
Combining Agents and Ontologies for Building an Intelligent

Tutoring System

Stamatis Panagiotis1, Panagiotopoulos Ioannis1, Goumopoulos Christos1,2, Kameas Achilles1

1Educational Content, Methodology and Technology Laboratory (e-CoMeT Lab), Hellenic Open University, Patras, Greece
2Information and Communication Systems Engineering Department, Aegean University, Greece

panagiotis.stamatis@gmail.com, gpanagiotopoulos@ecomet.eap.gr, goumop@tutors.eap.gr, kameas@eap.gr

 Keywords: Agent-based systems, Intelligent Tutoring Systems, Ontologies, Personalized Learning, Distance Learning,

Dynamic Courseware Generation.

Abstract: In this paper an approach for building an intelligent tutoring system is presented, based on a multi-agent

architecture and combined with ontologies for knowledge representation. The system developed is focused

on a bottom up, reactive generation of an active sequence of knowledge units regarding a set of adjustable,

high level learning goals. The learning process begins with a set of simple learning goals that require a few

learning objects and as the educational process proceeds, the student has to achieve higher learning

outcomes that combine other low level outcomes which have been already achieved. The system is able to

adapt to student’s learning profile and progress by applying proper learning tactics to prioritize through a

weight calculation scheme the sequence of the learning outcomes to achieve. The main components of the

system consisting of ontological models of the learner and the subject under study, gateway agents and tutor

agents with their core modules (learning space management and learning tactics control) are explained and a

detailed description of their interaction is given in the context of an example application. Finally, the

advantages of the proposed approach are laid out, especially in the setting of a distance learning education

system.

1 INTRODUCTION

The term Intelligent Tutoring Systems (ITSs) refers

to complex tutoring systems that can be adapted to

the needs, characteristics and learning progress of

the individual learner (Polson & Richardson, 1988).

These systems exploit a large amount of educational

knowledge and usually they employ pedagogical

methodologies. Especially in the case of agent-based

architectures, the interaction between the different

components of the ITS is achieved through the

communication of the intelligent agents assigned to

each component. A typical architecture of an ITS

consists of four models: (a) the domain model which

contains all the knowledge and problem-solving

strategies to be learned, (b) the student model which

is an overlay of the domain model; it is the core

component of an ITS and stores all the data about

student’s characteristics and progress, (c) the

tutoring (or pedagogical) model which contains all

the information about the various pedagogical

decisions and methodologies and (d) the user

interface (UI) which enables the communication

between the user and the system (Nkambou et al.,

2010).
In this paper we introduce a pilot educational

system that enhances personalized learning of
students in the context of selected courses. We
propose an agent-based intelligent tutoring system,
able to adapt to student’s characteristics by
employing learning tactics based on the student’s
learning profile and progress. More specifically, our
proposed multi-agent system architecture employs a
set of homogenous student-dedicated tutor agents
for each course. Each agent builds an internal
learning model based on the domain and available
resource semantic representation while during the
educational process the agent updates the model
based either on the student’s learning profile and
interaction or by accessing the student’s progress
with respect to a given group. The tutoring system is
not domain specific while the pedagogical module is
versatile, allowing tutors to experiment on different
learning tactics in order to engineer more domain-

specific or student profile-oriented agents. Finally,
the system self organizes student groups based on
overall group progress indicators and without any
tutor interference. To the best of our knowledge, this
is the first indirect approach towards self-organized
learning.

In the context of our work we have chosen to
model the main components of the proposed system
through ontologies. Ontologies have been widely
used especially in the field of education and
specifically in tutoring systems for three main
reasons: (i) to support the formal representation of
abstract concepts and the relations between them in
a reusable and extendable way, (ii) to allow the
extraction of new knowledge by applying inference
mechanisms and (iii) to provide rich semantics for
humans to work with and the formalism for
computers to perform mechanical processing.
Furthermore, ontologies facilitate the reuse and the
integration of services and thus e-learning systems
are able to provide better applications (Peña &
Sossa, 2010).

Agent technology is a well-accepted approach to
address the challenges of technology enhanced
learning. In our case, by using intelligent agents in a
distance education system it is possible to obtain
adaptivity to each individual student’s learning
capabilities, particularities and learning progress.

