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This paper presents a privacy preserving protocol for the computation of a Radial Basis Function 

(RBF) neural network model between N participants which share horizontally partitioned datasets. 

The RBF model is used for regression analysis tasks. The novel aspect of the proposed protocol lies 

to the fact that it assumes a malicious user model and does not use homomorphic cryptographic 

methods, which are inherently only suited for a semi-trusted user environment. The performance 

analysis shows that the communication overhead is low enough to warranty its use while the 

computational complexity is identical in most cases with the centralized computation scenario (e.g. a 

trusted third party). The accuracy of the output model is only marginally subpar to a centralized 

computation on the union of all datasets. 

Keywords: Privacy preserving data mining; radial basis function neural networks. 

1. Introduction

Classification and Regression belong to a fundamental analytical modeling family of 

Machine Learning concepts, aiming at predicting the value of a single nominal (for 

Classification) or continuous (for Regression) attribute, based on the values of other, 

known, variables. Examples of the aforementioned tasks include the probability 

estimation of a new, unseen email to belong to the spam category, the forecasting of the 

price of a stock market, a diagnosis of a certain disease based on the values of a medical 

test result, etc.  

A certain sub-category of Classification and Regression deal with problems that are 

not linearly separated, thus more advanced practices are required in order capture 

nonlinear patterns within data. One of the most common practices towards this direction 

is the introduction of kernel methods, in which data are mapped into higher dimensions, 

anticipating that there they will exhibit linear patterns. Mapping is a common expression 

denoting the changing of feature representation. 

http://dx.doi.org/10.1142/S0218213014500079
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 (a)      (b) 

Fig. 1.    (Color online) A sample dataset where classes are: (a) non linearly separable and (b) after a kernel trick 

they become linearly separable in a new feature dimensionality. 

 

Consider, for example, the dataset of Fig. 1(a). Each example is defined by a two-

feature vector x = {x1, x2} and a class label of either blue x or red circle. Clearly, there is 

no linear separator exists for this data. If one introduces a kernel function that maps each 

initial example x = {x1, x2} to { }2 2
1 1 2 2, 2 , ,z x x x x=  then data becomes linearly separable 

in the new representation (Fig. 1(b)). 

One of the most known kernel functions is the radial basis function (RBF), which is 

commonly used in a variety of classifiers, including the homonym RBF neural network as 

well as Support Vector Machines (SVM). RBF neural networks have a straightforward 

topology, there are easy to implement and have proven to be robust in noisy, high-

dimensional data.1 

Even though in the majority of situations, classification is performed by a single 

organization which holds all data by itself, there exists frequent cases where correlated 

data is collected by different stakeholders. For instance, stores such as supermarkets may 

hold transactions information for their customers among different branches, hospitals and 

health centers may collect data from their patients’ medical examinations, etc.  

This is the case where similar attributes are being collected over different instances, 

known as horizontally-partitioned data. There exists another situation, in which different 

attributes are collected among the same instances. For example, consider a bank that 

owns financial data about a certain customer and a real estate company that collects 

information about the properties of the same customer which can be jointly linked for 

serving a supposing scenario of a fraud identification task. The latter case is named as 

vertically-partitioned data. Nevertheless, in both cases, mining of joint datasets can lead 

to more accurate results and is more appropriate than single-source mining.  

Privacy is a high priority concern in modern day data processing and analysis. Even 

though privacy can be preserved when the processing occurs on a centralized dataset 

belonging to a single organization, this is not the case when multiple datasets are 

involved. To tackle this problem, numerous approaches have been proposed, which can 

be roughly divided into two categories.2 The former category tries to deal with this 

problem by randomization, perturbation or some other transformation of the data that 
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minimizes the loss of information, (e.g. through the ability to reconstruct some initial 

distribution). Some examples are the work by Zahidul et al.,3 Agrawal et al.4 and Zhang 

et al.5 In the case of the latter approach, the malicious adversary model is adopted.  

