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Abstract: In this paper an approach for building an intelligent tutoring system is presented, based on a multi-agent 

architecture and combined with ontologies for knowledge representation. The system developed is focused 

on a bottom up, reactive generation of an active sequence of knowledge units regarding a set of adjustable, 

high level learning goals. The learning process begins with a set of simple learning goals that require a few 

learning objects and as the educational process proceeds, the student has to achieve higher learning 

outcomes that combine other low level outcomes which have been already achieved. The system is able to 

adapt to student’s learning profile and progress by applying proper learning tactics to prioritize through a 

weight calculation scheme the sequence of the learning outcomes to achieve. The main components of the 

system consisting of ontological models of the learner and the subject under study, gateway agents and tutor 

agents with their core modules (learning space management and learning tactics control) are explained and a 

detailed description of their interaction is given in the context of an example application. Finally, the 

advantages of the proposed approach are laid out, especially in the setting of a distance learning education 

system. 

1 INTRODUCTION 

The term Intelligent Tutoring Systems (ITSs) refers 

to complex tutoring systems that can be adapted to 

the needs, characteristics and learning progress of 

the individual learner (Polson & Richardson, 1988). 

These systems exploit a large amount of educational 

knowledge and usually they employ pedagogical 

methodologies. Especially in the case of agent-based 

architectures, the interaction between the different 

components of the ITS is achieved through the 

communication of the intelligent agents assigned to 

each component. A typical architecture of an ITS 

consists of four models: (a) the domain model which 

contains all the knowledge and problem-solving 

strategies to be learned, (b) the student model which 

is an overlay of the domain model; it is the core 

component of an ITS and stores all the data about 

student’s characteristics and progress, (c) the 

tutoring (or pedagogical) model which contains all 

the information about the various pedagogical 

decisions and methodologies and (d) the user 

interface (UI) which enables the communication 

between the user and the system (Nkambou et al., 

2010). 
In this paper we introduce a pilot educational 

system that enhances personalized learning of 
students in the context of selected courses. We 
propose an agent-based intelligent tutoring system, 
able to adapt to student’s characteristics by 
employing learning tactics based on the student’s 
learning profile and progress. More specifically, our 
proposed multi-agent system architecture employs a 
set of homogenous student-dedicated tutor agents 
for each course. Each agent builds an internal 
learning model based on the domain and available 
resource semantic representation while during the 
educational process the agent updates the model 
based either on the student’s learning profile and 
interaction or by accessing the student’s progress 
with respect to a given group. The tutoring system is 
not domain specific while the pedagogical module is 
versatile, allowing tutors to experiment on different 
learning tactics in order to engineer more domain-



 

specific or student profile-oriented agents. Finally, 
the system self organizes student groups based on 
overall group progress indicators and without any 
tutor interference. To the best of our knowledge, this 
is the first indirect approach towards self-organized 
learning. 

In the context of our work we have chosen to 
model the main components of the proposed system 
through ontologies. Ontologies have been widely 
used especially in the field of education and 
specifically in tutoring systems for three main 
reasons: (i) to support the formal representation of 
abstract concepts and the relations between them in 
a reusable and extendable way, (ii) to allow the 
extraction of new knowledge by applying inference 
mechanisms and (iii) to provide rich semantics for 
humans to work with and the formalism for 
computers to perform mechanical processing. 
Furthermore, ontologies facilitate the reuse and the 
integration of services and thus e-learning systems 
are able to provide better applications (Peña & 
Sossa, 2010).  

Agent technology is a well-accepted approach to 
address the challenges of technology enhanced 
learning. In our case, by using intelligent agents in a 
distance education system it is possible to obtain 
adaptivity to each individual student’s learning 
capabilities, particularities and learning progress.  

The proposed tutoring system follows a 3-tier 
architectural style. In the presentation tier users 
connect to the system through a web interface; the 
logic tier consists of a multi-agent system; agents 
connect with a semantic repository in order to access 
the domain related reusable learning objects and 
student profiles (data tier). The multi agent system is 
implemented using the Java Agent Development 
Framework (JADE), a middleware for the 
development and execution of peer to peer 
applications following the agent-based development 
paradigm (Bellifemine et al., 2003). 

