
 
 

 

 

Abstract - The development of ‘intelligent’ medical 
equipment, which can not only acquire various signals from the 
human body, but also process them and provide 
recommendations as to probable pathological conditions, will 
be highly beneficial for both the medical personnel and the 
patients. However, this necessitates the development and 
exploitation of advanced highly efficient classification 
techniques. In this direction this paper presents a novel 
ensemble classification technique, combining Random Forests 
with the ‘Markov Blanket’ notion, which is used for the 
automated diagnosis of aortic and mitral heart valves diseases 
from low-cost and easily acquired heart sound signals. It has 
been tested in a highly ‘difficult’ global and heterogeneous 
dataset of 198 heart sound signals, which been acquired from 
both healthy and pathological medical cases. The proposed 
ensemble classification technique exhibited a higher 
classification performance in comparison with the classical 
Random Forest algorithms, and also other widely used 
classification algorithms. 

I. INTRODUCTION 
HE development of ‘intelligent’ medical equipment, 
which can not only acquire various signals from the 

human body, but also process them and provide 
recommendations as to probable pathological conditions, 
will be highly beneficial for both medical personnel and 
patients. This capability will be particularly useful in the 
numerous small primary healthcare centers, which lack 
sufficient experienced medical personnel, but have however 
to examine at a first level big numbers of subjects, and 
identify the ones who need further and more complex 
examinations in bigger hospitals. The provision of such 
recommendations will improve the accuracy of these first 
diagnoses, reducing on one hand the numbers of subjects 
who proceed to further and more complex examinations 
without actually needing them, and on the other hand the 
numbers of subjects who are mistakenly diagnosed as 
healthy and do not proceed to the required additional 
examinations with negative consequences for their health. 
Therefore it will result in significant benefits for the small 
primary healthcare centers, the hospitals, the national health 
systems on one hand, and for the patients on the other. 
However, in order to develop these valuable 
recommendation capabilities it will be necessary to 
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incorporate in this ‘intelligent’ medical equipment 
knowledge of experienced specialized doctors, and also to 
develop and use advanced highly efficient classification 
techniques for the optimal exploitation of this knowledge. 

This paper contributes in this direction by presenting a 
novel ensemble classification technique, combining Random 
Forests with ‘Markov Blanket’, which performs diagnosis of 
aortic and mitral heart valves diseases from simple heart 
sound signals that can be easily acquired at a very low cost 
at any small primary healthcare center. It consists of three 
stages: initially it diagnoses the existence or not of murmurs, 
and in the former case it distinguishes between systolic and 
diastolic ones, and finally between aortic and mitral origin 
(in the case of systolic murmurs between aortic stenosis and 
mitral regurgitation, and in the case of diastolic murmurs 
between aortic regurgitation and mitral stenosis). For its 
training it requires a number of heart sound signals for each 
category (healthy, aortic stenosis, mitral regurgitation, aortic 
regurgitation and mitral stenosis), which have been correctly 
characterized (diagnosed) by experienced cardiologists, so it 
incorporates their specialized knowledge.  This knowledge is 
efficiently transformed from its initial case-based form into 
the more structured form of an ensemble of decision trees, 
which can perform diagnosis of a new heart sound signal. 
The proposed ensemble classification technique has been 
tested in a highly ‘difficult’ global and heterogeneous 
dataset of 198 heart sound signals, which have been acquired 
from both healthy and pathological medical cases belonging 
to the above categories. Also, its classification performance 
is compared with the performance of the classical Random 
Forest algorithms, and also of other widely used 
classification algorithm, on the same data set. 

The paper consists of six sections. In the following section 
II previous relevant research is briefly reviewed, while in 
section III the background is outlined (Random Forests and 
Markov Blanket). In section IV, the proposed novel ‘Markov 
Blanket Random Forests’ ensemble classification technique 
is presented, followed by the results of its application in the 
above dataset in section V. Finally section VI summarizes 
the conclusions.       

