimation of the masked
watermark , as well as the corresponding variances and

. equals , where is a vector of length and
central element , with . Note that is defined
similarly to , but the central element is present, which
is denoted as hereafter. A similar notation is used for other
quantities too. is given by

The expression , where is the vec-
torization operation, the Kronecker product, and the ex-
pectation operator, contains terms of the order equal to or greater
than as well, but are not further analyzed here. ,



and , where is the identity matrix.
Finally, is given by

It is now easy to see which are the quantities that affect the
means and variances of the detectors’ outputs and how they do it.
These quantities are the noise variance, and those related to the
linear filter as, for example, and . Note that appears
in the numerator of the detectors’ variances. The noise results in
higher variances of the normalized correlations’ outputs which,
in turn, makes the watermark’s detection more difficult.

The expressions for the special cases (i.e., no attack, addi-
tive white noise attack, linear filtering attack) can be derived by
omitting noise , and/or setting to one and (for

) to zero. After the noise attack, for example, the corre-
sponding expression for becomes

A way of depicting the performance of a detector is to plot
versus . Under our Gaussian model, the false alarm prob-

ability is given by

(18)

and the probability of detection is expressed in terms of as

(19)

where , is a threshold and
, with and being the mean and variance

of the detector’s output (under the hypothesis that the image
is watermarked). Each point of the plot corresponds to a value

for a given threshold . As increases, decreases
and so does (and vice-versa). This type of performance de-
piction is known as the receiver operating characteristic (ROC)
[32]. Hence, as shown in (19), the ROC of the watermark de-
tector depends exclusively on the value of . The larger
the value of , the larger the associated with a certain

and, as a consequence, the better the performance of the
detector. We present ROC curves in Section V since they are
very useful in assessing the overall detection behavior of wa-
termarking methods [36]. These curves show error probabili-
ties obtained via Monte Carlo simulations. Also note that the
experimental curves match quite well with the theoretical for-
mulas (18) and (19), which assume Gaussian distributions. This
validates our assumption for Gaussian-distributed normalized
correlation.

If the condition in (17) holds, it can be shown that
, where

and . Thus, the pro-
posed detector performs better compared to the conventional
one. This is also verified by the experimental results presented
in Section V. Based on the expressions that have been derived
for the means and variances of the compared detectors’ outputs,
proper thresholds can also be computed, adaptable to the attack
conditions.

IV. SUITABILITY OF THE PROPOSED DETECTOR

As it has already been mentioned, due to the difficulty in
finding satisfactory statistical models for real images in spa-
tial domain [20], [21], the data are commonly assumed to be
Gaussian distributed and correlation-based detectors are used.
In other domains (FFT, DCT, wavelets), the image data can be
more accurately described by some probability density function
(pdf) and optimal detectors can be derived.

We will try to verify the suitability of the proposed corre-
lation-based detector for the problem at hand. Let us assume
that images in spatial domain can be approximated by a general-
ized Gaussian distribution. The stationary generalized Gaussian
model is adopted here, due to its wide use in image restoration
and denoising [37], [38]. A zero-mean generalized Gaussian pdf
is given by the expression

(20)

where

and (21)

The Gaussian and Laplacian distributions are special cases of
this pdf, for and , respectively. Then, the optimum
detector for the generalized Gaussian model [16] is given by

(22)

where is the image under test and is the estimation of the
masked watermark. Here, the new spatial mask is used. and

are the pdf’s parameters, which should be estimated from the
image under test. This is a disadvantage of the above detector
(22), since a parameter estimation stage has to be added before
the detection stage. A moment matching method can be used for
the estimation of these parameters [39].

Since the detector defined in (22) is parametric, its behavior
can be studied for different distributions. If performs well
for values of near to 2 (that correspond to a Gaussian pdf),
this implies that a correlation-based detector is suitable. Thus,
we conducted such experiments for values of between 0.1 and
2, with step 0.1. Moreover, we studied the effect of the proposed
prewhitening on the detector defined in (22). The corresponding
expression is

(23)



Fig. 9. SNR as a function of c after no attack for (a) Lenna and (b) Mandrill.

Fig. 10. SNR as a function of c after adaptive Wiener filtering plus noise (15 dB) attack for (a) Lenna and (b) Mandrill.

where is the prediction error of the received image , and
is the filtered (with the prediction error filter) estimation of

the masked watermark. The parameters and should now be
estimated from the prediction error sequence (i.e., ), under
test.

In our experiments, the images Lenna and Mandrill were re-
sized to dimensions 128 128 and 119 125, respectively,
for reducing the computational time. The watermark embed-
ding and detection processes have been conducted for 1000 wa-
termarks generated by 1000 different keys, for . The
SNR has been calculated as defined in Section III-B. The em-
bedding was such that the PSNR between the original and the
watermarked image was equal to 40 dB. The case of no attack
was first examined and the results are shown in Fig. 9. It can be
easily seen that the detector under test performs better for .
Moreover, the prewhitening process improves the performance
of the detector, especially for the image of Lenna.