The system has been designed in the context of 
the Hellenic Open University (HOU). HOU has a 
mission to offer university level education using 
distance learning methodology and to develop the 
appropriate material and teaching methods. 
Currently, HOU offers 31 undergraduate and 
postgraduate Study Programs with a total of 
approximately 30,000 students, coached by 1,700 
tutors in 1,550 groups (20 students per group on 
average). Students of the HOU usually live in 
disparate locations all over the country. Besides 
being students they usually have families and 
working obligations so they have pressing time 
constraints for studying. Given the special 
characteristics of an adult distance learning 
education system, the provision of tools, such as the 
one presented here, that can facilitate the learning 

process and enhance the learning experience are of 
great importance. 

The rest of the paper is structured as follows. 
Section 2 provides related work on agent-based e-
learning systems. In the following section we 
elaborate on the ontological models we have 
implemented in order to represent the learners and 
generally the knowledge of the domain to be taught. 
Section 4 presents our agent-based ITS architecture 
focusing on the tutor agent organization and logic. A 
detailed system usage example is provided in order 
to demonstrate system’s functionality. The next 
section contains a discussion of the developed 
system and provides future directions of work for its 
improvement. Finally our conclusions are given. 

2 RELATED WORK 

Multi agent system (MAS) is a technology where 
its application came into existence during 1980’s. A 
number of e-learning systems use the multi agent 
scheme to create sophisticated environments in order 
to achieve maximum effectiveness in learning by 
implementing different technologies and using 
different methodologies (Bokhari & Ahmad, 2014). 
An example in the domain of multi-agent e-learning 
systems is (Ali et al., 2010) where the authors 
present a multi agent approach for designing an e-
learning system architecture. The proposed 
architecture consists of four tier layers, namely 
Interface layer, Middle layer, Database Controller 
layer and Database layer. The middle layer is based 
on MAS and supports any information 
communication, login, logout and new user sessions 
creation. Another example of a multi agent system 
that exploits ontologies for describing the 
educational material as well as the learners and their 
learning styles is presented in (Dung & Florea, 
2011). The authors here present an architecture to 
support a multi-agent e-learning system, where 
intelligent agents are capable of providing 
personalized assistance according to learner’s 
learning style and knowledge level. A study by 
(Hammami et al., 2009) describes an architecture 
composed of four multi-agent system levels 
interacting with each other using intelligent 
blackboard agents; blackboard agents facilitate the 
cooperation and coordination among interacting 
agents. Each level consists of different agents 
specialized on interfacing, authoring and learning 
aspects depending on the human user role. The 
system is connected to a number of databases 
modelling the student profile, the learning process, 
the learning domain, teaching material and practices. 



 

The authors in (Acampora et al., 2010) apply a 
Memetic Computing methodology into a 
hierarchical multicore multi-agent system while 
formalizing memetic agents’ exploration of 
taxonomic knowledge as an optimization problem in 
order to compute personalized learning experiences. 
Their approach includes building a set of knowledge 
highways whose paths connect information sources, 
earner’s requirements and cross feasible learning 
contents. Memetic agents explore the available 
learning knowledge taking into account hardware 
details of the available computing resources. The 
domain model employs a semantic representation of 
the educational domain including a set of teaching 
preferences; the learning presentation generation 
algorithm uses a predefined learning path of 
concepts to be covered and generating the best 
sequence of learning activities to best satisfy the 
concept path. In (Yaghmaie & Bahreininejad, 2011) 
the authors suggest a framework for building an 
adaptive Learning Management System (LMS). The 
proposed architecture is based upon multi-agent 
systems and uses both Sharable Content Object 
Reference Model (SCORM) 2004 and Semantic 
Web ontology for learning content storage, 
sequencing and adaptation. Moreover, they provide 
a way to adapt course topics according to learners’ 
experiences whose learning style is similar to the 
current learner. 

3 ONTOLOGICAL MODELS  

Ontologies are used for modelling the learners and 
the knowledge of the learning domain. In order to 
develop the ontologies we have followed a widely-
adopted methodology, described in (Noy & 
McGuiness, 2001) and for their representation we 
adopted the Web Ontology Language (OWL) 
(McGuinness & van Harmelen, 2004). The 
implementation process was done by the Protégé 
tool which is the most widely used and offers a 
complete development environment. Below we give 
a more detailed description of the ontological 
models we have implemented. 
 

