
286

A Generic Legality Checker and Attribute Evaluator for a

Distributed Enterprise Environment

Christos Goumopoulos, Panayiotis Alefragis, Kleanthis Thrampoulidis, Efthymios Housos

Department of Electrical & Computer Engineering, Computer Laboratory
University of Patras, GR-265 00 Rio Patras, Greece

{goumop,alefrag,thrambo,housos}@ee.upatras.gr

Abstract

The present state of communication networks with

respect to speed and reliability and the recent growth of

distributed applications have created a need for a global

enterprise solution to the legality checking and attribute

evaluation requirement. Traditionally, the mainframe

systems provided the cohesion of all the processes with

respect to the company regulations. When decentralized

systems and applications became widely used the legality

checking mechanism lost its central role and became a

necessary component for every decentralized system. In

this paper a methodology to reconnect these systems with

respect to their legality checking and attribute evaluation

needs is presented. A generic Legality Checking system

has been developed and integrated with scheduling

systems of the airline domain. It is shown that the client-

server model adopted can bring back in a flexible manner

the lost homogeneity of the central legacy systems.

1. Introduction

Manpower scheduling and administration is a difficult

and time consuming process [10]. The situation is further

complicated from the fact that the schedules must satisfy
many and sometimes intricate operational constraints. All
airlines, for example, must conform to a complex set of

union, company and governmental rules and regulations
[9]. These rules vary by crew type (pilot or flight
attendant), crew size, aircraft type, and type of operation

(domestic or international). Work rules, as an example,
concern duty periods and rests. A stringent union rule

specifies maximum duty period length, which varies
between 14 and 16 hours. Other duty rules govern the
maximum flying time allowed and the maximum number

of flights permitted. The governmental regulations mini-
mize crew fatigue and ensure passenger safety. Minimum

rest requirements are tied to the flying time scheduled in a

moving 24-hour window. In addition, the after the actual
event costing and reporting involved, requires the use of
complex rules and formulas and must be also supported

by specific rule knowledge. This is due to the fact that
changes of the planned work might have happened during

the actual operation of the schedule.
Scheduling computer applications are of primary

importance because the cost of the human resources is

extremely high. For instance, in the airline industry crew
costs are the second largest operating expenses after the

fuel costs. In recent years, many of the European airline
companies have invested in automatic tools for resource
planning and scheduling [14]. However, resource manage-

ment is quite complex and none of the computer systems
which currently exist has been designed to address the
total problem. It is therefore necessary to divide the

resource management task into more manageable compo-
nents and use special applications and different computers

for the various components. Working with Lufthansa
German airlines, in the context of the DAYSY Esprit
project [5] it was discovered that at least six different

systems are employed by several departments for planning
purposes [6], such as crew planning and scheduling,

aircraft scheduling and real time rescheduling that do
require the evaluation and testing of the rules (Figure 1).
Since these systems were developed by different vendors

and by the airlines themselves they do not utilize the same
legality checking approach. There is no central system to
provide a common mechanism for the legality checking

needed for all the applications. As a consequence many
rules have to be replicated and implemented differently

and the management of the rules becomes painful.
In this paper a global enterprise legality server is

proposed, that scheduling applications and other support

systems (i.e., accounting, reporting, spreadsheets, mana-
gement tools) which require the rules, could utilize

independently of the hardware platform, database and
operating system used. The system follows the
client/server model. Clients may connect concurrently

0-8186-8538-7/98 $10.00 © 1998 IEEE

287

with the server and use its legality checking and attribute
evaluation services. Each client may load its own selected

rule-set and utilize its own database system for retrieving
application and problem specific information. The
experience and lessons of the airline industry segment

should be directly applicable to other industries with
complex rules for their man-power organization and

planning (e.g., manufacturing, distribution, transportation,
construction and various public agencies).

FLIGHT SCHEDULE
(Timetable)

AIRCRAFT (AC)

SCHEDULING
CREW

SCHEDULING

REAL TIME

RESCHEDULING

MANPOWER

PLANNING

CREW
PAIRINGS

GENERATION

Crew Pairings

ROSTERING
or CREW

ASSIGNMENT

RULES
(Government,

Company,
Union, etc.)