Then, the attack case of our theoretical analysis was exam-
ined (i.e., the linear filtering plus noise attack). The images

were attacked with adaptive Wiener filtering (used in Check-
mark for denoising) of size 5 5 and additive white Gaussian
noise (15 dB). After the addition of noise, it is reasonable that
the distribution of the examined image will be more Gaussian
like. This is verified in Fig. 10, where we can see that the
detector performs better for . We furthermore observe
that prewhitening has a beneficial effect on the detector.

The above experiments justify the selection of a correlation-
based detector for the problem at hand, which is also a simpler
detector that does not require any parameter estimation. More-
over, we conclude that the use of the proposed prewhitening is
useful, even for a detector different from the correlator (since it
enhances the detector’s output for almost every value of c).

V. EXPERIMENTAL RESULTS

Extensive experiments have been conducted in order to test
the robustness of the proposed detection scheme to different at-
tacks. Furthermore, the performance of the proposed detector
combined with the new mask was tested. The images Lenna



Fig. 11. Experimental ROCs after adaptive Wiener filtering plus noise attack for (a) Lenna and (b) Mandrill.

Fig. 12. Experimental versus theoretical ROCs for Lenna and Mandrill, after adaptive Wiener plus noise attack.

and Mandrill have been resized to dimensions 128 128 and
119 125, respectively, for reducing the computational time. In
all cases, ROC graphs were plotted. To generate these graphs,
the same number of watermarked and nonwatermarked images
were tested. The watermark embedding and detection processes
have been applied for 100 000 keys taken randomly. The em-
bedding was such that the PSNR between the cover and the wa-
termarked image was equal to 40 dB.

We studied the following detection cases. First, the normal-
ized correlation is computed between the received image and
the watermark itself . Then, the normalized correlation
between the received image and the estimation of the masked
watermark is computed for each of the three masks under com-
parison, that is, the NVF-based mask, the HVS-based mask,
and the proposed one ( with , with , and

with ). Finally, the proposed detection scheme is tested
for the three masking cases ( with , with

, and with ). Note that here we denote with
for simplicity, and a similar notation is used for the estimated

masks.
For the above cases, we first tested the robustness against the

linear filtering plus noise attack, which is the case of our the-

oretical analysis. The examined images were filtered with an
adaptive Wiener filter of size 5 5, which is a noise-removal
filter. Then, white Gaussian noise (15 dB) was added. The ROC
curves for the two examined images, obtained via Monte Carlo
simulations, are shown in Fig. 11. We can see that the pro-
posed detector performs much better than the conventional one.
Moreover, if it is combined with the new mask, it usually ex-
hibits superior performance. This verifies the theoretical anal-
ysis and our claim that the use of the proposed mask further
improves the proposed detector’s performance. Note also that
the proposed mask improves substantially the conventional de-
tector (without the prewhitening step) as well. Specifically for
Lenna, the conventional detector combined with the proposed
mask gives similar results with the proposed detector combined
with the NVF-based mask. This is reasonable since the proposed
mask enables the embedding of a very-high-strength watermark
and, as a result, the embedding of a rather robust watermark. In
Fig. 12, the experimental curves versus the theoretical curves
are depicted. It is shown that they match quite well, thus vali-
dating our assumption that the normalized correlations’ outputs
are Gaussian distributed. Additionally, in Tables III and IV, for
Lenna and Mandrill, respectively, we see the means and stan-



TABLE III
LENNA COMPETING DISTRIBUTIONS STATISTICS

TABLE IV
MANDRILL COMPETING DISTRIBUTIONS STATISTICS

Fig. 13. Experimental ROCs after template removal attack (from Checkmark) for (a) Lenna and (b) Mandrill.

Fig. 14. Experimental ROCs after denoising and perceptual remodulation (DPR from Checkmark) for (a) Lenna and (b) Mandrill.

dard deviations’ values of the competing distribution. The abso-
lute means are much less than 1 and differ between each other
more than two orders of magnitude. Similar results are obtained
for other attack cases as well.

Subsequently, we examined the case of estimating the water-
mark and then removing it. The template removal attack from
Checkmark was used, where the watermark is estimated by an
adaptive Wiener filter. We used here a 5 5 filter. The re-
sults are shown in Fig. 13. Again, the proposed mask substan-

tially improves the performance of both detectors (with and
without prewhitening), while the proposed detectors performs
much better than the conventional one.

One more attack from Checkmark was used for testing the
compared watermarking techniques’ performance, the so-called
denoising followed by perceptual remodulation (DPR) attack.
The size of the denoising filter was 5 5, and the ROCs are
shown in Fig. 14. We should note here that for Lenna, the pro-
posed detector performs much better for the NVF-based mask



Fig. 15. Experimental ROCs after JPEG compression with quality factor 75 for (a) Lenna and (b) Mandrill.

Fig. 16. Experimental ROCs after JPEG compression with quality factor 30 for (a) Lenna and (b) Mandrill.

Fig. 17. SNR for different attacks for (a) Lenna and (b) Mandrill.

than the HVS-based mask. For Mandrill, the curves with the best
performance correspond to the two compared detectors, using
the mask.

