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Abstract. In the present paper, Random Forests are used in a criti-
cal and at the same time non trivial problem concerning the diagno-
sis of Gas Turbine blading faults, portraying promising results. Ran-
dom forests-based fault diagnosis is treated as a Pattern Recognition
problem, based on measurements and feature selection. Two differ-
ent types of inserting randomness to the trees are studied, based on
different theoretical assumptions. The classifier is compared against
other Machine Learning algorithms such as Neural Networks, Classi-
fication and Regression Trees, Naive Bayes and K-Nearest Neighbor.
The performance of the prediction model reaches a level of 97% in
terms of precision and recall, improving the existing state-of-the-art
levels achieved by Neural Networks by a factor of 1.5%-2%.

1 INTRODUCTION
Development of effective Gas Turbine Condition Monitoring and
Fault Diagnosis methods has been the target of considerable research
in recent years. This is due to the high cost, sensitivity and impor-
tance of these engines for most industrial companies. Most of this
research is directed towards the diagnosis of Gas Turbine blading
faults, because of the catastrophic consequences that these faults can
have, if they are not diagnosed in time. Even very small blading
faults can very rapidly grow and result to huge destructions ([1],
[2], [3]). Blading faults diagnosis is regarded to be a very difficult
problem, because of the high levels of noise in all relevant measure-
ments and the high interaction between the numerous Gas Turbine
blading rows. Therefore, it is very important to take advantage of
the processing power of modern computers, in order to provide a fast
and reliable engine condition diagnosis from available measurements
and to develop the highest possible level of intelligence and assis-
tance to the operation and maintenance personnel. The Gas Turbine
Blading Fault Diagnosis problem was originally addressed in [4] and
[5], based on classical pattern recognition methods. Our contribution
to the domain, is the introduction of an ensemble classifier, namely
Random Forests, for the first time for the task at hand, which outper-
forms all previous attempts to Gas Turbine Blading Fault Diagnosis.
Furthermore, Random Forests can provide some insight on the inter-
relationships between input features, unlike Neural nets, thus direct-
ing domain experts at selecting which measurement tools to use in
real world applications.

2 PROBLEM & DATA DESCRIPTION
The present work is based on data acquired from dynamic measure-
ments on an industrial Gas Turbine into which different faults were
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artificially introduced. During the experimental phase four categories
of measurements were performed simultaneously:

1. Unsteady internal wall pressure (using fast response transducers
P2 to P5).

2. Casing vibration (using accelerometers A1 to A6 mounted to the
outside compressor casing).

3. Shaft displacement at compressor bearings (using transducer B).
4. Sound pressure levels (using double-layer microphone M).

Five experiments were performed, testing the datum healthy en-
gine and a similar engine with the following four typical small (but
quite rapidly growing, as mentioned in the introductory section) and
also not straightforwardly diagnosable faults:

1. Fault-1: Rotor fouling.
2. Fault-2: Individual rotor blade fouling.
3. Fault-3: Individual rotor blade twisted (by appr. 8 degs).
4. Fault-4: Stator blade restaggering.

Tests were performed at four different engine loads (full load, half
load, quarter load and no load), both for the healthy engine as well
as for the above four faults. At each load, four series of time-domain
data were acquired for each instrument (two series in each of the
two sampling frequencies, l = 13 kHz and m = 32 kHz). 12 differ-
ent measuring instruments were used and measurements were taken
for every possible combination between engine’s 5 operational con-
ditions (healthy engine and 4 faulty conditions), 4 different engine
loads (full load, half load, quarter load and no load) and 2 sampling
frequencies (low and high). To be more precise, regarding engine’s
healthy condition, measurements have been taken for every combi-
nation between the engine load and sampling frequency (total 8 dif-
ferent combinations). Especially in engine’s faulty condition there’s
been one more measurement series for all the above combinations.
Consequently, for every instrument we have aggregately 72 different
measurements: 8 healthy engine’s measurements and 64 faulty en-
gine’s measurements. For every instrument, each and every one of
the above measurements consists of 27 values that are forms of the
spectral difference of the first 27 harmonics of rotor’s shaft rotational
frequency. So, if we would like to present the entirety of data in a data
base then this would be composed of 864 instances described by 27
distinct attributes, corresponding to the 27 harmonics.