Crew Biddings
Ground Activities

Trainning Schedule
Crew Vacations

CREW RECORDS
Medical/Training Expiries

Licence/Passport/Visa

DAILY CREW/AC

RESCHEDULING

AC rotations

RULES
e.g., Remaining
AC flight hours

RULES
(Government,

Company,
Union, etc.)

- Crew Schedule Validation
- Flight Coverage Control

- Crew Reassignments
- Crew Notification

- Graphical AC Movement Display
- Delay Minimization

- Aircraft Substitutions
- Flight Cancelations, Diversions, etc.

- Flight Schedule
 Changes

- Crew Disruptions

Monthly Crew
Schedule

FLEET

ASSIGNMENT

DAILY/WEEKLY
ASSIGNMENTS OF

FLIGHTS TO
EQUIPMENT

RULES e.g.,
AC Restrictions
by Engineering

Daily/Weekly
Aircraft Schedule

Figure 1. Resource planning and rule checking

requirements in airline industry

The rest of the paper is organized as follows. Section 2

introduces the generic Legality Checking and Attribute
Evaluation system. This system is currently being used in

production by Lufthansa for the legality checking
component of the rescheduling process. In Section 3, the
abstract database access feature and the capability of a

user programmable activity model are presented. The
integration of the system with scheduling and other

personnel management applications is explained in
Section 4. Metrics of the system are given in Section 5.
Finally, conclusions with emphasis on the progress and

future directions for the improvement of such an
environment at Lufthansa are discussed, in Section 6.

2. Legality Checking and Attribute

Evaluation (LC) System

Most of the existing computer scheduling systems

check the legality of the produced solution using a few

external parameters for the customization of the system
and include the implementation of the rules within the
application software. However, since labor rules are

continuously changing, there is a need for a high level
domain specific language in order to express and manage

these rules. Two systems that use a special purpose
language for the expression and subsequent management

of rules are presented in [3] and [16]. In this case, using
an application specific language as an interface, the user
is able to change not only the parameters but also the

structure of the rules. The important benefit of this
approach is in the ability to perform what-if scenarios and

test for rule extensions and additions without changing the
application programs.

The development of a generic LC system entailed the

identification of the information that would enable the
domain-specific planner to easily express the regulations

of the problem. The most difficult part of the development
of the LC was the acquisition of this knowledge. Applying
domain analysis to the scheduling problem domain an

object meta-model was created [16], the main part of
which is depicted in Figure 2. The basic building elements

of the meta-model are activities, properties, time-
windows, and rules. At this time it was apparent that the
evaluation of activity properties was at the core of the LC

development. These attributes and their distinct entity
appearance in the meta-model provides the infrastructure
for their individual calculation which is responsible for

the attribute evaluation flavor of the produced system.

Activity
chain

Primitive
Activity

Composite
Activity

Activity
Composition

Rule

 Property
 Calculation

Rule

 Property
Constraint

Rule

Complex
Property

 Primitive
Property

PropertyActivity

{1+}

Rule

{1+}

RuleSet

{1+}

Resource

TimeWindow

 FixedTime
Window

 FlyingTime
Window

start

end

Figure 2. Object meta-model of the LC system

For the defined meta-model to be easily applied to a

wide range of application domains a two step process
must be followed (Figure 3). In the first step, specific
problem domain experts (airline experts in our case) apply

domain analysis to create the airline object-model as an
instance of the generic meta-model. This model contains

declarations of airline generic activities, proper-ties, rules
and problem domain keywords. In the second step, the
specific application rule manager (e.g., Lufthansa’s rule

manager) specializes and refines the airline object-model
in order to produce Lufthansa’s application object model.
However, from the users point of view, the definition of

these object-models in terms of a general purpose

288

programming language is very difficult and often requires
external support. This was the motivation for the defini-

tion of the high level rule language REDOM (ex DAYSY
Rule Language) [15,16].

meta-
model

Airline
Object-
model

Lufthansa's
Application

Object-model

Problelm Domain

Expert's Knowledge

Application Domain
User's Knowledge

Figure 3. Generation process of the application’s

object model

Using REDOM the rule manager easily transforms the

generic model to an application specific model. In the

airline domain, for instance, some specific entities to be
modeled are flight activity, shift activity, maximum duty

time regulation, minimum rest time per 24 hours
regulation, etc. REDOM language does provide all the
appropriate lexical and syntactical structures, as well as

the appropriate semantics [7] for the instantiation of the
meta-model of Figure 2.