3.1 Learner Model 

In order to implement the learner model we were 
based, on the one hand, on student modelling 
standards (Smythe et al., 2001, LTSC Learner 
Model Working Group of the IEEE 2000, 2000) and, 
on the other, on empirical studies that were 
conducted by social scientists among students of 
HOU. The proposed learner model is thus a 
combination of stereotype and overlay techniques. A 

fully stereotype-based profile, as the information 
derived from student’s descriptions or questionnaires 
is not accurate for every knowledge domain and the 
system would adapt to student’s needs very slowly. 
Dynamic attributes related to the learning process 
are represented with an overlay model. From the 
empirical studies we extracted information about the 
dimensions/characteristics of the learner profile that 
could affect his/her academic performance. A few 
examples of these dimensions are: the learning style, 
previous experience, reasons for education, 
computer literacy, etc. The values for these attributes 
(i.e. stereotypes) are used for the initialization of the 
learner’s profile and then, after the initialization 
phase the profile is dynamically modified as the 
overlay model is updated through the interaction of 
the user with the system. 

The proposed student model is partially based on 
the standards we mentioned above, but they also 
have limitations as they reflect different perspectives 
on the attributes of a learner (e.g. classic CV notion 
based or student’s performance as the most 
important information). On the other hand, as 
resulted from the study of other similar student 
models, there is no approach that satisfies all the 
attributes of an adult learner within a distance 
learning environment.   

The learner’s model: (1) is a dynamic model that 
can change over time as the system collects 
information about the user, (2) is a long-term model 
that keeps generalized information about the user 
and not only for the current interaction with the 
system and (3) combines “active” and “passive” user 
modelling techniques, i.e. in the beginning user 
provides direct information about him/her and then 
the system collects data indirectly. The proposed 
ontology defines the following four upper level 
classes: (a) Student which represents any student, (b) 
StudentCourseInformation which holds information 
about learner’s academic performance during the 
entire educational process, (c) 
StudentCurrentActivity which captures learner’s 
activity for the current academic year and (d) 
StudentPersonalInformation which is the most 
compact class of the proposed ontology, 
representing not only learner’s static data, such as 
demographics, but also more complex characteristics 
that concern his/her interaction with the system. A 
detailed description of the ontology is provided in 
(Panagiotopoulos et al., 2013). 

 

3.2 Learning Objects and Outcomes 

In order to represent the domain knowledge we 
have used the notion of Learning Objects. A learning 
object (LO) is defined as “a self-contained and 
independent unit of digital educational content, 



 

which is associated with one or more learning 
objectives and it has as primary aim the ability of 
reuse in different educational contexts” 
(Nikolopoulos et al., 2012b). The ontological 
representation and description of LOs has been 
based on the metadata schema proposed in 
(Nikolopoulos et al., 2012a). 

The system also needs to keep a record of the 
learner’s performance. To achieve that, we have 
used the notion of Learning Outcomes. According to 
the Bologna project (Bologna Working Group, 
2005) a learning outcome is a statement of “what a 
learner is expected to know, understand and be able 
to demonstrate after completion of a learning 
process (a lecture, a module or an entire program), 
which are defined in terms of knowledge, skills and 
competence”. For the classification of the learning 
outcomes in different level skills we have applied 
the Revised Bloom’s taxonomy (Krathwohl & 
Anderson, 2001), as it is the most widely used. The 
detailed description of the ontological representation 
for the learning outcomes is given in (Kalou et al., 
2012). 

It is worth noting here that the process for the 
cognitive domain representation from which we 
construct the corresponding learning objects and 
also the definition of the learning outcomes for the 
different cognitive domains is realized within a well-
defined and applied collaborative methodology 
between domain experts (tutors) and knowledge 
engineers, described in (Panagiotopoulos et al., 
2012, Nikolopoulos et al., 2013). 

4 AGENT-BASED PLATFORM  

4.1 System Architecture Overview 

In this section, we provide an overview of the 
ITS prototype, called APLe (Agents for Personalized 
Learning), whose system architecture is depicted in 
Figure 1. Students interact with the platform through 
a web based interface; a servlet keeps track of all 
available Gateway Agents (GA) and acts as 
dispatcher in order to route each student 
request/action to the proper GA, based on user and 
selected course information. GAs are special 
purpose agents that interface between agents of a 
remote agent environment and the servlet. GAs 
maintain and utilize student to Tutor Agent (TA) 
mappings in order to transfer request/action 
messages between students and corresponding 
agents (inside their particular agent environment). In 
Figure 1 two such environments are depicted 
representing two different courses (e.g.  Structured 
Programming in C and Software Engineering). For 

different students attending this course the system 
will spawn different TAs; with red color we depict a 
student UI-TA mapping example.  