The latter stream of thought focuses on cryptographic or cryptographic-like 

(algebraic) methods which, by principle, are trying to solve the secure multi-party 

computation problem. The work presented in this paper is an approach belonging to this 

category. Depending on the method used, with the assumption of a semi-trusted user 

model, there exist a plethora of privacy preserving methods, in order for a selected data 

mining algorithm to be used. Even though a semi-trusted model is often a realistic one, it 

does not provide sufficient security when dealing with high risk data such as medical or 

financial private data. The problem that needs to be solved is the computation of a data 

mining model using the union of the horizontally-partitioned datasets of N users without 

compromising the privacy of each user’s data.   

Formally, we can say that we want to compute a function ),...,,( 21 nDDDf  where Di 

denotes the dataset of user i with i = 1, 2,… ,N. Each user should only have knowledge  

of his/her own data and additionally any knowledge that can be inferred from the result  

of ),...,,( 21 nDDDf for the data of any other user. The latter definition is also called the 

secure multi-party computation problem. A different way of categorization, as denoted 

by literature,4 is the distinction between a system where data miners also possess data  

and where data processing/mining is done on a central node (trusted party) that does not 

have any data of its own. The method proposed in this work assumes the first scenario, 

which resembles a peer to peer distributed system. The present work presents a privacy 

preserving RBF neural network model, applied on horizontally-partitioned dataset with 

classification and regression capabilities. 

This paper is structured as follows: Section 2 discusses related work on the field and 

Section 3 introduces the basic notions on the RBF neural network model. Section 4 deals 

with the description of the proposed protocol, a simple implementation scenario based on 

the known XOR classification problem, a nonlinearly separated example where RBF is 

known for its effectiveness plus some systematic evaluation of certain aspects of it such 

as complexity, security robustness, classification and regression performance, etc. 

Finally, Section 5 contains some concluding remarks. 

2.   Related Research 

A solution to the generalized problem was given by Yao.6 In this paper, two assumptions 

were considered; the function has input from only two users and that a semi trusted 

model is adopted. Later work by Goldreicht et al.,7 expanded the previous method to 

incorporate application by N users. Even though the aforementioned methods can 

privately compute any function f, the computational complexity is highly depended on 

the complexity of the function and the size of the datasets (in terms of instances and 

attributes). For a modern day application involving vast databases and complex data 

mining algorithms (i.e. functions in some sense) these approaches cannot be used 

effectively.  
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To alleviate this issue, various privacy preserving versions of existing data mining 

algorithms have been proposed, some of them using perturbation/randomization instead 

of trying to solve the generalized problem. The following approaches deal with a large 

number of existing data mining algorithms from the subdomains of classification, cluster-

ing and association discovery. Such examples are privacy preserving Decision Trees,8 

privacy preserving Naïve Bayes,9 privacy preserving k-means clustering,10 privacy 

preserving Support Vector Machines (SVM) classification,11 privacy preserving Bayesian 

Networks and privacy preserving A-priori association rule discovery.12,13 The common 

characteristic of the above methods is that they assume a semi-honest user model as 

mentioned earlier.  

This paper presents a privacy preserving method for the computation of the RBF 

neural network classification/regression model by assuming a malicious user model. The 

protocol proposed is for horizontally partitioned data and can be used by N users. 

 More recent studies demonstrate a way to privately compute set functions (which can 

be applied for private calculation of the RBF model) assuming malicious user model.14 

Nevertheless, the drawback of such methods is that they can be only applied for the 

computation between two users. 

3.   Radial Basis Function (RBF) Networks 

RBF networks are artificial neural networks with one hidden neuron layer.15 The 

topology is depicted in Fig. 2. We can interpret this topology as the output of a neural 

network with one hidden layer of RBF activation functions and a linear output model. It 

is important to stress the main difference between RBF and multilayer perceptrons. The 

activation responses of the nodes in RBF are of a local nature (i.e. the output of each  

RBF node is the same for all points having the same Euclidean distance from their 

respective center and decreases exponentially (using the Gaussian kernel) with the 

distance). In multilayer perceptrons these responses are of a global nature, meaning that 

the output of each neuron is the same for all points on a hyperplane. This intrinsic 

difference has important effects on both convergence and generalization performance. 