3 RANDOM FORESTS
Despite the fact that Random Forests have been quite successful in
classification and regression tasks, to the best of our knowledge, there
has been no research in using the afore-mentioned algorithm for Gas



Turbine Fault Diagnosis. Random Forests are a combination of tree
classifiers such that each tree depends on the values of a random
vector sampled independently and with the same distribution for all
trees in the forest. A Random Forest multi-way classifier Θ(x) con-
sists of a number of trees, with each tree grown using some form of
randomization, where x is an input instance [8]. The leaf nodes of
each tree are labeled by estimates of the posterior distribution over
the data class labels. Each internal node contains a test that best splits
the space of data to be classified. A new, unseen instance is classified
by sending it down every tree and aggregating the reached leaf dis-
tributions. In order to make the classification process more formal,
suppose that the joint classifier Θ(x) contains x individual classifiers
Θ1(x), Θ2(x),...,Θx(x). Let us also assume that each data instance is
a pair (x,y), where x denotes the input attributes, taken from a set Ai,
i=1,...,M and y symbolizes the set of class labels Lj , j=1,...,c (c is the
number of class values). For reasons of simplicity, the correct class
will be denoted as y, without any indices. Each discrete attribute Ai

takes values from a set Vi, i=1 to mi (mi is the number of values at-
tribute Ai has). Finally, the probability that an attribute Ai has value
vk is denoted by p(vi,k), the probability of a class value yj is denoted
by p(yj) and the probability of an instance with attribute Ai having
value vk and class label yj is symbolized by p(yj |vi,k).

Each training example is picked up from a set of N instances at
random with replacement. By this procedure, called bootstrap repli-
cation, a pool of 36.8% of the training examples are not used for
the tree construction phase. These out-of-bag (oob) instances allow
for computing the degree of strength and correlation of the forest
structure. Suppose that Ok(x) is the set of oob instances of classifier
Θk(x). Furthermore, let Q(x, yj) denote the subset of oob samples
which were voted to have class yj at input example x. An estimate of
p(Θ(x) = yj) is given by the following equation:

Q(x, yj) =

∑K
k=1 I(Θk(x) = yj ; (x, y) ∈ Ok)∑K

k=1 I(Θk(x); (x, y) ∈ Ok)
(1)

where I(·) is the indicator function.
The margin function which measures the extent to which the aver-

age vote for the right class y exceeds the average vote for any other
class labels is computed by:

margin(x, y) = P (Θ(x) = y)−maxc
j=1,j 6=y(P (Θ(x) = yj)

(2)
Since strength is defined as the expected margin, it is computed as

the average over the training set:

s =
1

n

n∑
i=1

(Q(xi, y)−maxc
j=1,j 6=yQ(xi, yj)) (3)

The average correlation is given by the variance of the margin over
the square of the standard deviation of the forest:

p =
V ar(margin)

σ(Θ())2
(4)

is estimated for every input example x in the training set Q(x, yj).

4 EXPERIMENTAL RESULTS
We applied two versions of Random Forests (Random Input (RI)
Forests and Random Combination (RC) Forests) on the Gas Turbine
data set, using oob estimates. As for evaluation metric, we consid-
ered per class precision and recall. Accuracy in some domains, such
as the one at hand, is not actually a good metric due to the fact that

a classifier may achieve high accuracy by simply always predicting
the non faulty class. This problem particularly appears in the present
task, where, from more than 2/5 of the data set contained the afore-
mentioned class. A set of well-known machine learning techniques
have constituted the benchmark to which our results have been com-
pared: Multi-layer Perceptron Neural Networks, Naive Bayes, Clas-
sification and Regression Trees (CART), and k-Nearest Neighbor (k-
NN) instance-based learning. Cross validation was performed with
k-NN in order to determine the best k. As regards to the Random
Forests implementation, the best results were obtained by using 500
trees and 6 features. Due to lack of space, the evaluation outcome is
depicted in the following figure, for the precision metric (F1 to F4
denotes the fault categories and OK denotes the non faulty state).

Figure 1. Evaluation results in terms of precision for all methodologies.
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