II. PREVIOUS RESEARCH 
There has been considerable previous research concerning 
the automated detection of various heart pathological 
conditions and diseases from heart sound signals. It can be 
broadly divided into two research streams: the first deals 
with the removal of noise, segmentation and preprocessing 
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of heart sound signals, and calculation of appropriate 
features for their diagnostic exploitation, while the second 
deals with the detection of heart pathological conditions and 
diseases. The present paper belongs to the second research 
stream, so we are going to focus our review on it. Some of 
the studies of this stream are dealing with distinguishing 
between normal and abnormal (i.e. from subjects having a 
disease) heart sound signals [1-4], or with distinguishing 
between innocent and pathological murmurs in children [5-
8]. Other studies are dealing with the more detailed detection 
from heart sound signals of particular heart diseases, such as 
coronary artery diseases [9,10] and heart valve diseases or 
murmurs [11-21]. With respect to the type of classification 
algorithms used it should be emphasized that in most of the 
studies of this research stream the diagnostic classification 
of the heart sound signals is based on neural networks of 
various types (e.g. back-propagation, radial basis function, 
probabilistic neural networks etc.) [1,2,4,5,7-12, 13, 16, 17]. 
However, there are only a few studies using other 
classification algorithms, such as discriminant functions 
[6,15], decision trees [19,20], Bayesian networks [3], 
Support Vector Machines [20] and Hidden Markov Models 
[21]. Therefore the diagnostic potential of other classifiers 
than the neural networks for the automated detection of heart 
pathological conditions and diseases from heart sound 
signals has not been sufficiently explored yet, so further 
research is required in this direction. 
  

III. BACKGROUND 
Recently, ensemble classification has gained much 

popularity within the Machine Learning and Data Mining 
community. The idea behind the aggregation of multiple 
single classifiers is based on the assumption that  non-
correlated classifiers have the potential to outperform the 
total prediction error when aggregated. The following 
example illustrates how an ensemble method can improve a 
classifier’s performance. Suppose that a set of twenty-five 
binary classifiers is constructed, each of which predicts the 
class with an error rate of 0.35. As previously mentioned, an 
ensemble classifier performs the classification based on the 
majority vote of each base classifier. In the case that all base 
classifiers are identical, the error rate of the ensemble will 
remain 0.35, while, if the base classifiers are independent 
(their error is not correlated) then the ensemble will make 
false prediction if more than half of the base classifiers 
predict wrongly. From a mathematical perception the error 
rate of the ensemble is calculated using the following 
equation: 

 06.0)1(
25 25
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which is significantly lower than the error rate of the base 
classifiers. 

 The Random Forest (RF) algorithm is a popular 
classification technique, whose classifier is an ensemble of 
classification trees. It is considered particularly well suited 

to situations characterized by a large number of features, a 
circumstance that is becoming more prevalent as the ability 
to collect and store vast amounts of data becomes easier and 
increasingly common [22]. In such instances, the classical 
classification approaches tend to become overwhelmed by 
the number of features and fail, while RF continues to do 
well. For instance, with DNA microarray data, work by [23-
25], shows that RF outperforms most of the other 
classification techniques. However, when, in addition to 
having a large number of features, the proportion of truly 
informative features is small, its performance tends to 
decline as well [26]. In this paper, a solution for this problem 
is proposed, which is founded on the notion of a feature 
selection and reasoning algorithm, based on the Markov 
Blanket of the class attribute. The identification of relevant 
variables is an essential component of the construction of 
efficient decision support and computer-assisted discovery 
models. Especially in the area of biomedicine the problem of 
variable selection is more pressing than ever, due to the 
recent emergence of extremely large datasets, sometimes 
involving tens to hundreds of thousands of variables. 

A. Random Forests 
A RF classifier consists of a number of decision trees, 

with each tree grown using some form of randomization. 
The leaf nodes of each tree are labelled by estimates of the 
posterior distribution over the data class labels. Each internal 
node contains a test that best splits the space of data to be 
classified. A new, unseen instance is classified by sending it 
down every tree and aggregating the reached leaf 
distributions. The process is described in Fig. 1. Each tree is 
grown as follows: 

 If the number of cases in the training set is N, sample N 
cases at random but with replacement, from the original 
data. This sample will be the training set for growing 
the tree. This is actually the so-called bagging step [22] 
and the selected samples are called the in-bag cases; the 
rest are set aside as out-of-bag cases. 

 If there are F input variables, a number m<<F is 
specified such that at each node, m variables are 

Fig. 1. Hierarchical Decomposition of a Random Forest 
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selected at random out of the F and the best split on 
these m is used to split the node. The value of m is held 
constant during the forest growing. 

Each tree is grown to the largest extent possible; 
therefore, no pruning procedures need to be applied. Upon 
completion of the tree construction step, the set of data are 
traversed down the tree, and proximity values are computed 
for each pair of cases.  