The proposed tutoring system follows a 3-tier
architectural style. In the presentation tier users
connect to the system through a web interface; the
logic tier consists of a multi-agent system; agents
connect with a semantic repository in order to access
the domain related reusable learning objects and
student profiles (data tier). The multi agent system is
implemented using the Java Agent Development
Framework (JADE), a middleware for the
development and execution of peer to peer
applications following the agent-based development
paradigm (Bellifemine et al., 2003).

The system has been designed in the context of
the Hellenic Open University (HOU). HOU has a
mission to offer university level education using
distance learning methodology and to develop the
appropriate material and teaching methods.
Currently, HOU offers 31 undergraduate and
postgraduate Study Programs with a total of
approximately 30,000 students, coached by 1,700
tutors in 1,550 groups (20 students per group on
average). Students of the HOU usually live in
disparate locations all over the country. Besides
being students they usually have families and
working obligations so they have pressing time
constraints for studying. Given the special
characteristics of an adult distance learning
education system, the provision of tools, such as the
one presented here, that can facilitate the learning

process and enhance the learning experience are of
great importance.

The rest of the paper is structured as follows.
Section 2 provides related work on agent-based e-
learning systems. In the following section we
elaborate on the ontological models we have
implemented in order to represent the learners and
generally the knowledge of the domain to be taught.
Section 4 presents our agent-based ITS architecture
focusing on the tutor agent organization and logic. A
detailed system usage example is provided in order
to demonstrate system’s functionality. The next
section contains a discussion of the developed
system and provides future directions of work for its
improvement. Finally our conclusions are given.

2 RELATED WORK

Multi agent system (MAS) is a technology where
its application came into existence during 1980’s. A
number of e-learning systems use the multi agent
scheme to create sophisticated environments in order
to achieve maximum effectiveness in learning by
implementing different technologies and using
different methodologies (Bokhari & Ahmad, 2014).
An example in the domain of multi-agent e-learning
systems is (Ali et al., 2010) where the authors
present a multi agent approach for designing an e-
learning system architecture. The proposed
architecture consists of four tier layers, namely
Interface layer, Middle layer, Database Controller
layer and Database layer. The middle layer is based
on MAS and supports any information
communication, login, logout and new user sessions
creation. Another example of a multi agent system
that exploits ontologies for describing the
educational material as well as the learners and their
learning styles is presented in (Dung & Florea,
2011). The authors here present an architecture to
support a multi-agent e-learning system, where
intelligent agents are capable of providing
personalized assistance according to learner’s
learning style and knowledge level. A study by
(Hammami et al., 2009) describes an architecture
composed of four multi-agent system levels
interacting with each other using intelligent
blackboard agents; blackboard agents facilitate the
cooperation and coordination among interacting
agents. Each level consists of different agents
specialized on interfacing, authoring and learning
aspects depending on the human user role. The
system is connected to a number of databases
modelling the student profile, the learning process,
the learning domain, teaching material and practices.

The authors in (Acampora et al., 2010) apply a
Memetic Computing methodology into a
hierarchical multicore multi-agent system while
formalizing memetic agents’ exploration of
taxonomic knowledge as an optimization problem in
order to compute personalized learning experiences.
Their approach includes building a set of knowledge
highways whose paths connect information sources,
earner’s requirements and cross feasible learning
contents. Memetic agents explore the available
learning knowledge taking into account hardware
details of the available computing resources. The
domain model employs a semantic representation of
the educational domain including a set of teaching
preferences; the learning presentation generation
algorithm uses a predefined learning path of
concepts to be covered and generating the best
sequence of learning activities to best satisfy the
concept path. In (Yaghmaie & Bahreininejad, 2011)
the authors suggest a framework for building an
adaptive Learning Management System (LMS). The
proposed architecture is based upon multi-agent
systems and uses both Sharable Content Object
Reference Model (SCORM) 2004 and Semantic
Web ontology for learning content storage,
sequencing and adaptation. Moreover, they provide
a way to adapt course topics according to learners’
experiences whose learning style is similar to the
current learner.

