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Abstract 
This paper studies path delay fault testing of Omega 

Multistage Interconnection Networks (MINs). Taking 
advantage of the MIN’s parallelism, we show that although 
the number of physical paths is O(n2), all these paths can 
be tested optimally for path delay faults applying O(n) test 
vector pairs. Having derived the test set, we also show how 
the test set application as well as the response verification 
can be done either by a dedicated low – cost tester or on-
line using the system resources. 
 
I. Introduction 

Many kinds of MINs have been proposed and built for 
use in massively parallel computers [1, 2]. In this paper we 
consider Omega MINs with centralized control. 

Testing of MINs has been widely considered with re-
spect to the state stuck-at fault model, the link fault model 
and the switch fault model, for example [3, 4]. However, 
physical defects in integrated circuits can degrade circuit 
performance without altering their logic functionality. 
Apart from this, increasing performance requirements of 
the contemporary VLSI circuits makes it difficult to design 
them with large timing margins. Thus imprecise delay mo-
deling and the statistical variations of the parameters 
during the manufacturing process may result in circuits 
with longer than the expected delays. The change in the ti-
ming behavior of the circuit in this paper is modeled acco-
rding to the path delay fault model under which a path is 
declared faulty if it fails to propagate a transition from the 
path input to the path output within a specified time inter-
val [5]. The path delay fault model, since it captures the 
cumulative effect of small delay variations in gates along a 
path as well as the faults caused by a single gate, is deemed 
to be the most general among all delay fault models.  

Two major problems discourage the use of the path 
delay fault model. The first is that only a very small subset 
of the paths of a design can be robustly tested for path 
delay faults (under either the stringent Single Path 
Propagating Hazard Free or the more relaxed Validatable 
Robustly Testable limitations). In this paper since we 
consider that each switch of the MIN is implemented by 
multiplexers, a robust two pattern test for each path can be 
derived [6]. The second problem is that the number of 
physical paths in a contemporary IC is excessively large 
for testing every path. Usually, a subset of the physical 

paths is selected for path delay fault testing based either on 
their propagation delay or on functional approaches [7]. 
However the number of paths selected by both methods is 
so large in general that all the selected paths cannot be 
tested, especially in performance optimized circuits [8]. 
This is especially true in the case of Omega MINs where 
most of the physical paths are of critical delay. To this end, 
by taking advantage of the parallelism of the MIN, we 
show that although the number of physical paths is O(n2), 
all these paths can be tested optimally for path delay faults 
applying O(n) test vector pairs.  

In this paper we consider nxn Omega MINs, with n=2k, 
implemented as a set of b/M M-bit slices [9], where b is 
the size of the bus of each source and destination 
connected by the network, 1≤M≤b and each slice has 
been implemented as a VLSI chip. For M = b the network 
has been implemented on a single chip (probably on a 
single wafer). In this paper, apart from deriving an optimal 
test set, we will also present : a) a low-cost tester for 
production testing of the MIN and b) the way that  this test 
set can be applied to the MIN and how its responses are 
verified on-line.  

 
II. Preliminaries 

A physical path of a circuit is an alternating sequence 
of gates and lines leading from a primary input to a 
primary output of the circuit. In delay fault test generation 
we associate two logical  paths  with  each  physical  path. 
A logical  path is a pair (T, p)  with T = x  →  x and x 
∈{0, 1}, being a transition at the input of p. In the case of 
delay fault testing the test set consists of pairs of vectors. 
The cardinality of the test set, that is, the number of pairs 
of vectors depends on the number of the paths that must be 
tested and the percentage of the paths that can be tested in 
parallel. Throughout the paper the term test session is used 
to denote the application of a test vector pair.  

An Omega MIN is constructed from N=log2n stages of 
switches, where each of the stages has (n/2) 2x2 switches. 
The switch stages are labeled from 1 to N. We consider 
that the source and destination nodes constitute the stages 
0 and N+1, respectively. The interconnection pattern 
between adjacent stages is the perfect shuffle permutation 
[10]. This holds for all pairs of stages except N and N+1. 
Figure 1 shows an 8x8 Omega MIN. A conflict of the MIN 
appears when any two sources are trying to set a switch of 



the network in complementary states. 