For the translation of the REDOM programs to
executable code a compiler was created. The REDOM
compiler implements the front end of the REDOM

language translation and produces an intermediate C++
code from the original REDOM source. C++ provides
high-level abstractions with the efficiency of a low-level

language like C. The back end of the compilation process
is assigned to the corresponding C++ compiler of the

target machine. This scheme enables portability of the
REDOM compiler, and the use of optimization techniques
provided by C++ compilers. The produced object code is

finally linked with the LC Interface library and the LC

Kernel library, generating the LC run-time system (Figure

4). The LC Interface library implements the message
protocol for the communication with the scheduling
applications while the LC Kernel library contains the

fixed part of the LC.

REDOM
compiler

C++
compiler

Linker

LC Kernel
Library

LC Interface

Library

REDOM
program C++

Object
code

run-time

system

Application
Domain

Configuration

Figure 4. Building the LC run-time system

The basic components of the LC architecture are the
Message Dispatcher, the Activity Recognizer the Attribute

Evaluator, the Rule Checking Mechanism and the On-line

Rule Data-Part Manager as shown in Figure 5.
The Message Dispatcher component is the interface

with the external world. It receives requests from the
scheduling application and sends back responses through

a message protocol. The requests are satisfied by calling
the corresponding methods. These methods constitute the
LC API, that provides the legality checking, the attribute

evaluation and the on line data-part management services.

Activity
Recognizer

Rule
Manager

LC System

On-line Rule
Data-Part
Manager

REDOM
compiler

Application
Domain

Data Base

Scheduling
Application

Planner

Message
Dispatcher

Attribute

Evaluator

Rule
Checking

Mechanism

Rules
Timewindows

Activities
Properties

Aggregation

Hierarchy

Figure 5. LC system architecture

With the receipt of the schedule, the rule system

creates all the activity objects of the aggregation hierarchy

corresponding to the activity composition rules. Activity
composition rules of the form “create a shift object when

there exist 11 hours of rest period between two flight
objects” determine the shape of the aggregation hierarchy
and are part of the application domain configuration. The

properties and the constraints, associated with each
activity object, have already been defined by the rule

manager in terms of the REDOM language. After the
aggregation hierarchy is completed, the rule system
performs the attribute evaluations and the constraint

checking. The On-line Rule Data-Part Manager supports
the on-line manipulation of the rule parameters, enabling
planners to test alternative what-if scenarios without

recompiling the rule set.

3. Abstract Data Access and Application

Domain Configuration

The Rule Checking Mechanism of the LC system

needs information concerning domain activities and
resources (e.g., the arrival time of a flight, the qualifi-

cations of a crew member, the type of an aircraft), in order
to calculate properties and check the constraints. This
information is stored in application specific data bases. A

global enterprise LC system should be able to work with
different data base environments because different

computer systems in the same enterprise may access
different data bases. The transition to different application

289

domains would be also much more painful if the system
was tightly coupled with a particular database

management scheme. This was the motivation for the
abstract data access mechanism of the LC.

A number of identifiers are designated by the rule

manager as keywords of the specific problem domain.
Keywords are used to easily access information for

domain specific activities and resources, which are
located in a particular database. They are declared as part
of the corresponding activities, during the creation phase

of the specific problem domain object-model and are
defined during the creation phase of the application

object-model. They are supplied at run time by the
scheduling process through a message protocol, providing
the LC with the necessary independence from the

database scheme of the client system.
The values of the keywords may be retrieved from any

possible database management system as long as an API
is supplied from the user of the particular data base. This
kind of an API should consist from a set of functions that

given a keyword name and an activity identifier, return the
value that is stored in the database. A prototype
declaration example of the main function for the retrieval

of keywords might be:

 value_type get_keyword(String <keyword_name>,

 TypeAct <activity_type>,

 int <activity_identifier>);

Figure 6, shows the retrieving mechanism of the

keyword values. Using the concept of keywords the same
low level representation of a common rule-set handled by

the LC server, can be used by different processes that use
different database systems.