3 ONTOLOGICAL MODELS

Ontologies are used for modelling the learners and
the knowledge of the learning domain. In order to
develop the ontologies we have followed a widely-
adopted methodology, described in (Noy &
McGuiness, 2001) and for their representation we
adopted the Web Ontology Language (OWL)
(McGuinness & van Harmelen, 2004). The
implementation process was done by the Protégé
tool which is the most widely used and offers a
complete development environment. Below we give
a more detailed description of the ontological
models we have implemented.

3.1 Learner Model

In order to implement the learner model we were
based, on the one hand, on student modelling
standards (Smythe et al., 2001, LTSC Learner
Model Working Group of the IEEE 2000, 2000) and,
on the other, on empirical studies that were
conducted by social scientists among students of
HOU. The proposed learner model is thus a
combination of stereotype and overlay techniques. A

fully stereotype-based profile, as the information
derived from student’s descriptions or questionnaires
is not accurate for every knowledge domain and the
system would adapt to student’s needs very slowly.
Dynamic attributes related to the learning process
are represented with an overlay model. From the
empirical studies we extracted information about the
dimensions/characteristics of the learner profile that
could affect his/her academic performance. A few
examples of these dimensions are: the learning style,
previous experience, reasons for education,
computer literacy, etc. The values for these attributes
(i.e. stereotypes) are used for the initialization of the
learner’s profile and then, after the initialization
phase the profile is dynamically modified as the
overlay model is updated through the interaction of
the user with the system.

The proposed student model is partially based on
the standards we mentioned above, but they also
have limitations as they reflect different perspectives
on the attributes of a learner (e.g. classic CV notion
based or student’s performance as the most
important information). On the other hand, as
resulted from the study of other similar student
models, there is no approach that satisfies all the
attributes of an adult learner within a distance
learning environment.

The learner’s model: (1) is a dynamic model that
can change over time as the system collects
information about the user, (2) is a long-term model
that keeps generalized information about the user
and not only for the current interaction with the
system and (3) combines “active” and “passive” user
modelling techniques, i.e. in the beginning user
provides direct information about him/her and then
the system collects data indirectly. The proposed
ontology defines the following four upper level
classes: (a) Student which represents any student, (b)
StudentCourseInformation which holds information
about learner’s academic performance during the
entire educational process, (c)
StudentCurrentActivity which captures learner’s
activity for the current academic year and (d)
StudentPersonalInformation which is the most
compact class of the proposed ontology,
representing not only learner’s static data, such as
demographics, but also more complex characteristics
that concern his/her interaction with the system. A
detailed description of the ontology is provided in
(Panagiotopoulos et al., 2013).

3.2 Learning Objects and Outcomes

In order to represent the domain knowledge we
have used the notion of Learning Objects. A learning
object (LO) is defined as “a self-contained and
independent unit of digital educational content,

which is associated with one or more learning
objectives and it has as primary aim the ability of
reuse in different educational contexts”
(Nikolopoulos et al., 2012b). The ontological
representation and description of LOs has been
based on the metadata schema proposed in
(Nikolopoulos et al., 2012a).

The system also needs to keep a record of the
learner’s performance. To achieve that, we have
used the notion of Learning Outcomes. According to
the Bologna project (Bologna Working Group,
2005) a learning outcome is a statement of “what a
learner is expected to know, understand and be able
to demonstrate after completion of a learning
process (a lecture, a module or an entire program),
which are defined in terms of knowledge, skills and
competence”. For the classification of the learning
outcomes in different level skills we have applied
the Revised Bloom’s taxonomy (Krathwohl &
Anderson, 2001), as it is the most widely used. The
detailed description of the ontological representation
for the learning outcomes is given in (Kalou et al.,
2012).

It is worth noting here that the process for the
cognitive domain representation from which we
construct the corresponding learning objects and
also the definition of the learning outcomes for the
different cognitive domains is realized within a well-
defined and applied collaborative methodology
between domain experts (tutors) and knowledge
engineers, described in (Panagiotopoulos et al.,
2012, Nikolopoulos et al., 2013).