0      0

1      1

S0

Source Destination

stage 1 stage 2 stage 3

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

0      0

1      1

c1,1

stage 4stage 0

c1,2

c1,3

c2,2

c2,1 c3,1

c1,4

c3,2

c3,3

c2,4

c2,3

c3,4

S1

S2

S3

S4

S5

S6

S7

D0

D1

D2

D3

D4

D5

D6

D7

 
Figure 1. 8x8 Omega Network 
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Figure 2. 
Each switch S, (Figure 2.a) has a pair of input data 

buses X0, X1, a pair of output data buses Y0, Y1 and a 
control signal c. All four buses are unidirectional and 
identical in size. The two states of the switch S are 
determined by the control line c as follows: the direct state 
(Figure 2.b), where the values of X0, X1 are propagated to 
Y0, Y1 respectively, and a cross state (Figure 2.c), where 
the values of X0, X1 are propagated to Y1, Y0 respectively. 
The upper input and output are labeled with 0 while the 
lower are labeled with 1. Each switch is constructed from 
2M 2->1 multiplexers, where M is the size of the buses. 
Each pair of multiplexers, (Figure 2.d), accepts two lines 
of X0, X1 buses, the control signal c and drives the 
corresponding lines of buses Y0, Y1. 

Without loss of generality we consider that each link is 
a single virtual line, that may actually represent either one 
physical line or a physical bus. For testing purposes any 
value of the virtual line is always applied to every line of 
the physical bus that it may represent. Paths along the MIN 
are formed by concatenation of subpaths along links and 
subpaths through switches of the MIN as well as by 
subpaths sourcing from the control signals. We will 
hereafter present the analysis based on virtual lines (or 

simply lines). The analysis will be valid for all M lines of 
the bus. We note that to every virtual path or line 
correspond two logical virtual paths. 

In an nxn Omega MIN we distinguish the paths in two 
sets: those not including subpaths sourcing from a control 
input and those which do. Since the connections of sources 
to destinations change dynamically during system 
operation, delays that stem from the control signals are 
also significant. Let P be the set consisting of all virtual 
paths starting from any source and ending at any 
destination. Since there are n sources and there is only one 
path from one of them to all the destinations, the number 
of all possible virtual paths is n2. That is the cardinality of 
P, denoted P, is P = n2. 
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Figure 3. 
Let L be the set consisting of all paths starting from the 

control input of a switch and ending at any destination. 
Figures 3.a and 3.b present the subpaths from the control 
input of a switch through two of its 2M multiplexers for 
X0i=0 and X1i=1 and for X0i=1 and X1i=0. Since the 
transition, during delay testing, propagates from the 
control input through 2M multiplexers and along the lines 
of the bus, in this case we refer also to virtual paths. For 
computing the number of the virtual paths starting from a 
control input we observe that at every stage the control 
input of a switch can be seen as the root of two full binary 
trees having the destinations as leaves. Each  such  tree  
has a depth of N-i+1, where i is the  number of the  stage 
and i∈{1, 2, ..., N}. The latter means that every such tree 
has 2N-i+1 leaves which is also the number of virtual paths. 
Since each stage has n/2 switches and each switch is the 
root of two trees, there are 2*(n/2)*2N-i+1 virtual paths 
starting from each stage's control inputs. Thus the 
cardinality of L is equal to the sum of the virtual paths 
starting from every control input, which is:   

L = ∑
=

+−N

i

iNn
1

12
2

2  = 2
2
n 2(2N-1) = 2n(n-1) 

Therefore the total number of virtual paths is equal to: P 
+ L = 3n2 - 2n and the number of all logical virtual paths 
is: LV = 2(3n2 - 2n). The number of physical lines is 
equal to M(3n2 - 2n), however the propagation delays 
along the M lines of the bus are measured in parallel. Note 
that every physical path is sensitizable. 

Although the number of the virtual paths of an nxn 
Omega network is O(n2) we will show in the next section 



that due to the inherent parallelism of the network testing 
along various paths can be done in parallel. 