In case a GA has no mapping for a particular 
user (e.g. on user login), it creates a TA. Then, 
requests/actions are transformed into specific data 
structures (we refer to these as Blackboard Beans or 
simply beans) which encapsulate request/action 
specific information such as session id, user id, 
course, action type and action data. GAs are 
triggered either by incoming beans or FIPA ACL 
(Foundation for Intelligent Physical Agents (FIPA), 
2002) compliant messages. If the agent receives a 
bean, the agent translates the data into an ACL 
message which is transmitted to the corresponding 
agent. On the opposite, when the agent receives an 
ACL message from a TA then the agent a) finds the 
corresponding bean, b) attaches the agent 
action/response data to the bean and c) sends the 
bean back to the servlet. TAs and GAs are grouped 
inside a set of agent environments (JADE 
containers) which can be distributed in different 
physical places of the service provider infrastructure. 
Each agent environment contains at least one GA 
which is created on system startup. On the other 
hand, TAs are generated and terminated 
dynamically. 

 

Figure 1: System Architecture. 

Although this approach introduces some extra 
communication overhead (there exist user 
actions/requests that do not affect the learning 
process and thus could be handled in a central 
fashion), we argue on transferring the information 
load to a dedicated tutor agent for scalability, error 
tolerance and security reasons: No matter of system 
traffic, the servlet and GAs do not consume 
resources on data processing and communication 
with the repositories. If for some reason some TAs 
fail, these agents are terminated while the system 
continues to operate for other connected users. 



 

Moreover, in order to deal better with any occurring 
bottleneck delay, multiple gateway agents may exist 
in each agent environment; finally, JADE agent 
mobility can be applied to allocate agents in more 
remote containers in respect of a particular grouping 
policy, e.g. container traffic. The current 
implementation employs a simple agent grouping 
policy: TA grouping/placement is applied in regard 
of the course that is currently attended while each 
group (environment) contains exactly one GA.  

The data tier consists of a semantic repository 
and a content repository. The content repository is a 
data storage facility for the available educational 
content that is available for presentation. The 
semantic repository contains semantic representation 
and instances for the students (student profile and 
action log), Learning Objects, Learning Outcomes 
and finally the Domain concepts for each available 
course. As a semantic repository, we use OWLIM-
Lite, a high-performance semantic repository 
implemented in Java and packaged as a Storage and 
Inference Layer (SAIL) for the Sesame openRDF 
framework (Bishop et al., 2011). Each TA is able to 
interact with the semantic repository through the 
respective OWLIM-Lite by using a set of predefined 
SPARQL query and update patterns. Each pattern is 
defined in respect of the structural and relational 
properties of the ontologies used for the semantic 
representation. 

 

4.2 Tutor Agent  

Each Tutor Agent is allocated to a student that 
attends a particular course at the current point of 
time. The Tutor Agent (TA) architecture consists of 
two modules, as depicted in Figure 2: Learning 
Space Management (LSM), reflecting the internal 
representation and Learning Tactic Control (LTC), 
reflecting the learning tactic decision. Sesame refers 
to persistence/metadata, whereas LP Updates refer to 
the user feedback. 

LSM is triggered either when the agent receives 
a learning request/action message either on an LTC-
generated internal event. LTC may be triggered in a 
three way fashion: periodically, on message arrival 
or on LSM-generated internal event. 
 

Figure 2: Tutor Agent architectural design 
 
Taking under consideration the agent 

architecture, courseware generation is affected not 
only as a result to a student’s learning events but 
also in accordance to the relative distance between 
the student's indicators and the group's indicators. 
According to this, the TA reacts to direct and 
indirect stimuli: 

• Direct stimuli refer to student learning events 

(or student learning event chains) which affect 

directly the node state set of the learning space. 

The agent reacts to the state change by guiding 

the student towards a set of (most fitted) 

learning outcomes. The set is produced after 

applying the dominant learning tactic to the 

personal learning space.  