4 AGENT-BASED PLATFORM

4.1 System Architecture Overview

In this section, we provide an overview of the
ITS prototype, called APLe (Agents for Personalized
Learning), whose system architecture is depicted in
Figure 1. Students interact with the platform through
a web based interface; a servlet keeps track of all
available Gateway Agents (GA) and acts as
dispatcher in order to route each student
request/action to the proper GA, based on user and
selected course information. GAs are special
purpose agents that interface between agents of a
remote agent environment and the servlet. GAs
maintain and utilize student to Tutor Agent (TA)
mappings in order to transfer request/action
messages between students and corresponding
agents (inside their particular agent environment). In
Figure 1 two such environments are depicted
representing two different courses (e.g. Structured
Programming in C and Software Engineering). For

different students attending this course the system
will spawn different TAs; with red color we depict a
student UI-TA mapping example.

In case a GA has no mapping for a particular
user (e.g. on user login), it creates a TA. Then,
requests/actions are transformed into specific data
structures (we refer to these as Blackboard Beans or
simply beans) which encapsulate request/action
specific information such as session id, user id,
course, action type and action data. GAs are
triggered either by incoming beans or FIPA ACL
(Foundation for Intelligent Physical Agents (FIPA),
2002) compliant messages. If the agent receives a
bean, the agent translates the data into an ACL
message which is transmitted to the corresponding
agent. On the opposite, when the agent receives an
ACL message from a TA then the agent a) finds the
corresponding bean, b) attaches the agent
action/response data to the bean and c) sends the
bean back to the servlet. TAs and GAs are grouped
inside a set of agent environments (JADE
containers) which can be distributed in different
physical places of the service provider infrastructure.
Each agent environment contains at least one GA
which is created on system startup. On the other
hand, TAs are generated and terminated
dynamically.

Figure 1: System Architecture.

Although this approach introduces some extra
communication overhead (there exist user
actions/requests that do not affect the learning
process and thus could be handled in a central
fashion), we argue on transferring the information
load to a dedicated tutor agent for scalability, error
tolerance and security reasons: No matter of system
traffic, the servlet and GAs do not consume
resources on data processing and communication
with the repositories. If for some reason some TAs
fail, these agents are terminated while the system
continues to operate for other connected users.

Moreover, in order to deal better with any occurring
bottleneck delay, multiple gateway agents may exist
in each agent environment; finally, JADE agent
mobility can be applied to allocate agents in more
remote containers in respect of a particular grouping
policy, e.g. container traffic. The current
implementation employs a simple agent grouping
policy: TA grouping/placement is applied in regard
of the course that is currently attended while each
group (environment) contains exactly one GA.

The data tier consists of a semantic repository
and a content repository. The content repository is a
data storage facility for the available educational
content that is available for presentation. The
semantic repository contains semantic representation
and instances for the students (student profile and
action log), Learning Objects, Learning Outcomes
and finally the Domain concepts for each available
course. As a semantic repository, we use OWLIM-
Lite, a high-performance semantic repository
implemented in Java and packaged as a Storage and
Inference Layer (SAIL) for the Sesame openRDF
framework (Bishop et al., 2011). Each TA is able to
interact with the semantic repository through the
respective OWLIM-Lite by using a set of predefined
SPARQL query and update patterns. Each pattern is
defined in respect of the structural and relational
properties of the ontologies used for the semantic
representation.

4.2 Tutor Agent

Each Tutor Agent is allocated to a student that
attends a particular course at the current point of
time. The Tutor Agent (TA) architecture consists of
two modules, as depicted in Figure 2: Learning
Space Management (LSM), reflecting the internal
representation and Learning Tactic Control (LTC),
reflecting the learning tactic decision. Sesame refers
to persistence/metadata, whereas LP Updates refer to
the user feedback.

LSM is triggered either when the agent receives
a learning request/action message either on an LTC-
generated internal event. LTC may be triggered in a
three way fashion: periodically, on message arrival
or on LSM-generated internal event.

Figure 2: Tutor Agent architectural design

Taking under consideration the agent

architecture, courseware generation is affected not
only as a result to a student’s learning events but
also in accordance to the relative distance between
the student's indicators and the group's indicators.
According to this, the TA reacts to direct and
indirect stimuli:

• Direct stimuli refer to student learning events

(or student learning event chains) which affect

directly the node state set of the learning space.