LC Server

DAYSY Editor DAYSY Editor

Rulesets

LC Client I
e.g., Automatic

Rescheduler

LC Client II

e.g., GUI

Airline

Planner

Rule
Manager

Oracle
Real Time

 Data Base

Legacy System, Server of a
proprietary DBMS

get_keyword("departure",LEG,123

Figure 6. Retrieving mechanism of keywords

For a client/server architecture where the LC system is

the server process and the client process creates sets of
activities to be evaluated and/or tested, the keyword

values can be supplied by the client process. The LC
server requests keyword values from the client process.
The client process must use a keyword server that acts as

an intermediate layer between the LC system and the

database which creates an abstract retrieving mechanism
of the keyword values. When working in a network

environment and the global access of information occurs
frequently the latency of the network is a major computa-
tional constraint. A caching mechanism has been develo-

ped in order to reduce the delays created by the distant
transfer of data. The LC server stores the data retrieved by

a request over the network and if a new request for the
same data appears, the cached data is returned.

The application domain configuration is realized

mainly through a configuration file that supplies the
typical structure of each primitive and composite activity.

This file defines the object model of the user’s problem
domain. The ACTIVITY reserved word declares an
activity type that is associated directly or indirectly with

rules. An activity declaration consists of component
activities, neighbor components, keyword names,

complex property names, and names of applied
constraints. For the airline domain typical activities
declared in the configuration file are: leg, shift, rotation,

roster, simulation, vacation, training, standby, rest etc. For
example, shift is an activity that the user can extend with
new properties and constraints using the inheritance

capability of the REDOM language. Thus, the user has the
ability to define new activities and incorporate new

keyword names in the REDOM language. A typical
activity description of the configuration file follows.

ACTIVITY shift

 NEIGHBORS:
 shift, rest;

 COMPONENTS:
 leg, simulation, training;

 KEYWORDS:
 ac_type: string, departure: tabs;

 PROPERTIES:
 duty_start : tabs,

 duty_end : tabs,
 duty_period : trel;

 CONSTRAINTS:
 max_duty_time;

END
where tabs, trel, string are built-in REDOM language data types.

4. Enterprise-wide LC Engine Sharing

The LC system presented in section 2 has been

integrated at Lufthansa with a Graphical User Interface
(GUI) for manual planning [4] and with an Automatic

Rescheduling System (ARS) [1] for automatic planning.
The client/server model for network applications has been
used. The interaction between LC clients and the LC

server is based on a three-layer protocol stack (Figure 7).
The LC application layer protocol reflects the LC API

[8], that provides for the attribute/property evaluations,
the legality checking and the on line rule data-part
management services. Examples of such services include:

290

• Open a line of work (low).

• Close a low.

• Add new activities or remove activities to/from the low.

• Check the legality of the low.

• Get the value of a property (e.g., trip cost, pay cost, etc.)

• Turn on/off a rule.

• Update a rule parameter value (e.g., rule limits, etc.)

• Get the aggregation hierarchy created so far.

LC server

Message

Kit

Transport

LC client

Message

Kit

Transport

LC protocol

Message

protocol

TCP/IP

Figure 7. A 3-layer interaction model

The underlying message protocol determines the
structure of the exchanged messages to transfer
commands and data. Through these messages the client

can send the activity data, ask for legality checking, etc.
After sending a request the client will get a response, e.g.,

the result of the legality check, the value of an attribute
evaluation, etc. The server, after receiving a message
request from a client and in accordance with the message

command, it calls the C++ methods of the LC server. The
Message Kit layer provides an API to the application

layer with services such as create an endpoint,
send/receive a message command, send/receive a message
response, connect/disconnect to LC server, reset commu-

nication, time-out communication.
Finally, the message protocol is based on the

conventional TCP/IP protocol. The transport socket inter-

face [13] is used as the inter-process communication
mechanism. This low level mechanism was preferred be-

cause the primal concern was for the performance and be-
cause of its availability in every hardware platform used.