• Indirect stimuli refer to indirect interaction 
between students through specific learning 
indicators which are estimated globally during 
the progress of the group of agents for a 
particular course. The agent reacts (through 
LTC) to indicator changes by switching the 
(most fitted) learning tactic.  

 

Learning Space Management 

This module creates and operates upon a 
complex graph structure which represents the 
personal learning map of a student. The learning 
space is modeled as a 3-color graph using a variety 
of links based on explicit/implicit properties which 
are extracted from the combined educational 
ontology. Each node is described by its type, current 
state and current value. The state of each node is 
determined according to the state of its connections. 
For that purpose, a set of well defined, non-
recursive, non-overlapping transition rules are 
applied on initialization or after an educational 
update (incoming message). 

The module is able to parse the graph and extract 
filtered information based on a particular learning 
tactic and the student profile. The outcome may be 
either high level (objective) recommendation (based 



 

on the learning tactic) or low level (learning object) 
recommendation based on a student-selected 
objective and the student profile. Finally, the module 
updates the ontology repository (the student profile 
in particular) upon each update. 

 

Learning Tactics Control  

In educational context, a learning tactic is the 
way a student is attempting to learn something 
(Popham, 2011). We define an agent learning tactic 
as the way an agent selects the next Learning 
Outcome for a student to learn (to persist). More 
specifically, a learning tactic is a set of connection 
types and corresponding weights that apply to each 
node based on the status of its very local 
neighbourhood (directly connected nodes). 

The Learning Tactic Control (LTC) is a reactive 
selection mechanism which uses global and local 
(internal) indicator updates in order to select one 
learning tactic to apply to LSM. Each time the LTC 
is triggered, a series of queries is sent to the 
ontology repository concerning some quantitative 
data about the class (or group of students). Next, 
using a formula that is solely based on indicator 
data, the available learning tactics are hierarchically 
checked to take the control of the LSM. The 
hierarchical winner-takes-all mechanism is based on 
Brook’s subsumption architecture: when triggered, 
top level behaviours (in our case, learning tactics) 
suppress lower level behaviours from triggering. 
When the dominant learning tactic switches, LTC 
triggers an internal event which forces LSM to 
comply with the dominant learning tactic by 
resetting the connection weights of the learning 
graph according to the new learning tactic. The 
result of this action is a rebalanced learning graph.  
 

4.3 System Usage Example  

In this section we describe the execution phase 
of the tutoring system each time a student connects 
to the system, based on the following assumptions: a 
tutor of the “Structured programming in C” course, 
has created an initial learning plan of a single 
learning goal (objective): “PA_PLI10_46_”. For that 
purpose, we employ the educational ontology 
discussed in Section 3, consisting of Learning 
Outcomes, Learning Objects, the Bloom taxonomy 
schema, an educational domain schema and finally a 
student profile schema. More particularly, the 
combined ontology contains 124 classes, 55 object 
property types, 45 data property types and 737 
individuals, including 109 Learning Outcomes, 128 
Learning Objects and 208 C programming specific 
Learning Concepts. A Learning Outcome has a 

natural language description, an assigned Bloom 
level, a number of connections with relative 
Concepts and a number of connections with relative 
Learning Objects. For example, “PA_PLI10_46_” 
refers to “combining operators and operands in a 
program to form expressions”, it is related with C 
concepts like “operator”, “operand” and 
“expression” and it is satisfied with Learning Object 
“MA_PLI_25”. The latter is titled “Common 
mistakes on using operators” related with Concepts 
“operator” and “operand”, it refers to a document-
formatted example (resource type).  The “operator” 
concept is connected with parent concepts like 
“expression” and a number of child concepts like 
“Logical Operator”, “Bitwise Operator” and 
“Numeric Operator”. 

Also, we consider a set of two learning tactics: a) 
a rapid-advance strategy which focuses on selecting 
learning objectives towards higher goals as far as at 
least one sub-objective is fulfilled and b) a greedy 
strategy which focuses on achieving all sub-
objectives before moving toward a higher goal. The 
first learning tactic is triggered by using two 
indicator sets: student versus mean class quantity of 
learning goals achieved multiplied by the mean class 
versus student self-evaluation score. The latter tactic 
is triggered by using a formula of two indicators: 
student quantity versus mean class quantity for the 
successful learning objectives. Also, the rapid 
advance learning tactic suppresses the greedy tactic. 