The agent reacts to the state change by guiding

the student towards a set of (most fitted)

learning outcomes. The set is produced after

applying the dominant learning tactic to the

personal learning space.

• Indirect stimuli refer to indirect interaction
between students through specific learning
indicators which are estimated globally during
the progress of the group of agents for a
particular course. The agent reacts (through
LTC) to indicator changes by switching the
(most fitted) learning tactic.

Learning Space Management

This module creates and operates upon a
complex graph structure which represents the
personal learning map of a student. The learning
space is modeled as a 3-color graph using a variety
of links based on explicit/implicit properties which
are extracted from the combined educational
ontology. Each node is described by its type, current
state and current value. The state of each node is
determined according to the state of its connections.
For that purpose, a set of well defined, non-
recursive, non-overlapping transition rules are
applied on initialization or after an educational
update (incoming message).

The module is able to parse the graph and extract
filtered information based on a particular learning
tactic and the student profile. The outcome may be
either high level (objective) recommendation (based

on the learning tactic) or low level (learning object)
recommendation based on a student-selected
objective and the student profile. Finally, the module
updates the ontology repository (the student profile
in particular) upon each update.

Learning Tactics Control

In educational context, a learning tactic is the
way a student is attempting to learn something
(Popham, 2011). We define an agent learning tactic
as the way an agent selects the next Learning
Outcome for a student to learn (to persist). More
specifically, a learning tactic is a set of connection
types and corresponding weights that apply to each
node based on the status of its very local
neighbourhood (directly connected nodes).

The Learning Tactic Control (LTC) is a reactive
selection mechanism which uses global and local
(internal) indicator updates in order to select one
learning tactic to apply to LSM. Each time the LTC
is triggered, a series of queries is sent to the
ontology repository concerning some quantitative
data about the class (or group of students). Next,
using a formula that is solely based on indicator
data, the available learning tactics are hierarchically
checked to take the control of the LSM. The
hierarchical winner-takes-all mechanism is based on
Brook’s subsumption architecture: when triggered,
top level behaviours (in our case, learning tactics)
suppress lower level behaviours from triggering.
When the dominant learning tactic switches, LTC
triggers an internal event which forces LSM to
comply with the dominant learning tactic by
resetting the connection weights of the learning
graph according to the new learning tactic. The
result of this action is a rebalanced learning graph.

4.3 System Usage Example

In this section we describe the execution phase
of the tutoring system each time a student connects
to the system, based on the following assumptions: a
tutor of the “Structured programming in C” course,
has created an initial learning plan of a single
learning goal (objective): “PA_PLI10_46_”. For that
purpose, we employ the educational ontology
discussed in Section 3, consisting of Learning
Outcomes, Learning Objects, the Bloom taxonomy
schema, an educational domain schema and finally a
student profile schema. More particularly, the
combined ontology contains 124 classes, 55 object
property types, 45 data property types and 737
individuals, including 109 Learning Outcomes, 128
Learning Objects and 208 C programming specific
Learning Concepts. A Learning Outcome has a

natural language description, an assigned Bloom
level, a number of connections with relative
Concepts and a number of connections with relative
Learning Objects. For example, “PA_PLI10_46_”
refers to “combining operators and operands in a
program to form expressions”, it is related with C
concepts like “operator”, “operand” and
“expression” and it is satisfied with Learning Object
“MA_PLI_25”. The latter is titled “Common
mistakes on using operators” related with Concepts
“operator” and “operand”, it refers to a document-
formatted example (resource type). The “operator”
concept is connected with parent concepts like
“expression” and a number of child concepts like
“Logical Operator”, “Bitwise Operator” and
“Numeric Operator”.

Also, we consider a set of two learning tactics: a)
a rapid-advance strategy which focuses on selecting
learning objectives towards higher goals as far as at
least one sub-objective is fulfilled and b) a greedy
strategy which focuses on achieving all sub-
objectives before moving toward a higher goal. The
first learning tactic is triggered by using two
indicator sets: student versus mean class quantity of
learning goals achieved multiplied by the mean class
versus student self-evaluation score. The latter tactic
is triggered by using a formula of two indicators:
student quantity versus mean class quantity for the
successful learning objectives. Also, the rapid
advance learning tactic suppresses the greedy tactic.