 
III. Parallel path delay fault testing 

It is well known that in an Omega network when the 
control inputs get a set of values each source is connected 
to a different destination. Throughout this section we 
consider that all control inputs of stage i, for i=1, 2, ..., N, 
of the Omega network take the same value ci. Changing the 
value of the control inputs of a stage i the switches of this 
stage alternate between the two states of Figures 2.b and 
2.c, and all paths from sources to destinations change. 
Then taking into account that in the Omega network only 
one path exists from a specific source to a specific 
destination we conclude that for the two sets of values 
c1c2...cN and of c1'c2'...cN', with c1c2...cN ≠ c1'c2'...cN', a 
common path from the source to destination in both 
configurations of the network does not exist. Therefore,  
applying to c1c2...cN all possible values, that is 2N different 
values, we ensure that each source has been connected to 
each destination. A feature of the Omega network is that 
every source can be connected to every destination. Since 
we have n destinations we conclude that at least n value 
combinations of the control signals are necessary so that 
each source gets connected to each destination. From the 
above discussion we conclude that 2N is the least number 
of configurations that ensures that all possible paths from 
sources to destinations have been established. For each 
configuration, that is a value of c1c2...cN, the delays along n 
virtual paths can be measured, hence 2*2N test sessions are 
required in order to measure the delays along all logical 
virtual paths from sources to destinations. Let Tp denote 
the number of test sessions required to measure the delays 
along all paths from sources to destinations. Then :                                       
Tp = 2*2N = 2n (1) 

At every stage i a control input can be seen as a root of 
two full binary trees having the destinations as leaves. 
Every such tree has 2N-i+1 virtual paths from the root to the 
leaves, as discussed earlier. For any value of ci+1ci+2...cN 
two paths starting from the control input of each switch of 
the stage i get established, which means that 2*n/2 virtual 
paths starting from the control inputs can be tested in 
parallel. Since two trees each one with 2N-i+1 virtual  paths 
correspond to each  switch of the stage i, we conclude  that 
2 * 2 * 2N-i+1 / 2 test sessions are required for testing the 
logical virtual paths starting from a control input of stage i. 
Taking into account that i=1, 2, ..., N we get that the total 
number of test sessions TL for measuring the propagation 
delays along the virtual paths starting from control inputs 

are: TL = 2 * ∑
=

+−N

i

iN

1

12  = 4(2N-1) = 4(n-1) (2) 

From relations (1) and (2) we get: Tp + TL = 2(3n-2). 
Therefore, while the number of virtual paths of a nxn 

Omega network is O(n2) we have shown that the number of 

the required test sessions is O(n). In a circuit with n 
outputs the maximum number of paths that can be tested in 
parallel is equal to n. Then taking into account that the 
number of all logical virtual paths of the nxn Omega 
network is equal to 2(3n2-2n) and the fact that 2(3n-2) test 
sessions are required we conclude that this is the optimal 
number of test sessions required to test all possible paths. 
Table 1. Test vectors for the P paths of the 8x8 Omega network. 

 S0S1S2S3S4S5S6S7 c1c2c3 S0S1S2S3S4S5S6S7 c1c2c3 
 T T T T T T T T* 0 0 0 T T T T T T T T 1 0 0 
P T T T T T T T T 0 0 1 T T T T T T T T 1 0 1 
 T T T T T T T T 0 1 0 T T T T T T T T 1 1 0 
 T T T T T T T T 0 1 1 T T T T T T T T 1 1 1 

*T denotes a 0->1 and a 1->0 transition. 
Table 2. Test set for the L paths of the 8x8 Omega network. 
 S0S1S2S3S4S5S6S7 c1c2c3 S0S1S2S3S4S5S6S7 c1c2c3 
 0 1 0 1 0 1 0 1 0 0 T 1 0 1 0 1 0 1 0 0 0 T 
 0 0 1 1 0 0 1 1 0 T 0 1 1 0 0 1 1 0 0 0 T 0 
 0 0 1 1 0 0 1 1 0 T 1 1 1 0 0 1 1 0 0 0 T 1 
L 0 0 0 0 1 1 1 1 T 0 0 1 1 1 1 0 0 0 0 T 0 0 
 0 0 0 0 1 1 1 1 T 0 1 1 1 1 1 0 0 0 0 T 0 1 
 0 0 0 0 1 1 1 1 T 1 0 1 1 1 1 0 0 0 0 T 1 0 
 0 0 0 0 1 1 1 1 T 1 1 1 1 1 1 0 0 0 0 T 1 1 
Table 1 presents a test set suitable for parallel path 

delay fault testing of P paths for the MIN of Figure 1. As 
can been seen from this table, for testing the paths of P, we 
need to apply both 0->1 and 1->0 transitions at every 
source for every value of the control inputs. For the paths 
of set L, we need to apply complementary vectors at the 
sources, for every transition required at the control inputs. 
There exist many distinct sets of test vector pairs that can 
be used for path delay testing of the paths belonging to L 
(such a possible test set is presented in Table 2). From 
Table 2 we can easily see that the number of distinct test 
vectors that must be applied to the source inputs of the 
network is six. For large networks this number can be very 
large. Reducing the number of distinct source inputs, 
during the testing of L paths simplifies both the on-line 
testing of the network using resources of the system as well 
as the application of the test set during production testing. 