 

 

Fig. 2.    Architecture of a radial basis function network: An input vector x is used as input to all radial basis 

functions. The output of the network is a linear combination of the outputs from the radial basis function. 
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RBF are considered to be fast learners while they require a sufficient number of centers 

in order to generalize effectively.16 

Considering the architecture of an RBF neural network again, the kernel function is a 

function of the Euclidean distance between points. Given a set of m known records (in a 

form of a vector of n attributes), a number c of them are selected as radial basis functions 

(or centers kc), where c ≤ m. The output tj, j = 1, 2,… ,m is the known class label for input 

vector sj (of dimensionality n). It is a linear combination of the weighted outputs from the 

centers. The exact formula can be given as: 

 
1

(|| ||)
c

j i j i

i

t w s kρ
=

= −∑  (1) 

where:   

• tj is the known class for vector sj 

• c is the number of selected centers  

• ki denotes the ith center 

• ρ is the chosen radial basis function. Usually, the Gaussian kernel, expressed as: 

 

2

2

|| ||

2(|| ||)

j is k

j is k e σρ

−
−

− =  
(2) 

• wi is the ith weight, corresponding to the ki center. 

The above equation can also be written in matrix form as tw =Φ , where 

(|| ||)ij i js kρΦ = −  

In a classification task (note: we consider regression as similar to classification), 

which belongs to supervised learning processes, we are given a training set of input 

vectors with the class being annotated (i.e. known).  

From the above equation, during training time, we need to solve for w. Since usually 

we select fewer centers than instances (c ≤ m), matrix Φ is not square, thus the solution of 

Φw = t is given by: w = inv(ΦTΦ) × ΦTt, where function inv(X) denotes the inverse matrix 

of matrix X if it exists, or a pseudo-inverse matrix of X otherwise. 

Then, the calculated weights w can then be used to classify new instances (denoted  

by s) as such: 

 
1

( ) (|| ||)
c

i i

i

f s w s kρ
=

= −∑  (3) 

In practical applications, the number of chosen centers c plays an important role for the 

performance of the classifier. Usually, a clustering algorithm is performed before training 

in order to eliminate distant (or noisy) data instances from being selected as potential 

centers. Note that a plethora of available kernel functions exists and the proposed 

protocol is independent of the choice of it. For a thorough insight on RBF theory, please 

refer to Liu and Bozdogan.17 
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4.   Proposed Approach 

In order to help technical topics to be explained in a more understandable fashion, the 

common archetypal characters of Alice and Bob will be adopted. Let us assume that a 

privacy preserving method for calculating the RBF is available, we also assume that 

Alice and Bob (the two users) each have a set of data points (with λ and β their respective 

sizes) and their selected center points. Using this method, both Alice and Bob can 

privately calculate each cell of the matrix Φ that will be used for the calculations of the 

classification model. 

If the resulting matrix is examined we note that each user can infer the distance of an 

unknown data point (a data point of the other user) from each of his known centers. If the 

number of centers is greater than the dimensionality of the data points, all unknown data 

points can be calculated from this matrix. Therefore, a method for the private 

computation of the RBF ρ(x, y) is not a solution. 

As presented in the preliminaries, the calculation of  a vector of weights that fit the 

current selection of centers/data points and that are used for the prediction of the 

unknown function can be found by solving the system Φw = t or by calculating 

 tinvw TT Φ×ΦΦ= )(            (4) 

The elements of the matrices ΦTΦ and ΦTt are by definition: 

 

∑
=

=ΦΦ
m

k

kjkiji
T

1

,)( φφ  (5a) 

 

∑
=

=Φ
m

j

jjii
T

tt

1

)( φ  (5b) 

The above equations show that each cell of the matrices ΦTΦ and ΦTt and is calculated 

using elements of the same row of Φ, therefore since each row of matrix Φ concerns a 

single data point (belonging to either Alice or Bob) the above can be written as: 

 ∑∑
∈∈
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Bl

ljli

Ak
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(6b) 

With the assumption that the centers used are known by both Alice and Bob, Alice  

can calculate: 

 ∑
∈
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kjkiA
T
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,
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(7a) 
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 Privacy Preserving Data Mining in the Malicious Model 

 

1450007-7 

And similarly Bob calculates 

 ∑
∈

=ΦΦ
Bk

kjkiB
T

ji
φφ

,
)(  

(8a) 
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∈

=Φ
Bk

kkiB
T tt

i
φ)(  

(8b) 

They exchange these matrices, sum them, and compute w to obtain the RBF classification 

model. 