When a student connects to the course, a Tutor
Agent spawns inside the multi agent “Structured
Programming in C” container; next, the agent
initializes the learning space using the initial set of
objectives according to the learning plan. Next, the
graph is populated and connected recursively with
learning objectives, objects and concepts according
to a breadth first strategy using a defined set of
connection types. Currently, the exploited
connection types are five: “satisfies” between a
Learning Object and an Objective; “subject”
between a Learning Object/Objective and a Concept;
“hasBloomLevel” for Learning Objectives and the
Bloom level; finally “hasParent” / ”hasChild”
between Concepts. The learning space generation
algorithm is set to expand uniformly all possible
connection chains with maximum Concept distance
2 from each initial learning objective (#46 in our
case). Using the initial set of the learning plan, the
generated learning space graph involves 46 Learning
Outcome, 52 Learning Object and 93 C
programming Concept nodes. Next, the learning
space synchronizes according to the student relevant
data from the student log. In our scenario, the course
has just started so there is no relevant data in the
student log. At this point, the student is able to use
the recommender. A graphical representation of the

learning space is depicted in Figure 3. This graph
represents a fraction of the learning map that is built
to support the goal of learning the semantics of C
operators. Learning Objects are not shown for
clarification reasons.

When the student selects the recommendation
button, the event is passed to the tutor agent who
calculates and returns back a list of the most valued
objectives of the learning space, according to the
dominant learning tactic. Each learning tactic applies
to each Learning Objective (node) of the learning
space as follows:

• rapid-advance: each node x estimates its score

based on the formula: ���� � 1/�1 � 	
��� ∗

#��	����,��������/#��	���� ∗ �#��	����� �

#��	�����,���������/#��	����� where 	
�� is

the distance of a node from the closest learning

goal, #��	����/��� is the number of connected

incoming/outgoing nodes and

#��	����/���,�������� is the number of finished

incoming/outgoing nodes. If there are no

incoming nodes, #��	����,�������� �

��	���� � 1. If there are no outgoing nodes,

�#��	����� � #��	�����,���������/

#��	����� � 1

• greedy: each node x estimates its score based on

the formula:

���� � #��	����,�������� � #��	����,������ /

#��	���� , where #��	����,������ is the

number of (incoming) nodes that are not

finished. If there are no incoming nodes,

	���� � 1.

Figure 3: Simplified representation of the learning space in the context of the example course

To better understand how a learning tactic
affects the recommendation, consider Learning
Objective nodes 16, 19, 36, 27, 13 and 47: assuming
there are no (visited/finished) nodes, the former
learning tactic will estimate values ½, 0, 0, ⅓, ⅓ and
0 respectively. According to this, the rapid-advance
tactic will recommend the sequence 16, 27 and 13.

The latter tactic will estimate 1, -1, -1, 1, 1 and -1
respectively, leading to a random recommendation
sequence for 16, 27 and 13, since all nodes have the
same weight. If we assume nodes 16 and 21 as
visited, the values for 19 and 27 are not affected
(neighbours are unchanged). Nodes 36, 13 and 47
are affected, giving estimations ½, ⅙, ½ for the

former and 1, 0, 1 for the latter learning tactic.
According to this, the rapid-advance tactic will
recommend the sequence 36, 27 and 13, whereas the
greedy tactic a random sequence between 36, 27 and
47.

When the student selects an objective to attain,
the selection is passed to the agent who calculates
and returns back a list of the existing learning
objects with respect of the selected objective and the
student preferences, located in the student profile
(Figure 4) (the language used in the user interface is
currently greek). For example, if the student prefers
visual content and the objective concerns the topic
“recursive functions”, a video learning object will be
selected, if available explaining this topic. It is noted
that the agent sorts instead of excluding learning
format/types. Thus, the student is able to select a
learning object of his/her choice.

Figure 4: Screenshot of the APLe System: Choosing

learning objects for a specific learning outcome

Finally, when the student finishes the study of a
particular learning object, the student has to self-
evaluate his/her understanding on the learning
object. This action triggers the agent to update the
learning space and the student data repository. Also,
the agent updates its indicator data for the class.