Figure 8 depicts the distributed legality checking

model. The LC server presented up to now is represented
with the darker box. The complete integration

environment requires some additional components. First
of all there is a daemon process, named as LC Daemon.
This is a concurrent server, it listens to a well-known

endpoint and waits for connections from client processes.
When there is a connection request the concurrent server

invokes another process to handle the client request.
A client request is served initially by a process, named

as LC Agent. Its purpose is to set-up the legality session

and start the execution of the actual LC server instance.
This is necessary since a client may select among several
rule-sets for the legality checking process. The execution

of the LC server instance may be either local or remote

depending on the computational and response needs of the
calling client. For the interaction with the client a special

protocol, named as agent-protocol, has been defined. The
LC agent has basically the following responsibilities:

1.To authorize the client and control the right access of

the services. For example a user may be able to check
the legality of the schedule but forbidden to alter the

data parameters or access attribute evaluation data for
security reasons.

2.To get the activity configuration file specifying the

problem domain.

3.To get the REDOM rule-file description submitted by

the client.

4.To invoke the rule translator in order to create, the
runtime instance of the LC.

5.The management of the LC server instances, i.e.,
loading, unloading, deleting, dynamic endpoint
assignment of the various specific LC servers. The

client may request the loading of an already compiled
rule-set by sending its name. A dynamic endpoint

assignment is utilized for the loading service.

LC
Daemon

LC

Agent

fork()

fork()

GUI

LC Server
 Instance

LC-protocol

Agent-protocol

LC client

 Database

exec()

Connect Request

LC

Agent

ARS

LC Server

 Instance

LC-protocol

LC client

Database

exec()

Connect Request

keywords channel

keywords channelAgent-protocol

Figure 8. Distributed legality checking model

The actual legality checking and attribute evaluation

services are provided by the LC server instance. The
approach of separating the management services from the

legality services improves the efficiency and the
extensibility of the system as the management of
operations, not involving the legality checking operation

itself, are kept out of the LC server. This makes the LC
server responsible for the management of multiple activity

chains of the same user and their legality checking.
For the evaluation of the activities properties, keyword

values are sometimes necessary. Each time a keyword

value is needed the LC server instance requests it from the
keyword server located at the client side. For each request
the keyword name and the activity identifier are passed to

291

the keyword server. The keyword server interacts with the
local DBMS and returns the corresponding value. For the

implementation of this scheme, a secondary endpoint is
required for the communication of keyword values. The
LC server instance has to establish a secondary channel

with the client so that it can access the keyword values.
The distributed LC model allows the existence of

redundant LC server instances. Redundant servers (LC
server instances of the same rule-set) are desirable to
allow for load balancing and failure resilience. Typically,

each LC client is serviced by a distinct LC server
instance. Currently, there is one ARS, and up to four GUI

processes that have to connect to the LC server. In
particular, at the set-up phase of the real time resche-
duling system, more than 10,000 lines of work must be

checked for legality. This requires more than half of a
computing hour if a single LC server (and client) is

involved. The existence of multiple LC servers signifi-
cantly reduces the computation time. In case of a failure
the mechanism that requests the service will detect the LC

server failure and transfer through the LC agent the
request to another server if possible. If no alternative
server exists, the client is informed that the service is

unavailable and a new LC server must be started.
In Figure 9, a possible interaction scenario between the

Legality Checking System and an LC client, is presented.
In step 1, the client submits a REDOM rule-file and the
LC agent invokes the rule translator to create the low level

rule binary. This low level rule binary is then linked with
other library modules in order to create the specific LC

server instance. The result of the compilation phase is
transmitted to the client, with the report of possible errors.
If the compilation phase is successful the client may send

a request (Step 5) for the loading of the new LC server
(Step 6). The client then connects with the LC server
(Step 8) through the assigned port number returned at