To calculate the unknown data points each user must solve a system of 2c2 + 2c 

nonlinear equations with λ(n + 1) unknowns (for Bob) and β(n + 1) unknowns (for Alice). 

If the number of centers c satisfies both, then we have: 

 ccn 22)1( 2 +>+λ  (9a) 

 ccn 22)1( 2 +>+β  (9b) 

Therefore the resulting system is underdetermined. As it will be shown in a subsequent 

paragraph, the number of unknowns (number of data points of each user multiplied by the 

dimensionality) can remain private; therefore even the computation of a local solution is 

infeasible. For simplicity, the condition  

 ),min( βλ<c  (10) 

is used as the point where the system becomes underdetermined (which satisfies both 

inequalities given above). 

Let ui denote the ith user, as before the matrices ΦT
Φ and ΦTt can be written as 

 ∑∑∑
∈∈∈

+++=ΦΦ

Nuz
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21
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∈∈∈

+++=Φ

Nuz

zzi
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uk

kkii
T

tttt φφφ ...)(

21

 
(11b) 

This leads to the conclusion that the method for the private computation of the RBF 

classification model between two users described above can be extended for the use by N 

users. Similarly, each user computes the matrices that correspond to his data points and 

sends it to all other users, w can be calculated from the sums of these matrices. 

4.1.   Center selection sub-protocol 

To be able to implement the method described, the two (or N) users have to come to 

agreement as to how many and what centers to be used (and these have to be known to all 

participants). The answer to the second question is given by the clustering algorithm or 

other center selection method used. Since the number of the chosen centers c has to 

satisfy that 

Nic i ,...,2,1),min( =< λ  
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where λi denotes the number of data points owned by user i, a sub-protocol to calculate 

this number is needed. The above condition is an extension of the condition defined in 6 

to be used by N users. 

One solution is of the following form: 

1. Each user (i) creates a random number ri, sufficiently large such as it is impossible for 

any user to have Nri records. ri is chosen in such way so that this value gives no 

information regarding the number of points held by user i (e.g. knowing that user i has 

less than one quadrillion client records gives no information since there do not exist 

one quadrillion people on earth). This number is announced to all participants. At the 

end of this step all users have a table of the ri values for i = 1, 2,…,N. 

2. The user with the smallest value, for example i, ri reduces the r-values of all users in 

such manner to satisfy that 

i

N

j

njr λ<∑
=1

      and      
i

j

ni

nj

r

r

r

r
= , for each pair i, j 

 where rnj is the new value of rj as is selected by user i. User i is tagged as having 

executed step 2. 

3. Step 2 is repeated until all users have altered the table. 

4. The number of centers c is equal to 

 ∑
=

N

j

jr

1

 (12) 

and each user i will contribute ri centers. 

4.1.1.   Robustness under statistical attacks 

Since each user has control over the table with the r-values, each user has control over c, 

and since each user must lower these values, the result will satisfy the inequality given. 

Obviously, this protocol can be used with the assumption of malicious participants since 

the only non detectable active attack is the use of a crafted initial value (which does not 

pose a security risk), the order the users will change the r-values does not matter though. 

Beyond the satisfaction of the inequality given so that the RBF model can be calculated 

privately it is important that the number of data points owned by each user is kept private. 

Using the above protocol as is, it is straightforward for each adversary to infer which 

users have reduced the number of centers because the current number of centers did not 

satisfy the inequality given for them. Therefore they can estimate their number of data 

points. In order to secure the number of data points of each user, step 2 of the above 

protocol must use a stochastic model in case that no reduction is necessary. In particular 

if we assume the number of data points of each user as a set of iid discrete random 

variables, the probability of user i having inadequate number of  records (and a reduction 

of the number  of centers is needed) is 



 Privacy Preserving Data Mining in the Malicious Model 

 

1450007-9 

 

1

2

1
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 −
i

m

m
 (13) 

where m denotes the number of possible values the random variable “number of data 

points” can have. Simulating the above model with possible values 1000,…,10 000 as 

the number of data points of each user (m = 9001) we observed that on average the 

number of centers is reduced by 16% if there is a reduction. Therefore we modify step 2 

of the aforementioned protocol as such: 

2. The user with the smallest value (for example i) ri. 

If 
1

N

nj ij
r λ

=
≥∑ , reduces the r-values of all users in such manner to satisfy that 

i

N

j

njr λ<∑
=1

     and     
i

j

ni

nj

r

r

r

r
= , for each pair i, j 

 Else, with probability [(m – 1)/2m]k – 1 (approximated by ( ) 1
1
2

k−
), where k indicates at 

what position the ith  user is — e.g. fifth so far —, each rj is reduced by a percentage  

drawn from a uniform distribution with expected value 16%. rnj is the new value of rj 

as is selected by user i. User i is tagged as having executed  step 2. 