5 DISCUSSION

The advantage of the agent-based platform
derives from the fact that the tutor agents can
provide recommendation on a sequence of learning
outcomes that most fit the student profile, according
to the properties of the learning objects. On the other
hand, the use of ontological models for representing
and storing the information regarding the learner and
the learning material enhances reusability of this

information and promotes interoperability with
third-party systems.

The research work described in this paper acts as
a proof of concept and there are still many
challenges that are related with the particular
approach for engineering an ITS. Further study and
experiments will follow in order to verify well fitted
agent configurations (learning tactics and LTC)
under different domains. A research direction is to
identify the (bipartite) application of student
stereotyping into dynamic reconfigurations and vice
versa.

According to these, the next step is to evaluate
the proposed system with real data from the students
of the Hellenic Open University (HOU). In order to
evaluate the proposed agent-based tutoring system,
our approach involves evaluating the system through
user's experiences to find out the usability and
impact of the ITS, finding learning rates and
achievements level.

We already have prepared a number of learning
objects with different metadata and for various
knowledge domains. These objects have different
file formats (video, document, presentation, etc.) and
different resource type (activity, exercise, self-
assessment, etc.). The criteria for the evaluation of
the APLe, have emerged from the study of different
system evaluation methodologies (such as TAM2)
and are represented through scored questionnaires
that will be given to the students of the HOU. For
example, there are questions about the usability of
the system, the interface and knowledge acquisition.

In HOU, we are developing (in a collaborative
effort among ontology experts and course tutors)
educational ontologies for the majority of the 600
courses we offer. Our aim is to gradually introduce
these ontologies to the platform and deploy the
respective agents for each course. Currently, about
40 courses are in the “pipe-line”. The platform will
eventually become a component of the HOU
educational portal, which will offer a personalized
learning environment to our students. In its first
deployment, the course ontologies will be
independent, thus a different instantiation of the
platform per course is planned. This approach will
also help us sidestep scalability issues and allow us
measure system’s performance, so as to plan the
next deployment phase.

6 CONCLUSIONS

This paper presented an integrated intelligent
tutoring system in order to support distance learning,
especially for adult learners. The proposed
architecture is based on a multi-agent system which

facilitates the communication between the different
components of the ITS and provides personalized
learning to the individual students. The operational
procedure of the multi-agent system has been
described and the overall functions of its
fundamental components have been illustrated. The
prototype provides dynamic curriculum sequencing
in a bottom up fashion using direct information
about the student preferences or learning styles and
relative information about the student learning
process as part of a group.

ACKNOWLEDGMENTS

This research has been co-financed by the European
Union (European Social Fund – ESF) and Greek
national funds through the Operational Program
"Education and Lifelong Learning" of the National
Strategic Reference Framework (NSRF) (Funding
Program: “HOU”).

REFERENCES

Acampora, G., Loia, V., Gaeta, M., 2010. Exploring e-

Learning Knowledge Through Ontological Memetic

Agents. IEEE Computational Intelligence Magazine,

vol.5, no.2, pp. 66-77.

Ali, A, P., Dehghan, H., Gholampour, J., 2010. An Agent

Based Multilayered Architecture for E-learning

system. In Proceeding of E-Learning and E-Teaching

(ICELET). Second International Conference on IEEE,

pp.22-26

Bellifemine, F., Caire, G., Pogg, A., Rimassa, G., 2003.

Jade-A White Paper. In EXP in search of innovation,

vol. 3, no. 3, 2003, pp. 6-19.

Bokhari, M., Ahmad, S., 2014. Multi-agent Based E-

Learning Systems: A Comparative Study. In

Proceedings of the 2014 International Conference on

Information and Communication Technology for

Competitive Strategies

Bologna Working Group, 2005 A Framework for

Qualifications of the European Higher Education

Area.

Bishop B., Kiryakov, A., Ognyanoff, D., Peikov, I.,

Tashev, Z., Velkov, R., 2011. OWLIM: A family of

scalable semantic repositories. In Semant. web, vol. 2,

no. 1, pp. 33-42.