When a student connects to the course, a Tutor 
Agent spawns inside the multi agent “Structured 
Programming in C” container; next, the agent 
initializes the learning space using the initial set of 
objectives according to the learning plan. Next, the 
graph is populated and connected recursively with 
learning objectives, objects and concepts according 
to a breadth first strategy using a defined set of 
connection types. Currently, the exploited 
connection types are five: “satisfies” between a 
Learning Object and an Objective; “subject” 
between a Learning Object/Objective and a Concept; 
“hasBloomLevel” for  Learning Objectives and the 
Bloom level; finally “hasParent” / ”hasChild” 
between Concepts.  The learning space generation 
algorithm is set to expand uniformly all possible 
connection chains with maximum Concept distance 
2 from each initial learning objective (#46 in our 
case). Using the initial set of the learning plan, the 
generated learning space graph involves 46 Learning 
Outcome, 52 Learning Object and 93 C 
programming Concept nodes. Next, the learning 
space synchronizes according to the student relevant 
data from the student log. In our scenario, the course 
has just started so there is no relevant data in the 
student log. At this point, the student is able to use 
the recommender. A graphical representation of the 



 

learning space is depicted in Figure 3. This graph 
represents a fraction of the learning map that is built 
to support the goal of learning the semantics of C 
operators. Learning Objects are not shown for 
clarification reasons. 

When the student selects the recommendation 
button, the event is passed to the tutor agent who 
calculates and returns back a list of the most valued 
objectives of the learning space, according to the 
dominant learning tactic. Each learning tactic applies 
to each Learning Objective (node) of the learning 
space as follows: 

• rapid-advance: each node x estimates its score 

based on the formula: ���� � 1/�1 � 	
��� ∗

#��	����,��������/#��	���� ∗ �#��	����� �

#��	�����,���������/#��	�����  where 	
�� is 

the distance of a node from the closest learning 

goal, #��	����/��� is the number of connected 

incoming/outgoing nodes and 

#��	����/���,��������  is the number of finished 

incoming/outgoing nodes. If there are no 

incoming nodes, #��	����,�������� �

��	���� � 1. If there are no outgoing nodes, 

�#��	����� � #��	�����,���������/

#��	����� � 1 

• greedy: each node x estimates its score based on 

the formula:  

���� � #��	����,�������� � #��	����,������ /

#��	���� , where #��	����,������  is the 

number of (incoming) nodes that are not 

finished. If there are no incoming nodes, 

	���� � 1.  

 

 

 
 

 
 

 
Figure 3: Simplified representation of the learning space in the context of the example course 

 

To better understand how a learning tactic 
affects the recommendation, consider Learning 
Objective nodes 16, 19, 36, 27, 13 and 47: assuming 
there are no (visited/finished) nodes, the former 
learning tactic will estimate values ½, 0, 0, ⅓, ⅓ and 
0 respectively. According to this, the rapid-advance 
tactic will recommend the sequence 16, 27 and 13. 

The latter tactic will estimate 1, -1, -1, 1, 1 and -1 
respectively, leading to a random recommendation 
sequence for 16, 27 and 13, since all nodes have the 
same weight. If we assume nodes 16 and 21 as 
visited, the values for 19 and 27 are not affected 
(neighbours are unchanged). Nodes 36, 13 and 47 
are affected, giving estimations ½, ⅙, ½ for the 



 

former and 1, 0, 1 for the latter learning tactic. 
According to this, the rapid-advance tactic will 
recommend the sequence 36, 27 and 13, whereas the 
greedy tactic a random sequence between 36, 27 and 
47.  

When the student selects an objective to attain, 
the selection is passed to the agent who calculates 
and returns back a list of the existing learning 
objects with respect of the selected objective and the 
student preferences, located in the student profile 
(Figure 4) (the language used in the user interface is 
currently greek). For example, if the student prefers 
visual content and the objective concerns the topic 
“recursive functions”, a video learning object will be 
selected, if available explaining this topic. It is noted 
that the agent sorts instead of excluding learning 
format/types. Thus, the student is able to select a 
learning object of his/her choice. 

 

Figure 4: Screenshot of the APLe System: Choosing 

learning objects for a specific learning outcome  
 

Finally, when the student finishes the study of a 
particular learning object, the student has to self-
evaluate his/her understanding on the learning 
object. This action triggers the agent to update the 
learning space and the student data repository. Also, 
the agent updates its indicator data for the class. 