The main drawback of the above sub-protocol is that the final number of centers could be 

too low, affecting the RBF generalization performance. The two factors that determine 

the behavior of the protocol are: 

• Variation of the database size of each user 

• The number of users 

Results of the simulation of the above protocol (for the above parameters) are given 

in Fig. 3, in sub-plots (a), (b) and (c).  Each illustration represents a different experiment, 

where the maximum variation between sizes of users’ databases is different. For example, 

in the first graph the user with the fewest points cannot have less than 1/3 of the points of 

the user with the most points. The solid black line indicates the maximum number of 

centers that can be chosen (the number of centers is reduced only if necessary) and the 

dotted line indicates the number of centers chosen when using the modified protocol. 

To summarize, center selection is accomplished by following these steps: 

1. All users execute the protocol outined above (modified to protect the number of 

records of each user) to determine the number of centers each user will contribute  

(r-values). Simulations show that given a sufficient database size discrepancy the 

tradeoff between accuracy (number of centers centers) and privacy is not limiting. 

2. Each user computes his share of centers using his chosen method (e.g. clustering). 

Note that center points do not have to be actual data points necessarily. 

3. Each user sends these neurons to all other users (round-robin methods for the 

propagation are susceptible to malicious nodes that do not participate). 

Now that all the center neurons are known, the proposed protocol described at the 

beginning of this section can be used. 
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Fig. 3.    Final number of centers using both versions of the protocol for various N. (a) 300% maximum 

discrepancy between database sizes, (b) 1 order of magnitude (1000%) and (c) 10 000%. 

(a) 

(b) 

(c) 
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A subtle detail is that the users must also know the order in which to use the chosen 

centers (so that the sum of the computed matrices is the RBF model matrix they are trying to 

compute as described earlier, i.e. use the same row/column ordering when summing 

matrices). Total ordering is easily achievable by sorting the selected centers by their Euclidean 

distance from the zero point. The sorting method (increasing or decreasing) as well as the way 

equal distances are handled are global and predetermined configuration parameters. 

4.2.   Additional security considerations 

As mentioned in the previous paragraphs, using the following inequality  

Nic i ,...,2,1),min( =< λ  

guarantees that the resulting system of equations to be transmitted (by user i) will be 

underdetermined. To further examine the security provided by the scheme we consider 

the system of equations received by an adversary from user N, defined by: 

∑
∈

=ΦΦ

Nuk

kjkiji
T φφ,)(  

∑
∈

=Φ

Nuk

kkii
T

tt φ)(  

It is obvious that the terms of each equation is a sum of functions of all the unknown 

values (the uN set of points held by the user in question). This is due to the fact that the 

quantity ϕki is the result of the kernel function (2) for point k (unknown to adversary) and 

center i (known to all participants). Therefore any sub-set of equations of this system will 

have the same number of unknowns and will be underdetermined.  

Since the state space is known to all participants, and it could be quite small (e.g. 

binary columns) it is possible that the true solution can be inferred from the resulting 

infinite set of solutions given by the underdetermined system.18–20 Fortunately, the 

prerequisites for such analysis do not hold, specifically: 

• The resulting system is non-linear: Even using a linear kernel function (typically 

Gaussian though) leads to sums of products of the unknown for most equations.  

(c2 out of c2 + c will be non-linear). Non-linearity can be guaranteed if using a non-

linear kernel function. 

• The number of unknowns is not known:  The sub-protocol presented keeps the 

number of records of each user private, therefore only a lower bound of c2 exists. The 

higher bound is practically infinite as it can be set arbitrarily high for use by the center 

set size selection sub-protocol. 