As regards to the overall error rate of the Random Forests, 
this is affected by two different factors: 

1. Robustness (strength) of each individual tree within 
the forest. Higher strength results in lower error 
rates. 

2. Tree inter-correlation. Highly correlated trees 
result in high error rate. 

The former, individual performance, is obtained by using 
robust tree classifiers and the latter, inter-correlation, is 
alleviated by randomly choosing cases on which to train 
each tree and by randomly choosing attributes at each node 
of each tree. Most classification algorithms tend to overfit 
when faced with datasets in which there are a large number 
features. However, a major advantage of RF is that they are 
able to keep the likelihood of overfitting low by using 
different subsets of the training data and different subsets of 
features for training the different base classifiers. Thus, only 
patterns truly existing in the data would be detected 
consistently by the majority of the base classifiers. As 
regards to the most common implementations of “injecting” 
randomness into the tree-learning phase, two approaches 
exist: 

1)  Random input forests 
The simplest random forest with random features is formed 
by selecting at random, at each node, a small group of input 
variables to split on. Grow the tree using entropy as criterion 
for splitting to its maximum size and do not prune.  

2) Random combination forests 
This approach consists of defining more features by taking 
random linear combinations of a number of the input 
variables. That is, a feature is generated by specifying L, the 
number of variables to be combined. At a given node, L 
variables are randomly selected and added together with 
coefficients that are uniform random numbers on [-1,1]. F 
linear combinations are generated, and then a search is made 
over these for the best split.  

B. Bayesian Networks and Markov Blanket 
In order to better capture the significant properties of a 

Markov Blanket (MB), a brief introductory section of 
Bayesian networks is included. Bayesian networks 
graphically represent the joint probability distribution over a 
set of random variables. A Bayesian Network (BN) is 
composed of a qualitative portion (its structure) and a 
quantitative portion (its conditional probabilities). The 
structure BS is a directed acyclic graph where the nodes 
correspond to domain variables x1,…,xn and the arcs between 
nodes represent direct dependencies between the variables 
[27]. Likewise, the absence of an arc between two nodes xi 
and xj denotes that xj is independent of xi given its parent 

nodes. Following the notation of [28], the set of parent nodes 
of a node xi in BS is denoted as πi. The structure is annotated 
with a set of conditional probabilities, containing a term 
P(xi=Xi|πi=Πi) for each possible value Xi of xi and each 
possible instantiation Πi of πi. In a BN, the structure BS 
encodes the Markov condition if each node xi is 
probabilistically independent of all non-descendants given 
its parent nodes. From this condition, the so-called “chain 
rule” for BNs follows immediately: a BN can be factorized 
as a product, for all variables in the network, of their 
probabilities conditionally on their parents only, i.e. 

 (1) 

A Markov Blanket of a node xi, denoted as MB(xi), is a 
minimal attribute set, containing its immediate parent nodes, 
its child nodes and the immediate parent nodes of its child 
odes. Mathematically, the above statement is translated into: 

 (2) 
where  denotes the conditional independence of  xi with xk 
given MB(xi). 

Suppose Bi and Bj are two Bayesian networks that have 
the same probability distribution, then MBBi (xk) = MBBj (xk) 
for any variable xk. Certainly, MBs are not exclusive and 
may vary in size, but any given BN has a unique MB(xi ) for 
any xi, which is the set of parents, children and parents of 
children of xi. In Fig. 2, a BN is depicted along with the MB 
of a target node x, colored in blue. As regards to the dataset 
interpretation, feature x is independent of all other features 
given its MB(x)={Ui,Uj,Yk,Yl,Zkm,Zln}. 

IV. MARKOV BLANKET RANDOM FORESTS 
Based on the existing implementations of Random Forests 

and taking our initial concerns on feature relevance into 
consideration, we propose a novel algorithm for 
classification using RF. The algorithm is entitled “Markov 
Blanket Random Forests-MBRF”, since the danger of 
selecting irrelevant and misleading features is remedied by 
using the Markov Blanket of the class node to provide the 
best splitting criteria for each tree. By selecting random 

 
Fig. 2. An example of a Bayesian Network with the Markov Blanket 
of node x. 
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samples and obtaining the extracted MB of the target node, 
the probability of tree containing more informative features 
is increased. In case of high-dimensional datasets, the 
diversity of the ensemble is not compromised and is more 
robust that other, pre-filtering or weighting schemes. The 
algorithm is consisted of two distinct phases; the former 
regards the construction of the MB and latter is about 
constructing the trees. Its basic procedure can be sketched in 
the following steps: 

 
MBRF (Data D, Features F, Target C) 
1. Draw ntree bootstrap samples from 

the original data D. 
2. Build an unconstrained Bayesian 

network without learning the 
conditional probability table. 