5 DISCUSSION 

The advantage of the agent-based platform 
derives from the fact that the tutor agents can 
provide recommendation on a sequence of learning 
outcomes that most fit the student profile, according 
to the properties of the learning objects. On the other 
hand, the use of ontological models for representing 
and storing the information regarding the learner and 
the learning material enhances reusability of this 

information and promotes interoperability with 
third-party systems.  

The research work described in this paper acts as 
a proof of concept and there are still many 
challenges that are related with the particular 
approach for engineering an ITS. Further study and 
experiments will follow in order to verify well fitted 
agent configurations (learning tactics and LTC) 
under different domains. A research direction is to 
identify the (bipartite) application of student 
stereotyping into dynamic reconfigurations and vice 
versa.  

According to these, the next step is to evaluate 
the proposed system with real data from the students 
of the Hellenic Open University (HOU). In order to 
evaluate the proposed agent-based tutoring system, 
our approach involves evaluating the system through 
user's experiences to find out the usability and 
impact of the ITS, finding learning rates and 
achievements level. 

We already have prepared a number of learning 
objects with different metadata and for various 
knowledge domains. These objects have different 
file formats (video, document, presentation, etc.) and 
different resource type (activity, exercise, self-
assessment, etc.). The criteria for the evaluation of 
the APLe, have emerged from the study of different 
system evaluation methodologies (such as TAM2) 
and are represented through scored questionnaires 
that will be given to the students of the HOU. For 
example, there are questions about the usability of 
the system, the interface and knowledge acquisition. 

In HOU, we are developing (in a collaborative 
effort among ontology experts and course tutors) 
educational ontologies for the majority of the 600 
courses we offer. Our aim is to gradually introduce 
these ontologies to the platform and deploy the 
respective agents for each course. Currently, about 
40 courses are in the “pipe-line”. The platform will 
eventually become a component of the HOU 
educational portal, which will offer a personalized 
learning environment to our students. In its first 
deployment, the course ontologies will be 
independent, thus a different instantiation of the 
platform per course is planned. This approach will 
also help us sidestep scalability issues and allow us 
measure system’s performance, so as to plan the 
next deployment phase. 

6 CONCLUSIONS 

This paper presented an integrated intelligent 
tutoring system in order to support distance learning, 
especially for adult learners. The proposed 
architecture is based on a multi-agent system which 



 

facilitates the communication between the different 
components of the ITS and provides personalized 
learning to the individual students. The operational 
procedure of the multi-agent system has been 
described and the overall functions of its 
fundamental components have been illustrated. The 
prototype provides dynamic curriculum sequencing 
in a bottom up fashion using direct information 
about the student preferences or learning styles and 
relative information about the student learning 
process as part of a group. 

ACKNOWLEDGMENTS 

This research has been co-financed by the European 
Union (European Social Fund – ESF) and Greek 
national funds through the Operational Program 
"Education and Lifelong Learning" of the National 
Strategic Reference Framework (NSRF) (Funding 
Program: “HOU”). 

REFERENCES 

Acampora, G., Loia, V., Gaeta, M., 2010. Exploring e-

Learning Knowledge Through Ontological Memetic 

Agents. IEEE Computational Intelligence Magazine, 

vol.5, no.2, pp. 66-77. 

Ali, A, P., Dehghan, H., Gholampour, J., 2010. An Agent 

Based Multilayered Architecture for E-learning 

system. In Proceeding of E-Learning and E-Teaching 

(ICELET). Second International Conference on IEEE, 

pp.22-26 

Bellifemine, F., Caire, G., Pogg, A., Rimassa, G., 2003. 

Jade-A White Paper. In EXP in search of innovation, 

vol. 3, no. 3, 2003, pp. 6-19. 

Bokhari, M., Ahmad, S., 2014. Multi-agent Based E-

Learning Systems: A Comparative Study. In 

Proceedings of the 2014 International Conference on 

Information and Communication Technology for 

Competitive Strategies 

Bologna Working Group, 2005 A Framework for 

Qualifications of the European Higher Education 

Area.  

Bishop B., Kiryakov, A., Ognyanoff, D., Peikov, I., 

Tashev, Z., Velkov, R., 2011. OWLIM: A family of 

scalable semantic repositories. In Semant. web, vol. 2, 

no. 1, pp. 33-42. 