A short recap tackling the main attack schemes when adopting a malicious model is given 

below: 

• A non-participating party has no effect on honest users, the computation result will be 

 the same as if the malicious user never showed interest in participating. This is 

obvious by examining Equations (11a) and (11b). 
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• Departure of a party can be detected using a timeout and by the above point, has no 

impact on honest users. 

• Forging the number of centers used by sending more that allocated is easily 

detectable. 

• Using dummy data and centers only impacts the accuracy of the model and not the 

security of the data held by other parties.  The range of kernel functions is positive 

therefore the complexity of the system of equations cannot be reduced by specific 

center neurons. 

For the center selection sub-protocol in particular: 

• A forged initial ri to gain priority or be the last user to execute the protocol has no 

security impact on honest users. The malicious participant could however impact the 

accuracy of the resulting model if deliberately choosing a new very low value for c. A 

global “minimum” number of center neurons can be used to alleviate this. 

• Each user has control over the number of centers that will be used (and it can only be 

further lowered). Therefore the inequality min( ), 1,2,...,ic i Nλ< = can always be 

satisfied for honest users. 

• The number of records of each user will remain private. The only information given 

for the number of records of each user i (denoted by λi) is that ii Nrc << λ , where 

the upper bound can be arbitrarily high. These boundaries cannot be weakened  

since the protocol employs a stochastic model for users that did not need to reduce  

the number of centers to sometimes deliberately do so (in expense of model accuracy). 

4.3.   Application example 

Using a well-known, characteristic example of nonlinearly separable data (i.e. the XOR 

function problem illustrated below), a demonstration of the proposed approach is provided. 

 

Fig. 4.    Data points of the binary XOR problem. 

For the XOR problem there exist only four points for classification, these being (0, 0), 

(0, 1), (1, 0) and (1, 1) respectively. The known classes for these points are 0, 1, 1, 0  
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(or false, true, true, false) correspondingly. Let us assume that Alice owns (0, 0), (0, 1) 

and their class and the rest are owned by Bob. The goal is the private computation of the 

RBF model on the union of these data. 

Let us consider first the centralized computation of the RBF classification model for 

the above problem. Arbitrarily choosing (0, 0) and (1, 1) as the known centers, using 

Gaussian  RBF and with σ = 1 we can calculate the following values of the radial basis 

function: 
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Therefore matrix Φ is given by 
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and the linear system Φw = t is 
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It follows that 
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and 
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The proposed approach for the computation of the RBF model should produce the 

same matrices as above. Since only half of the points are known by each user (i.e. rows of 

Φ), ΦΑ which is known to Alice will be  










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Therefore we compute (ΦΤΦ)Α as 
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and (ΦΤt)Α as 
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(where tA is the vector for the classes of the points owned by Alice, which is part of t). 

Similarly, Bob computes 

⇒















=Φ

−

−−

11

2

1

2

1

e

ee
B  

( ) 











+

+
=
















×
















=ΦΦ=ΦΦ
−−

−−−

−

−−

−

−
−

11

112

1

2

1

2

1

2

1

12

1

12

2

11
ee

eee

e

ee

e

ee
B

T
BB

T
 

and 

( )
















=







×
















=Φ=Φ
−

−

−

−
−

2

1

2

1

2

1

12

1

0

1

1 e

e

e

ee
tt B

T
BB

T
 

Following the proposed protocol, the users will exchange these matrices and add 

them, arriving to the same result, given by 
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( ) ( ) ΦΦ=ΦΦ+ΦΦ T
B

T
A

T        and       ( ) ( ) ttt T
B

T
A

T Φ=Φ+Φ . 

It should be noted that in this example the chosen centers were actual data points 

which is not a pre-requisite for the application of the proposed protocol.  

4.4.   Computational complexity 

The computational complexity of the construction of the RBF classification/regression 

model is defined by the calculation of ΦΤΦ. Since Φ is not necessarily a square matrix, 

fast multiplication algorithms like Strassen or Coppersmith cannot be used, thus the 

computational complexity of calculating ΦΤΦ is O(mcm).  