3. Obtain the MB of the class node C. 
4. For each of the bootstrap samples, 

grow an unpruned classification or 
regression tree, with the 
following modification: at each 
node, rather than choosing the 
best split among all predictors, 
use mtry of the Markov Blanket and 
choose the best split from among 
those variables.  

5. Predict new data by aggregating 
the predictions of the ntree trees 
(i.e., majority votes for 
classification, average for 
regression). 
 

An important variation of the proposed algorithm in 
comparison with previous RF implementation is located on 
the second and third step respectively. In the following 
section, we provide the mathematical explanation of the 
aforementioned phases. 

A. Determining the Bayesian network structure and the 
MB of the class node 
Based on the framework of [28], the most probable BN 

structure is obtained by performing a hill-climb search over 
the space of candidate structures. The following equation 
along with Bayes’ theorem provides a metric of relation r 
among two candidate network structures BSi and BSj 
respectively: 

 (3) 

Therefore, the problem of calculating P(BS|D) reduces to 
that of calculating P(BS,D).  

In order to estimate the above probability the following 
assumptions have to be made [29]. 
1. Variables are discrete and all are observed (i.e. there are 

no hidden variables). 
2. Database records (cases) occur independently, given a 

belief network model. 
3. There are no cases that have variables with missing 

values. 
4. The density function f(BSi|BSj) is uniform, i.e. the prior 

probabilities to place on a network structure BS is 
unconcerned.  

According to the notation used so far, suppose F be a set 
of m discrete variables, where a variable xi in F has ri 
possible value assignments: (vi1,…,viri). Let D be a database 
of n cases, where each case contains a value assignment for 
each variable in F. Let BS denote a network structure 
containing just the variables in F. Each variable xi in BS has 
a set of parents, represented as a list of variables πi. Let wij 
denote the jth unique instantiation of πi relative to D. 
Suppose there are qi such unique instantiations of πi. Let Nijk 
be defined as the number of cases in D in which variable xi 
has the value vik and πi is instantiated as wij. Nijk is calculated 
as: 

 (4) 

Then, given the assumptions outlined above, 

 (5) 

Equation 5 can be combined with Equation 4 to give a 
computable method of comparing the probabilities of two 
network structures, when given a database of cases for the 
variables in the structures. Since, by the third assumption 
listed above, the prior probabilities of all valid network 
structures are equal, P(BS) is a constant. Therefore, to 
maximize P(BS,D) just requires finding the set of parents for 
each node that maximizes the second inner product of 
Equation 5. The search strategy operates by initially 
assuming that a node has no parents, and then adding 
incrementally that parent whose addition most increases the 
probability of the resulting network. Parents are added 
greedily to a node until the addition of no one parent can 
increase the network structure probability. The function used 
in this procedure is taken from the second inner product of 
Equation 5: 

 (6) 

In a single iteration, an arc is added to node i from the 
node z that maximizes gain(xi,πi  {z}). If gain(xi,πi) > 
gain(xi,πi  {z}) then no arc is added. 