Step 7. Next, the client sends the activity chain to be
checked (Step 9). The client can then send a request in

order to start the legality checking process (Step 11) of
the activity chain and the legality checking phase is
entered (Steps 12, 13, 14). Afterwards, the legality

checking result is reported to the client (Step 15). The
client may then send some other activities to be checked

(Step 9) or unload the LC server (Step 17).
The employment of a rule checking and attribute

evaluation system as an enterprise-wide legality/evaluator

server for all personnel related computer systems of an
airline company is feasible and practical. Replacing the

built-in legality checking procedure of existing scheduling
applications with an association to the enterprise legality
server has primary advantages. First of all the dynamic

modification of the rules without disturbing and risking
the integrity of the application. In addition, this
methodology provides a single system for maintenance

and support and a common language to express all the
rules. The REDOM language has been proven in practice

capable of expressing all the necessary rules in the
Lufthansa operating environment.

Client
Legality Checking

System
1: Submit REDOM file

2: Call REDOM
compiler3: Report compilation result

4: Check

compilation
result 5: Request loading of LC server

6: Load LC

server instance

8: Connect to LC server

9: Send activity chain

13: Request keyword values

14: Receive keyword values

12: Check

legality

15: Report legality checking result

18: Close connection

17: Unload

LC server

7: Return assigned port number

10: Return activity aggregation hierarchy

11: Request legality checking

16: Request LC server unloading

Figure 9. A possible interaction scenario

5. Metrics

The distributed computing environment consisted of a

network of HP9000-715 workstations interconnected both
with a 10 Mpbs Ethernet and a 100 Mbps FDDI network.
The implementation used the TCP socket interface as the

inter-process communication mechanism. In addition, the
system makes use of Unix-domain stream sockets [13] as

an alternative to TCP for local communication between
the client and the server, to improve latency, typically by
a factor of up to five. For the benchmark process, an

implementation that uses the LC system as a library linked
to the client application, was also available. The LC client

application used, was a graphical user interface. The user
creates chains of activities and then sends them to the LC
server for legality checking.

In order to check a line of work (low), the client
application and the LC server have to exchange a
minimum of 8 messages. These messages specify the

requests and the corresponding responses for operations
such as to open a low, to add the activities, to check the

low and to close the low. Additional messages may be
exchanged for accessing the keyword values or in the case
of incremental legality checking, i.e., when the activities

of the low are added one by one, and several intermediate
legality checks must be performed. The size of the messa-

ges to be exchanged is always small, less than 1024 bytes,
which makes the latency of the interconnection network
the dominating factor of the communication overhead.

Table 1 gives the performance results of the distributed
LC system. We report the time to check four typical line
of works of different sizes. The complexity of the rule-set

in use and the number of the activities contained in the

292

low determine the computation time of the legality
checking operation. The measurements have been done

after the TCP connection has been established. In
addition, in every case, we have made all the necessary
keyword values available locally in the cache, before

checking the legality.

*
times

in ms
TC

Ether

P

FDDI

Unix

Streams

Lib

TCP ov

Ether

erhead

FDDI

Streams

overhead

low1 (23) 519* 515.4 509.9 506 2.6% 1.8% 0.7%

low2 (15) 366.9 363.4 357.6 354 3.6% 2.6% 1%

low3 (13) 280.8 277.3 271.4 268 4.7% 3.5% 1.3%

low4 (11) 212.7 209.3 203.4 200 6.3% 4.6% 1.7%

Table 1. Metrics of the distributed LC system

For applications like the GUIs or management tools

where manual operations are performed the TCP over-
head can be acceptable. However, for computationally

intensive real-time systems like the automatic re-scheduler
or the automatic crew schedule planning system, a local
inter-process communication mechanism is necessary to

reduce the overhead. Low latency networks [2] and
optimized message passing implementations [12] which
avoid operating system intervention or complicated

protocol layers of traditional local area networks can
make the network-wide server more viable even for the

computationally intensive applications.