Using the proposed method ΦΤΦ and ΦΤt are computed in a distributed fashion (with 

a computational cost of O(mcm)), the computational overhead is the calculation of 

w = inv(ΦΤΦ) × ΦΤt by each user which means N inversions of a cxc matrix and N 

multiplications of matrices of sizes cxc and cx1. This gives a computational complexity 

of O(Nc2.376) using the Coppersmith-Winograd algorithm, which, depending on N, can be 

lower than O(mcm). In this case, the computational complexity is the same for both 

methods. 

4.5.   Communication overhead 

The total communication cost of the proposed protocol is  

 
2( 1)( ) ( 1)N N c c N cn− + + −  or )( 22cNO  (14) 

The first term is the cost of sending the two sub-matrices of all users to all users and the 

second is the communication cost so that the chosen centers get known to all users. The 

above do not take into account the center selection sub-protocol that has a communi-

cation complexity of O(N), which does not affect the asymptotic complexity. 

The non privacy preserving calculation has a cost of )(NcnΩ since all users must 

learn the vector w. Since n and N are comparable quantities a safe conclusion is that the 

communication overhead is a factor c at most. 

4.6.   Security issues within the malicious model 

If the malicious user model is adopted the following general attacks must be considered: 

1. Substitution of input 

2. Premature protocol abortion 

3. Deviation from the protocol 

4. No participation 

For point 1, it is clear that the substitution of input from some users will lead to an 

erroneous result but the privacy of the data of honest users is not at risk. This is because 

in order for these data points to be computed an underdetermined system must be solved, 

this system of nonlinear equations is guaranteed to be underdetermined since each user 
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chose so during the center selection. The deviation, abortion, etc., of the protocol are all 

detectable. This is apparent if we consider a simplified version of the protocol: 

1. Determine centers 

2. Send data 

The center selection protocol presented earlier is secure within the malicious user model 

parameters. An characteristic of the proposed method is that it is “online” in the sense 

that if data is available only from, for example, 2 out of 5 users then the result is the same 

as if the protocol was used from only those two users.   

Therefore the abortion of the protocol is not an issue. The only case in which the 

abortion of the protocol impacts honest users is if this happened after the selection of the 

number of centers that will be used but before their transmission (detectable using a 

timeout). In that case the result will be based on fewer centers than the number that could 

have been used (which implies that the model will be less accurate). 

4.7.   Experimental evaluation 

In this section, experiments using the proposed protocol against centralized (local) 

computation are presented, in both classification and regression modeling tasks. More 

specifically, datasets from the UCI Machine Learning repository (http://archive.ics.uci.edu/ 

ml/) were used in order to measure the performance of the proposed privacy-preserving 

RBF methodology. A supplementary experimental round using synthetic data was also 

performed. In all experiments, the standard, centralized RBF model was compared against 

the privacy-preserving one, simulating three parties for the protocol. Each party was 

allocated to a different physical machine, i.e. a Quad-core Intel personal computer with 

3,2 GHz CPU and 6 GB of RAM. The local network was set up using a router to connect 

each machine at 100 Mbit Ethernet connection speed.  

The primary goal of the experimental evaluation is to compare the performance 

between the distributed, privacy-preserving RBF (PP-RBF) method against the local one 

using: 

1. The number of centers that were computed by the proposed protocol. 

2. Multiples of these numbers (only for the local computation, in order to demonstrate 

that it does not affect the performance significantly). 

A secondary aim of this study is to measure time in all computations. Since 

computational complexity has been previously discussed, it is worth mentioning the 

empirical outcomes in each dataset. 

The procedural development of the experiments is outlined below: 

1. Data from each set are shared to each machine in an arbitrary distribution, manually 

chosen to be 15%, 35% and 50% respectively. Recording of total execution time and 

total number of centers that were computed was followed. 

2. Conduct a performance evaluation, using precision and recall for classification and 

root mean squared error for regression. (Please see below for further details). 
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3. Conduct a performance evaluation using the aforementioned metrics, on a single 

machine, using the centralized RBF method with (a) the same number of centers 

chosen by the privacy-preserving method, (b) twice this number and finally (c) 

quadruple this number. 

4.7.1.   Classification 

Table 1 tabulates the information about each dataset used for classification. 

Table 1.    Characteristics of the datasets used for classification. 