Upon creation of the structure, the time-consuming 
process of calculating the conditional probabilities is not 
needed, since the proposed methodology is basically focused 
on identifying the MB of the class node. Therefore, learning 
of the conditional probability table on the created Bayesian 
network is skipped and the process of identifying the MB of 
the class node within the network can be straightforwardly 
implemented by considering the set of parents, children and 
parents of children nodes of the class node. 
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V. DATA AND PREPROCESSING 
In order to investigate the usefulness and performance of 
Random Forests for the automatic identification of murmurs 
in heart sound signals, a global and representative heart 
sounds dataset has been created with heart sound signals 
from various different heart sound sources (educational 
audiocassettes, audio CDs, CD ROMs, files of existing heart 
sound databases, etc.), which are described in [8-10]. It 
includes heart sound signals acquired with various types of 
stethoscopes, sensors and filters, in various modes, subjects’ 
positions and auscultation areas, from subjects of various 
ages, heart conditions and medical treatments. This dataset is 
more ‘noisy’ and therefore more ‘difficult’ for the 
classifiers, than the more ‘homogeneous’ ones used by most 
similar studies, but it enables a more realistic investigation 
of classifiers’ performance in conditions better 
approximating the ‘real-life’ medical practice. For the 
purposes of the present study from this dataset we used 198 
heart sound signals: 38 normal heart sounds, 41 heart sound 
signals with AS systolic murmur, 43 ones with MR systolic 
murmur, 38 ones with a AR diastolic murmur and 38 signals 
with a MS diastolic murmur. Each of these heart sound 
signals had been diagnosed by a specialized cardiologist and 
classified to one of the above four basic heart valve diseases. 
Initially a pre-processing of these heart sounds was 
performed, in order to remove noise and extract features 
from them, which consisted of three phases. In the first 
phase the segmentation of the heart sound signal is 
performed, i.e. the cardiac cycles in every signal are detected 
by locating the S1 and S2 peaks. In the second phase, for 
each of the heart sounds produced in the first phase were 
calculated the standard deviation of the duration of all the 
heart cycles it includes, the standard deviation of the S1 peak 
values of all heart cycles, the standard deviation of the S2 
peak values of all heart cycles and the average heart rate; 
these values are the first four scalar features (F1-F4) of the 
feature vector of each heart sound signal. In the third phase, 
the rest of the features used for classification are extracted. 
For this purpose we calculated for each transformed heart 
sound signal two mean signals for each of the four structural 
components of the heart cycle, namely two signals for the 
S1, two for the systolic phase, two for the S2 and two for the 
diastolic phase. The first signal focused on the frequency 
characteristics and was calculated as the mean value of each 
component, after segmenting and extracting the heart cycle 
components, time warping them and aligning them. The 
second signal focused on the morphological time 
characteristics and was calculated as the mean value of the 
normalized average Shannon Energy Envelope of each 
component, after segmenting and extracting the heart cycles 
components, time warping them and aligning them. The 
second S1 mean signal is then divided into 8 equal parts, for 
each part the mean square value is calculated and the 
resulting 8 values are used as features (F5-F12). Similarly 24 
scalar features for the systolic period (F13-F36), 8 scalar 
features for S2 (F37-F44) and 48 scalar features for the 
diastolic period (F45-F92) were calculated. Finally the 
systolic and diastolic phase components of the first mean 
signal were passed from four band-pass filters: a) a 50–250 

Hz filter giving its low frequency content, b) a 100–300 Hz 
filter giving its medium frequency content, c) a 150–350 Hz 
filter giving its medium-high frequency content and d) a 
200–400 Hz filter giving its high frequency content. For 
each of these 8 outputs, the total energy was calculated and 
was used as a feature in the heart sound vector (F93-F100). 
The above pre-processing produced for each heart sound 
signal a feature vector consisting of 100 components. These 
feature vectors of our heart sound signals were used for the 
identification of murmurs using Random Forests described 
in the next section. 

VI. EXPERIMENTAL RESULTS 
In this section, we present the results of the application of 

the above proposed ensemble classification technique in a 
dataset consisted of 198 heart sound signals, which have 
been acquired from both healthy and pathological medical 
cases, having one of the following four most frequent heart 
valve diseases: aortic stenosis, mitral regurgitation, aortic 
regurgitation or mitral stenosis. It should be noted that the 
acquired heart sounds are affected significantly by several 
factors related to the acquisition method, such as the type of 
stethoscope used, the type of sensor that the stethoscope has 
(e.g. microphone, piezoelectric film, etc.), the stethoscope 
use mode (e.g. bell, diaphragm, extended), the filtering 
applied to the heart sound signals (e.g. anti-tremor filter, 
respiratory sound reduction filter, etc.), the way the 
stethoscope is pressed on the patients skin (firmly or 
loosely), the patient's position (e.g. supine position, standing, 
squatting), the auscultation areas (i.e. apex, lower left sternal 
border, pulmonic area, aortic area), the medicines that the 
patient is taking, etc. These factors cannot be controlled in 
the everyday medical practice, and this adds high levels of 
noise to the acquired heart noise signals (i.e. generates 
additional components), making the detection of various 
heart diseases and pathological conditions from these heart 
sound signals even more difficult. Therefore an effective 
system for the diagnosis of heart diseases from heart sounds 
should cope with this problem. So, in order to make our 
research more realistic, we decided the above dataset, which 
we used both for constructing the classifiers and for testing 
them, to be a ‘global’ and representative one, consisting of 
‘heterogeneous’ heart sounds recorded with different 
acquisition methods and different values of the above 
factors. Such a dataset is much more ‘difficult’ for the 
classifiers than a ‘homogeneous’ one (in which all heart 
sound have been recorded using the same acquisition 
method and values of the above factors), however it enables 
a more realistic investigation of classifiers’ construction and 
performance. Using the 10-fold cross validation method on 
the aforementioned dataset, the classification performance of 
the proposed Markov Blanket Random Forests is compared 
against the classification performance of traditional Random 
Input and Random Combination Forests, C4.5 Decision 
Trees, Naïve Bayes, Radial Basis Function Neural 
Networks, K-Nearest Neighbor (KNN) and Support Vector 
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Machines (SVM). For each heart sound of this dataset a 
preprocessing was performed resulting in a feature vector 
consisting of 100 components. The preprocessing method is 
described in [19]. 