6. Conclusions

The use of decentralized workstation based applica-

tions has been an effective alternative to the mainframe
model for most industrial environments. However, this

decentralized model, in contrast with the mainframe era,
suffers when global concepts and rules must be re-
implemented in several applications and computers. In the

airline industry, in particular, there exist various work-
station based applications (e.g., crew planning, aircraft

scheduling, real time rescheduling) that need to evaluate a
set of company and state regulations in various instances
of their solution process. In this paper a methodology to

unify the attribute evaluation needs of several applications
and to provide a global legality checking service was
presented. The main advantage of the proposed client-

server approach is the increased reliability of the legality
system and the unification of the rule implementation and

storage characteristic. Some applications could have a
local instance of the legality server if this is required by
its intense rule computational needs in order to avoid the

potential communication overhead.
This approach to attribute evaluation and legality

checking is currently being tested for use at the Lufthansa
crew scheduling department. The object oriented design

and implementation of the server makes natural its
adoption by a CORBA (common object request broker

architecture) [11] based distributed computing environ-
ment. A distributed object computing framework will
enable the interworking between workstation-based appli-

cations at higher levels of abstraction and components to
collaborate more efficiently and transparently. This will

leverage the usability of the system as other user programs
may use the CORBA services to have a legality checker
module as if it was a local object. The current plans also

involve the creation of a JAVA based interface so that the
system can be used for the new Internet based work

assignment selection by the pilots of an airline company.

References

[1] G. Baues et. al., DAYSY Automatic Rescheduler: Detailed

Design Specification, DAYSY EP8402 TR D.5.3.4,
Cosytec SA, Orsay Cedex, France, 1996.

[2] N.J. Boden et. al., “Myrinet: A gigabit per second Local
Area Network”, IEEE-Micro, 15(1):29-36, Feb. 1995.

[3] CARMEN PAC 5.0 - User’s Reference Manual, Carmen
Systems AB, Gothenburg, Sweden, 1997.

[4] L. Chudant et. al., DAYSY Rotation Editor: Man-Machine

Interface Specification, DAYSY EP8402 TR D.7.4.2,
Sema Group SA, Paris, France, 1996.

[5] DAYSY consortium, Technical annex for the Esprit

project 8402: Day-to-day resource management systems,
DAYSY, January 1994.

[6] Deutsche Lufthansa AG NE 4, Crew Management Metrics,
DAYSY EP8402 TR D.8.2.1, Frankfurt, Germany, 1996.

[7] C. Goumopoulos et. al., Syntactic and Semantic Definition

of DAYSY rule language, DAYSY EP8402 TR D.4.2,
Patras, Greece, 1996.

[8] C. Goumopoulos, and P. Alefragis, Legality Checker C++

Application Programming Interface version 1.1, DAYSY
EP8402 TR D.4.4.2, Patras, Greece, 1997.

[9] G.W. Graves et. al., “Flight Crew Scheduling”, Manage-

ment Science, vol. 39, no. 6, pp. 736-745, June 1993.
[10] Nanda, R., and J. Browne, Introduction to Employee

Scheduling, John Wiley & Sons, New York, June 1992.
[11] OMG, The Common Object Request Broker: Architecture

and Specification, revision 2.0, 1995.
[12] S. Pakin et. al., “Fast Messages: Efficient, Portable Com-

munication for Workstation Clusters and MPPs”, IEEE

Concurrency, vol. 5, no. 2, April - June 1997.
[13] Stevens, W.R., Unix Network Programming Prentice-Hall,

1990.
[14] Suhl, L., Computer-aided scheduling - an airline per-

spective, Gabler Edition Wissenschaft, Wiesbaden, 1995.
[15] K. Thrampoulidis, C. Goumopoulos, and E. Housos, “Rule

Handling in the day-to-day Resource Management problem:
an Object-Oriented approach.”, Information and Software

Technology, vol 39, pp. 185-193, 1997.
[16] K. Thrampoulidis et. al., “REDOM: An OO Language to

Define and On Line Manipulate Regulations in the

293

Resource (Re)Scheduling Problem”, Software Practice and

Experience, vol 27, no 10, pp. 1135-1161, 1997.