Dung, Q, P., Florea, M, A., 2011. An Architecture and a 

Domain Ontology for Personalized Multi-Agent e-

Learning Systems. In Proceedings of the 2011 Third 

International Conference on Knowledge and Systems 

Engineering, pp. 181-185 

Foundation for Intelligent Physical Agents (FIPA). FIPA 

ACL Message Structure Specification (2002), viewed 

27 May 2014, http://www.fipa.org/specs/fipa00061/. 

Hammami, S., Mathkour, H.,  Al-Mosallam, E.A., 2009. A 

multi-agent architecture for adaptive E-learning 

systems using a blackboard agent. 2nd IEEE 

International Conference on Computer Science and 

Information Technology, pp. 184-188. 

Kalou, A., Solomou, G., Pierrakeas, C., Kameas, A., 2012. 

An Ontology Model for Building, Classifying and 

Using Learning Outcomes. 12th IEEE International 

Conference on Advanced Learning Technologies, pp. 

61-65.  

Krathwohl, D., Anderson, L., (eds), 2001. A Taxonomy for 

Learning, Teaching, and Assessing: A Revision of 

Bloom's Taxonomy of Educational Objectives, 

Abridged Edition. 

LTSC Learner Model Working Group of the IEEE 2000. 

Draft Standard for Learning Technology - Public and 

Private Information (PAPI) for Learners (PAPI 

Learner), IEEE p1484.2/d7, 2000-11-28. 

McGuinness, D.L, van Harmelen, F., 2004. OWL Web 

Ontology Language Overview, W3C 

Recommendation, http://www.w3.org/TR/owl-

features/ 

Nikolopoulos, G., Solomou, G., Pierrakeas, C., Kameas, 

A., 2013. An Instructional Design Methodology for 

Building Distance Learning Courses. 7th International 

Conference in Open and Distance. 

Nikolopoulos, G., Kalou, A., Pierrakeas, C., Kameas, A., 

2012a. Creating a LO Metadata Profile for Distance 

Learning: An Ontological Approach. 6th Research 

Conference, pp. 37-48. 

Nikolopoulos, G., Solomou, G., Pierrakeas, C., Kameas, 

A., 2012b. Modeling the Characteristics of a Learning 

Object for Use within e-Learning Applications. 

Proceedings of the Fifth Balkan Conference in 

Informatics, pp. 112-117. 

Nkambou, R., Mizoguchi, R., Bourdeau, J., (eds), 2010. 

Advances in intelligent tutoring systems. Heidelberg: 

Springer, 2010. 

Noy N., McGuiness D., 2001. Ontology Development 

101: A Guide to Creating Your First Ontology. 

Stanford Knowledge Systems Laboratory Technical 

Report KSL-01-05 and Stanford Medical Informatics 

Technical Report SMi-2001-0880. 

Panagiotopoulos I., Kalou, A., Pierrakeas, C., Kameas, A., 

2012. Adult student modeling for intelligent distance 

learning systems. In Special Issue on AIAI 2012 of the 

International Journal of Engineering Intelligent 

Systems for Electrical Engineering and 

Communications, vol. 21, nos. 2/3. 

Panagiotopoulos, I., Kalou, A., Pierrakeas, C.,  Kameas, 

A., 2012. An Ontological Approach for Domain 

Knowledge Modeling and Management in E-Learning 

Systems. In 1st AI in Education Workshop: 

Innovations and Applications, pp. 95-104. 



 

Peña, A., Sossa, H., 2010. Semantic representation and 

management of student models: An approach to adapt 

lecture sequencing to enhance learning. In 

Proceedings of the 9th Mexican international 

conference on Advances in artificial intelligence: Part 

I, pp. 175-186. 

Polson, M., Richardson, J., 1988. Foundations of 

Intelligent Tutoring Systems. Psychology Press. 

Popham, W.J., 2011. Transformative Assessment in 

Action: An Inside Look at Applying the Process. 

ASCD, USA. 

Smythe, C., Tansey, F., Robson, R., 2001. IMS Learner 

Information Package Information Model Specification, 

http://www.imsglobal.org/profiles/lipinfo01.html 

Yaghmaie, M., Bahreininejad, A., 2011. A context-aware 

adaptive learning system using agents. In  Expert 

Systems with Applications, Vol. 38, Issue 4, pp. 3280-

3286. 