We have categorized the experimental results as follows:  
(a) Initially, the classifier distinguishes normal (NRM) 

from sick (SCK) records.  
(b) Those instances that belong to the unhealthy class are 

further classified according to whether they belong to the 
systolic (STL) or diastolic (DTL) class.  

(c) Finally, for each of the aforementioned classes, the 
classifier identifies between either Aortic Stenosis (AS) or 
Mitral Regugritation (MR) cases and between either Aortic 
Regugritation (AR) or Mitral Stenosis (MS). 

A. Distinguishing between healthy and unhealthy 
examples 
From a medical expert’s perspective, the accuracy of a 

predictive model in this situation is of major importance, 
since a misclassification of a sick case as healthy could be 
fatal for a patient. Thus, the desired classification 
performance is as high as possible. In the Table 1, results of 
MBRF are tabulated against all other methodologies 
described earlier. RF are generally performing better than 
other approaches, while MBRF portray better performance 
than the other two RF implementations in a scale of 4%-
5.3%. The other classifiers depict rather poor performances. 

 
Table 1. Comparison of selected classifiers for Healthy-

Unhealthy data 

Methodology 
%Accuracy 
(Healthy-

Unhealthy) 
Markov Blanket Random Forests (MBRF) 90.22% 
Random Input Forests (RIF) 86.15% 
Random Combination Forests (RCF) 84.04% 
C4.5 Decision Trees (C45) 75,38% 
Naïve Bayesian Classifier (NB) 72,31% 
Radial Basis Functions (RBF) 77,45% 
K-Nearest Neighbor (KNN) 81,53% 
Support Vector Machines (SVM) 78.46% 

B. Distinguishing between systolic and diastolic murmurs 
Since a patient is found to suffer from heart disease, a 

distinction with regards to the nature of the heart pulse is of 
great importance. Thus, we evaluate the set of machine 
learning algorithms, including the MBRF, in an attempt to 
classify heart murmurs as systolic or diastolic. Table 2 
summarizes the percentage of correctly classified instances. 
The difference of MBRF from all other RF implementations 
is between 5.5% and 6.3% while the difference from other 
algorithms surpasses 27% in certain cases. This significant 
variation could be attributed to the elimination of noisy 
features from the Random Trees, due to the presence of the 
Markov Blanket of the class, at each tree learning step. 

 
Table 2. Comparison of selected classifiers for Systolic-Diastolic 

data 

Methodology % Accuracy  
(S-D) 

Markov Blanket Random Forests 
(MBRF) 

98.67% 

Random Input Forests (RIF) 93.12% 
Random Combination Forests (RCF) 92.32% 
C4.5 Decision Trees (C45) 87.53% 
Naïve Bayesian Classifier (NB) 71.87% 
Radial Basis Functions (RBF) 80.76% 
K-Nearest Neighbor (KNN) 79.37% 
Support Vector Machines (SVM) 83.74% 

C. Distinguishing between AR-MS and AS-MR diseases 
The final round of experimental evaluations focuses on 

classifying the types of heart diseases, according to the type 
of heart pulse. Note that when the heart pulse is diastolic, the 
patient could either suffer from either aortic regugritation 
(AR) or mitral stenosis (MS). Accordingly, when a patient’s 
heart pulse is systolic, the disease is either aortic stenosis 
(AS) or mitral regugritation (MR).  

As regards to the former case, results are tabulated in 
Table 3. MBRF is again the most efficient classifier and 
outperforms all other approaches. The classification 
accuracy reaches 92.45% while other RF variations present 
lower results by a factor of 1.67% and 2.8%.   

 
Table 3. Comparison of selected classifiers for AR-MS Diastolic 

data 

Methodology % Accuracy 
(D, AR-MS) 

Markov Blanket Random Forests 
(MBRF) 

92.45% 

Random Input Forests (RIF) 90.78% 
Random Combination Forests (RCF) 89.65% 
C4.5 Decision Trees (C45) 75% 
Naïve Bayesian Classifier (NB) 84.21% 
Radial Basis Functions (RBF) 67.10% 
K-Nearest Neighbor (KNN) 86.84% 
Support Vector Machines (SVM) 89.47% 
 
As regards to the latter case (Table 4), for the first time 

KNN and MBRF are portraying similar accuracy. This is 
acceptable as KNN have previously referred as good 
classifiers for the AR-MS problem. Nevertheless, MBRF are 
still better classifiers than other RF implementations.  