Dung, Q, P., Florea, M, A., 2011. An Architecture and a

Domain Ontology for Personalized Multi-Agent e-

Learning Systems. In Proceedings of the 2011 Third

International Conference on Knowledge and Systems

Engineering, pp. 181-185

Foundation for Intelligent Physical Agents (FIPA). FIPA

ACL Message Structure Specification (2002), viewed

27 May 2014, http://www.fipa.org/specs/fipa00061/.

Hammami, S., Mathkour, H., Al-Mosallam, E.A., 2009. A

multi-agent architecture for adaptive E-learning

systems using a blackboard agent. 2nd IEEE

International Conference on Computer Science and

Information Technology, pp. 184-188.

Kalou, A., Solomou, G., Pierrakeas, C., Kameas, A., 2012.

An Ontology Model for Building, Classifying and

Using Learning Outcomes. 12th IEEE International

Conference on Advanced Learning Technologies, pp.

61-65.

Krathwohl, D., Anderson, L., (eds), 2001. A Taxonomy for

Learning, Teaching, and Assessing: A Revision of

Bloom's Taxonomy of Educational Objectives,

Abridged Edition.

LTSC Learner Model Working Group of the IEEE 2000.

Draft Standard for Learning Technology - Public and

Private Information (PAPI) for Learners (PAPI

Learner), IEEE p1484.2/d7, 2000-11-28.

McGuinness, D.L, van Harmelen, F., 2004. OWL Web

Ontology Language Overview, W3C

Recommendation, http://www.w3.org/TR/owl-

features/

Nikolopoulos, G., Solomou, G., Pierrakeas, C., Kameas,

A., 2013. An Instructional Design Methodology for

Building Distance Learning Courses. 7th International

Conference in Open and Distance.

Nikolopoulos, G., Kalou, A., Pierrakeas, C., Kameas, A.,

2012a. Creating a LO Metadata Profile for Distance

Learning: An Ontological Approach. 6th Research

Conference, pp. 37-48.

Nikolopoulos, G., Solomou, G., Pierrakeas, C., Kameas,

A., 2012b. Modeling the Characteristics of a Learning

Object for Use within e-Learning Applications.

Proceedings of the Fifth Balkan Conference in

Informatics, pp. 112-117.

Nkambou, R., Mizoguchi, R., Bourdeau, J., (eds), 2010.

Advances in intelligent tutoring systems. Heidelberg:

Springer, 2010.

Noy N., McGuiness D., 2001. Ontology Development

101: A Guide to Creating Your First Ontology.

Stanford Knowledge Systems Laboratory Technical

Report KSL-01-05 and Stanford Medical Informatics

Technical Report SMi-2001-0880.

Panagiotopoulos I., Kalou, A., Pierrakeas, C., Kameas, A.,

2012. Adult student modeling for intelligent distance

learning systems. In Special Issue on AIAI 2012 of the

International Journal of Engineering Intelligent

Systems for Electrical Engineering and

Communications, vol. 21, nos. 2/3.

Panagiotopoulos, I., Kalou, A., Pierrakeas, C., Kameas,

A., 2012. An Ontological Approach for Domain

Knowledge Modeling and Management in E-Learning

Systems. In 1st AI in Education Workshop:

Innovations and Applications, pp. 95-104.

Peña, A., Sossa, H., 2010. Semantic representation and

management of student models: An approach to adapt

lecture sequencing to enhance learning. In

Proceedings of the 9th Mexican international

conference on Advances in artificial intelligence: Part

I, pp. 175-186.

Polson, M., Richardson, J., 1988. Foundations of

Intelligent Tutoring Systems. Psychology Press.

Popham, W.J., 2011. Transformative Assessment in

Action: An Inside Look at Applying the Process.

ASCD, USA.

Smythe, C., Tansey, F., Robson, R., 2001. IMS Learner

Information Package Information Model Specification,

http://www.imsglobal.org/profiles/lipinfo01.html

Yaghmaie, M., Bahreininejad, A., 2011. A context-aware

adaptive learning system using agents. In Expert

Systems with Applications, Vol. 38, Issue 4, pp. 3280-

3286.