To this end, we introduce a test set consisting only of 
two complementary vectors for the source inputs no matter 
what the size of the MIN is. The derivation of one of the 
vectors of the proposed test set can be done according to 
the following rules:  
Rule 1. For the 4x4 Omega MIN the test vector is 0 1 1 0. 
Rule 2. Recursively calculate the test vector v of the nxn 
Omega MIN from the test vector u of the (n/2) x (n/2) 
MIN by using the following : vi = ui and vi+(n/2) = iu , for i = 
0, 1, 2, …, (n/2) – 1. 
Table 3 presents the outcome of the application of these 
rules to an 8x8 MIN. 

By applying the proposed test vectors at the inputs of 
the MIN we assure that each stage of switches receives at 



its inputs, ordered from top to bottom, either the applied 
test vector or its complementary (the proof is omitted due 
to space limitations). 

Table 3. Test set for the L paths of the 8x8 Omega network. 
 S0S1S2S3S4S5S6S7 c1c2c3 S0S1S2S3S4S5S6S7 c1c2c3 
 0 1 1 0 1 0 0 1 0 1 T 1 0 0 1 0 1 1 0 0 1 T 
 0 1 1 0 1 0 0 1 1 T 0 1 0 0 1 0 1 1 0 1 T 0 
 0 1 1 0 1 0 0 1 1 T 1 1 0 0 1 0 1 1 0 1 T 1 
L 0 1 1 0 1 0 0 1 T 0 0 1 0 0 1 0 1 1 0 T 0 0 
 0 1 1 0 1 0 0 1 T 0 1 1 0 0 1 0 1 1 0 T 0 1 
 0 1 1 0 1 0 0 1 T 1 0 1 0 0 1 0 1 1 0 T 1 0 
 0 1 1 0 1 0 0 1 T 1 1 1 0 0 1 0 1 1 0 T 1 1 

 
IV. Low-cost Tester.  

For production testing of the MIN we introduce a low-
cost tester. This will be comprised of : a) an up-down log2n 
bit Gray counter, b) n*M T flip-flops, c) 2*n*M D flip-
flops, d) a 2*n*M input 2-rail checker tree and e) some 
additional logic for controlling the components of the 
tester. The tester is fed with a clock frequency f. 

The block diagram of the tester is depicted in Figure 4. 
The outputs of the Gray counter drive the control signals 
of the MIN. Each MIN source is driven by one of the T 
flip-flops. The T flip-flops are used in order to produce 
one of the two complementary test vectors presented in 
Section III. Each output of the MIN drives two D flip-flops 
as shown in Figure 5. The flip-flop outputs are driven to a 
tree of 2-rail checkers. When the MIN operates correctly at 
speed, the outputs of this checker are at complementary 
values.  

For testing the paths of set P, the Gray counter and the 
D flip-flops are reset. The T flip-flops are driven by f, 
while the Gray counter is driven by a clock with frequency 
f/5. We assume that each new cycle begins with every 
rising edge of f. During the 5 cycles that the Gray counter 
is stable the following take place (see Figure 6) : the first 
cycle is used to set the MIN to a new configuration. At the 
next cycle the first test vector is applied to the inputs of the 
MIN. The complementary and the original test vector are 
applied at the start of the third and the fourth cycles 
respectively and the responses of the MIN are captured by 
the D flip-flops. The fifth cycle is utilized for capturing the 
response of the MIN to the test vector applied during the 
fourth cycle. The 2-rail checker is enabled at the middle of 
the fourth and the fifth cycles. The procedure is repeated 
until the Gray counter passes from all its states counting 
upwards. 

For testing the paths of set L, the first of the 
complementary vectors is applied to the MIN inputs. The 
Gray counter changes values every two cycles (suppose 
first and second cycle). The counter is permitted to go 
through all of its states in both up and down direction. 
Then the second vector is applied and the counting 
procedure is repeated. The responses are captured at the 

start of each second cycle and verified at the middle of it 
by the 2-rail checker as shown in Figure 7. 