 
Table 4. Comparison of selected classifiers for AS-MR Systolic data 

Methodology % Accurcay 
(S,AS-RM) 

Markov Blanket Random Forests (MBRF) 90.34% 
Random Input Forests (RIF) 86.90% 
Random Combination Forests (RCF) 85.33% 
C4.5 Decision Trees (C45) 86.90% 
Naïve Bayesian Classifier (NB) 62.10% 
Radial Basis Functions (RBF) 80.95% 
K-Nearest Neighbor (KNN) 90.47% 
Support Vector Machines (SVM) 79.76% 
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VII. CONCLUSION 
A novel ensemble classification technique was presented, 
extending the traditional RF implementations with ‘Markov 
Blanket’, which has been used for the automated diagnosis 
of aortic and mitral heart valves diseases from low cost and 
easily acquired heart sound signals.  

A first application in a global and heterogeneous dataset 
of 198 heart sound signals, which have been acquired from 
both healthy and pathological medical cases having one of 
the most frequent heart valve diseases (aortic stenosis, mitral 
regurgitation, aortic regurgitation or mitral stenosis) gave 
encouraging results, taking into account the high levels of 
noise that such a heterogeneity in acquisition method and 
conditions adds, and the difficulties this creates for 
diagnosis. Furthermore, the proposed ensemble classification 
technique exhibited a higher classification performance than 
the traditional RF algorithms, and also other, widely used 
classifiers. This can be attributed to the incorporation of the 
Markov-Blanket, thus suppressing poorly-correlated trees.  

The above preliminary results provide some first evidence 
of the potential of RF in general, and the proposed extension 
of them based on ‘Markov Blankets’ in particular, for 
automated medical diagnosis, and for incorporation in 
‘intelligent’ medical equipment, which can not only acquire 
various signals from the human body, but also process them 
and provide recommendations as to probable pathological 
conditions. Further research is required for validation of this 
potential in other medical problems using various types of 
signals from the human body and improvement of the 
proposed technique. 

REFERENCES 
[1] Cathers I.: Neural network assisted cardiac auscultation. Artificial 

Intelligence in Medicine, February 1995, Volume 7, Issue 1, pp. 53-
66. 

[2] Wu C. H., Lo C. W., Wang J. F.: Computer-aided analysis of 
classification of heart sounds based on neural networks and time 
analysis. In Proceedings of the IEEE International Conference on 
Acoustics, Speech and Signals Processing (ICASSP) 1995, 5, pp. 
4355-3458. 

[3] Wu C. H.: On the analysis and classification of heart sounds based on 
segmental Bayesian networks and time analysis. Journal of the 
Chinese Institute of Electrical Engineering - Transactions of the 
Chinese Institute of Engineers, Series E November 1997, 4(4), pp. 
343-350. 

[4] Leung T. S., White P. R., Collis W. B., Brown E., Salmon A. P.: 
Classification of heart sounds using time-frequency method and 
artificial neural networks. In Proceedings of the 22nd Annual 
International Conference of the IEEE Engineering in Medicine and 
Biology Society 2000, 2:988-991. 

[5]  Nakamitsu T., Shino H., Kotani T., Yana K., Harada K., Sudoh J., 
Harasawa E., Itoh H.: Detection and classification of systolic murmur 
using a neural network. In Proceeding of the 15th IEEE Southern 
Biomedical Engineering Conference March 1996, pp. 365-366. 

[6] Leung T. S., White P. R., Collis W. B., Brown E., Salmon A. P.: 
Analysing paediatric heart murmurs with discriminant analysis. In 
Proceedings of the 19th Annual conference of the IEEE Engineering 
in Medicine and Biology Society, Hong Kong 1998, pp. 1628-1631. 

[7] DeGroff C., Bhatikar S., Mahajan R.: A classifier based on the 
artificial neural network approach for cardiologic auscultation in 
pediatrics. Artificial Intelligence in Medicine 2005, 33, pp. 251-260.  

[8] De Vos J. P., Blanckenberg M. M. Automated pediatric cardiac 
auscultation. IEEE Transactions on Biomedical Engineering February 
2007, 54(2), pp. 244-252. 

[9] Xuesong Y., Qiang C. Yuquan C.: Noninvasive detection of coronary 
artery disease based on heart sounds. In Proceedings of the 20th 
Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society 29 Oct. – 1 Nov.1998, 3, pp. 1546-1548.  

[10] Tateishi O.: Clinical significance of the acoustic detection of coronary 
artery stenosis. Journal of Cardiology November 2001, 38(5),  pp. 
255-262. 