Finally, we examined the caseof attacking an imagewith JPEG
compression. This case is of particular importance, since images
are usually stored and distributed in .jpg format. Compression
can be approximated by a combination of filtering (that selects
proper frequencies) and noise (quantization). Therefore, it was
expected that the proposed detector would be robust to JPEG

compression. Indeed, this is verified in Figs. 15 and 16. In Fig. 15,
the standard compression case is shown (the quality factor was
equal to 75). It should be noted that for the proposed detector,

and have similar performance for Lenna and a bit
better than , while Mandrill’s performance is similar to all
masks. In Fig. 16, a high compression case (the quality factor
equals 30) was examined. For the image of Lenna, the best perfor-
mance is achieved from the proposed mask, while for Mandrill,
the proposed detector combined with performs better.



The results for all of the above attacks are also shown in
Fig. 17. As already mentioned, the ROC curves depend exclu-
sively on the value of SNR. Thus, in Fig. 17, the SNR is plotted
for each detector, for all of the examined attacks’ cases. The
new mask combined with the proposed detector performs well
for other attacks too. Many other experiments, not shown here,
have been conducted for a large set of images, and all verify the
above results. The superiority of the mask compared to the
other two is also verified.

VI. CONCLUSION

The contribution of this paper is twofold. First, a new spatial
perceptual mask is proposed which matches very well with the
properties of the HVS. It is based on the LS prediction error se-
quence of the cover image and substantially increases the water-
mark strength while, at the same time, the watermark visibility
is decreased.

Second, an improved blind detector based on proper
prewhitening has been developed. Its improved performance
has been justified theoretically for the case of linear filtering
plus noise attack. The theoretical analysis is independent of the
new mask and the derived expressions are valid for any spatial
masking. This has been also verified from the simulations,
where it is shown that the proposed detection is superior even
for a mask different from the . However, when is em-
ployed, the proposed detector’s performance usually improves
even further.

APPENDIX A
PROOF OF (17)

The aim is to find under which conditions inequality
is true. At first, the quantities involved in this inequality

are defined. Note that is used here to denote sample aver-
ages and should not be confused with the usual expectation op-
erator

where

The involved auto- and cross-correlations, which are ideally
considered to be zero, are assumed here to have a magnitude
upper bounded by a small positive scalar

Replacing in inequality , we obtain

(24)

Using the triangle inequality, (24) can be written as

(25)

with being a lower bound for
. If (25) is true, (24) is also true. Then,

(25) can be written as

(26)

and it remains to be found under which constraints (26) is true.
To this end, we will find an upper bound for and a
lower bound for .

Lower Bound for :

With “~” we denote the vectors that do not contain the central
element of the corresponding vectors without “~.” Note that

So

(27)



Upper Bound for :

(28)

The upper bound for norm can be found by the
following manipulations similar to those used for the compu-
tation of and is equal to

, where

Thus

(29)

To conclude, the inequality is true if

(30)

is true.
For the

final condition that must be satisfied in order to have
is

(31)

where

The above inequality (31) is true for filters with dominant central
parts.

APPENDIX B
DERIVATION OF THE CORRELATIONS’ MEANS AND VARIANCES

As also mentioned in Section III-B, the means and variances
of the normalized correlation outputs cannot be expressed by
easy-to-interpret formulas. Even if the numerator can be ade-
quately approximated by a Gaussian distribution, the case of
the denominator is much more complicated, leading to long and
impractical, for our purposes, formulas. Our aim here is to de-
rive approximate expressions for the computation of the desired
means and variances so as to gain more insight concerning the
attacks’ effect on the detection.

To end up with interpretable formulas, we replace the denom-
inator by a constant related to the mean powers of the image, the
watermark, and their prediction errors

(32)

Although the denominator is, in fact, a random variable, its re-
placement by a constant can be justified as follows. In case of

, it turns out that the denominator has a mean value of
order (for an image with pixels) and variance ,
whereas the mean value and variance of the numerator are both

. Assuming , we may conclude that the mean
value and variance of will remain practically unaffected if
we replace the denominator by its mean value. In case of ,
the mean value of the denominator is less than (depending
on the predictability properties of the image) but the proposed
approximation is still valid.

In order to validate our claims, we calculated the actual cor-
relation measures and their approximations based on (32). Their
means and variances are then shown in Tables V and VI for
Lenna and Mandrill, respectively. It is obvious that the formulas
in (32) provide very good approximations.

Subsequently, the means and variances under each hypothesis
are computed

(33)

where is of order since , , and are ideally uncorrelated
quantities



TABLE V
LENNA—ACTUAL VERSUS APPROXIMATE STATISTICS

TABLE VI
MANDRILL—ACTUAL VERSUS APPROXIMATE STATISTICS

(34)

Note that in (34) contains terms of order due to uncorrelated
(ideal) quantities. We do not further analyze and similar quan-
tities here since we should provide large expressions that have
very small values actually. For the rest means and variances,
we provide the initial terms needed for their computation and
the final result. The terms of order are not shown here for sim-
plicity, but a term is added in each expression in order to keep
in mind that such terms exist

(35)

(36)

(37)

(38)

(39)



(40)
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