The above described low-cost tester was designed and 
its correct function was verified by simulation. 
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Figure 4. The dedicated tester 
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Figure 6. Test scheme for testing the paths of set P 
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Figure 7. Test scheme for testing the paths of set L 

 
V. On line testing. 

We consider that the MIN is used for interconnecting 
processors that are synchronized by a common clock. The 
communication among the processors is established after 
requests towards the centralized control. Once the 
centralized control configures the MIN, the processors can 
exchange data. If the centralized control circuit can not 
establish a requested configuration (for example when two 
sources request communication with the same destination) 
it will use some priority scheme for serving some of the 
requests and it will signal inability to the rest sources. 
During a data transfer all the control signals are stable (i.e. 
the MIN remains at a fixed configuration). We further 
assume that the configuration is stable when there are no 



new requests. The processors have different input and 
output buffered ports.  

We assume that the communication scheme is 
performed by: 
Step 1. The start of the communication is indicated by a 
rising edge of the clock. At that moment each processor 
places its data on the output buffer and sends a request to 
the centralized control. 
Step 2. At the next rising edge the centralized control sets 
the MIN to the appropriate configuration and the 
processors are notified if they should proceed with 
transmission or reception of data.  
Step 3. At each subsequent rising edge of the clock, each 
processor can send or receive a word or both, by enabling 
its corresponding buffers. 
We assume that all buffers are of equal size and a 
communication session terminates when all buffers are 
empty.  

Under these assumptions the application of the derived 
test set and the verification of the responses can be done in 
system environment as follows : 
a) For the pairs of vectors that test the paths of set P each 

source's transmission buffer is filled with the test 
vectors that will activate the two desired transitions.  

b) The processors send requests that will not cause any 
conflict in the MIN. We will present a procedure that 
ensures conflict free configurations of the MIN below. 

c) The paths are considered fault free when the transition 
is identified one clock period after the data are placed 
on the inputs of the MIN. This check is performed by 
verifying the contents of the input buffer of each 
processor after the end of a communication session.  

d) In order to test the paths of set L we start a 
communication session which will transmit one of the 
test vectors mentioned above over the MIN. This 
communication session will set the control signals of the 
MIN to a known state which will be stable until the next 
requests issued by the processors.  

e) At the next communication session the requests issued 
by the processors cause the required transition of the 
control signals of the considered stage. The transition is 
observed at the outputs of the MIN at the rising edge of 
the clock one clock period after the MIN is set. Again 
the path is declared fault free after the verification of the 
contents of each processors' input buffer. 
For achieving conflict free configurations of the MIN, 

all sources simulate an up-down Gray counter. The outputs 
of the simulated counters are used by each source for 
computing the address of the desired destination in order 
to issue a request to the centralized control unit. All the 
simulated counters must be reset and advanced to a new 
value simultaneously. Every time the simulated counter 
produces a new value, each source executes a procedure 
with inputs the new value of the counter and the source's 

label. Such a procedure based on the perfect shuffle 
permutation is presented below. Let src, dest denote the 
binary representations of the labels of the source and the 
targeted destination processors respectively. Let ci be the i-
th bit of the simulated Gray counter The proposed 
procedure is composed of the following steps : 
Step 1 : Set dest = src. 
Step 2 : Set i = 1. 
Step 3 : Perform the perfect shuffle permutation on dest 
(binary rotation). 
Step 4 : If ci = 0 go to Step 6. 
Step 5 : If the LSB of dest is 0 then set dest = dest + 1 else 
set dest = dest - 1. 
Step 6 : Set i = i + 1. 
Step 7 : If i ≤ log2n then go to Step 3 else end. 

 
VI. Conclusions 

In this work we studied path delay fault testing of 
Omega MINs. The contributions of this work are : 
a) We have shown, by taking advantage of the MIN 

parallelism, that the O(n2) physical paths of the MIN 
can be tested optimally by O(n) test vector pairs. 

b) We have derived an optimal test set for parallel path 
delay fault testing of the MIN. 

c) We have shown how the application of the test set as 
well as the verification of the MIN can be done either 
off-line by a dedicated low – cost tester or on-line using 
the system resources. 
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