[11] Nygaard H., Thuesen L., Hasenkam J. M., Pedersen E. M., Paulsen P. 
K.: Assessing the severity of aortic valve stenosis by spectral analysis 
of cardiac murmurs (spectral vibrocardiography). Part I: Technical 
aspects. Journal of Heart Valve Disease July 1993, 2(4), pp. 454-67.  

[12]  Hebden J. E, Torry J. N: Identification of Aortic Stenosis and Mitral 
Regurgitation by Heart Sound Analysis. Computers in Cardiology 
1997, 24, pp. 109-112. 

[13] Brusco M., Nazeran H.: Development of an Intelligent PDA-based 
Wearable Digital Phonocardiograph. In Proceedings of the 2005 IEEE 
Engineering in Medicine and Biology 27th Annual Conference 2005, 
4, pp. 3506-3509. 

[14] Herold J., Schroeder R., Nasticzky F., Baier V., Mix A., Huebner T., 
Voss A.: Diagnosing aortic valve stenosis by correlation analysis of 
wavelet filtered heart sounds. Medical and Biological Engineering and 
Computing 2005, 43, pp. 451-456. 

[15] Voss A., Mix A., Huebner T.: Diagnosing Aortic Valve Stenosis by 
Parameter Extraction of Heart Sound Signals. Annals of Biomedical 
Engineering September 2005, 33(9), pp. 1167-1174. 

[16] Higuchi K., Sato K., Makuuchi H., Furuse A., Takamoto S., Takeda 
H. Automated diagnosis of heart disease in patients with heart 
murmurs: application of a neural network technique. Journal of 
Medical Engineering and Technology 2006 March-April, 30(2), pp. 
61-68. 

[17] Ahlstrom C., Hult P., Rask P., Karlsson J. E., Nylander E., Dahlstrom 
U., Ask P. Feature extraction for systolic heart murmur classification. 
Annals of Biomedical Engineering 2006 November, 34(11), pp. 1666-
77. 

[18] Pavlopoulos S., Stasis A., Loukis E.: A decision tree – based method 
for the differential diagnosis of Aortic Stenosis from Mitral 
Regurgitation using heart sounds. BioMedical Engineering OnLine, 
June 2004. 

[19] Stasis, A., Loukis, E., Pavlopoulos, S., Koutsouris, D.: A multiple 
decision trees architecture for medical diagnosis: The differentiation 
of opening snap, second heart sound split and third heart sound. 
Computational Management Science, Springer Verlag, Autumn 2004, 
pp. 245-274. 

[20] Maglogiannis, I., Loukis, E., Zafiropoulos, E., Stasis, A., Support 
Vectors Machine based Identification of Heart Valve Diseases Using 
Heart Sounds. Computer Methods and Programs in Biomedicine, 
Volume 95, Issue 1, July 2009, pp. 47-61 . 

[21] Chauhan, S., Wang, P., Lim, C. S., Anantharaman, V.: A Computer 
Aided MFCC based HMM system for automatic auscultation. 
Computers in Biology and Medicine 2008, Volume 38(2), pp. 221-
233. 

[22] Breiman, L.:  Random forests. Machine Learning Journal, 45(1), 
2001, pp.5-32. 

[23] Díaz-Uriarte,R. and  de Andrés,S.A: Gene selection and classification 
of microarray data using random forest. BMC Bioinformatics, 7,3. 
2006. 

[24] Dudoit, S: Comparison of discrimination methods for the 
classification of tumors using gene expression data. J. Am. Stat. 
Assoc., 97, 2002, pp.77–87. 

[25] Lee, J.W:  An extensive evaluation of recent classification tools 
applied to microarray data. Comput. Stat. Data Anal., 48, 2005, pp. 
869–885. 

[26] Freund, Y., Shapire, R. E.: Experiments with a new boosting 
algorithm. In Lorenza Saitta (Editor), Machine Learning: Proceedings 
of the Thirteenth International Conference (ICML96). Morgan 
Kaufmann, 1996. 

[27] Heckerman, D., Geiger, D., Chickering, D. M.: Learning Bayesian 
networks: the Combination of knowledge and statistical data. Machine 
Learning, 20, 1995, pp. 197–243. 

[28] Cooper, G., Herskovits, E.: A Bayesian Method for the Induction of 
Probabilistic Networks from Data, Machine Learning, 9, 1992, pp. 
309-347. 

[29] Pearl, J. Probabilistic Reasoning in Intelligent Systems, Morgan 
Kaufmann, 1988. 

273