Source Dataset Instances Attributes Class Values 

UCI Shuttle StatLog 43500   9 7 

UCI Dermatology    366 35 6 

UCI Votes    435 17 2 

Synthetic (Matlab) Quadratic Discriminant Analysis 10000 50 2 

As previously described, performance metrics for classification tasks include 

Precision (P) and Recall (R), defined as P = TP/(TP + FP) and R = TP/(TP + FN) 

respectively. The following confusion matrix explains the above parameters: 

Confusion Matrix 

P
re

d
ic

te
d

 

cl
a

ss
 

 Actual Class 

True False 

True TP FP 

False FN TN 

 

The following figure depict the outcomes of the evaluation process for each dataset. 

The left vertical axis measures precision and recall while the right vertical axis 

measures execution time in seconds. The labels of each columns correspond to the 

privacy-preserving RBF model (PP-RBF), followed by the number of centers chosen, 

whereas local execution is denoted as “Local RBF”, followed by the multiplier 

coefficient for the number of centers. For example, in the upper left part of Fig. 5, one 

can observe that the PP-RBF method has determined that 47 centers is adequate, thus the 

local execution uses 47, 94 and 188 centers respectively. 

The above results suggest that the privacy-preserving protocol is significantly slower 

that the centralized implementation, however, as both precision and recall metrics 

suggest, the overall performance is very similar to the centralized implementation, even 

when the latter uses significantly larger amount of centers. 

4.7.2.   Regression 

Similarly, the following table presents information on the datasets used for regress- 

ion analysis. The experimental set was again according to the description of the 
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Average Precision/Recall for Shuttle database.  

Number of centers selected by the PP-RBF, c = 47 

 

Average Precision/Recall for Dermatology.  

Number of centers selected by the PP-RBF, c = 9 

 

Average Precision/Recall for Votes database.  

Number of centers selected by the PP-RBF, c = 14 

 

Average Precision/Recall for Synthetic database.  

Number of centers selected by the PP-RBF, c = 38 

Fig. 5.    (Color online) Experimental results in term of Precision/Recall of the proposed approach against local 

RBF classification, using variable number of centers, for each dataset. 

Table 2.    Characteristics of the datasets used for regression. 

Source Dataset Instances Attributes 

UCI Forest Fire     517 13 

UCI Automobile     205 26 

Synthetic (Matlab) Sinus   1000   2 

Synthetic (Matlab) Non-linear regression 10000 50 

previous section. In this case, the performance metric was chosen to be the Root Mean  

Squared Error (Ei), defined by 
2

( )1
1 ( ) ,

n

i ij jj
E n P T

=
= −∑ where P(ij) is the value that 

algorithm i predicted for the sample j (from a set of examples) and Tj is the value of the 

“target value” for the jth example. 

Figures 6 and 7 depict the evaluation outcome for the regression tasks as expressed 

by the error rate and execution time respectively. As one can observe, the behavior of the  
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Fig. 6.    Experimental results in terms of Root Mean Squared Error of the proposed approach (PP-RBF) against 

local RBF regression, using variable number of centers, for each dataset. Inside the callout, the number of 

selected centers by the PP-RBF method. 

 

 

Fig. 7.    Experimental results in terms of execution time (in seconds) of the proposed approach (PP-RBF) 

against local RBF regression, using variable number of centers, for each dataset.  
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proposed approach is analogous to the classification case, meaning that the computational 

effort of the proposed method is, as expected, much higher when compared to the 

centralized one. Nevertheless, the error rate is comparable, particularly for the centralized 

case that exploits the same number of centers to the privacy-preserving model. The 

difference between the performance increases when using a larger number of centers. In 

the case where the local execution incorporates four times the number of centers chosen 

by PP-RPF, it significantly outperforms the prediction ability of the privacy-preserving 

protocol. Arguments for a possible elucidation of this occurrence are discussed in the 

succeeding paragraph. 

4.7.3.   Parameter size 

A direct consequence from the parameters set, so that the proposed protocol protects the 

privacy of each user’s data points, is that there is a limitation to the number of centers 

used. This does not pose a significant problem for discrete target variable problems 

(classification) since usually the number of data points used is orders of magnitude larger 

than the number of possible classes, this makes the limitation that min( ),ic λ<  

i = 1, 2,… ,N a very relaxed one.  

On the other hand, in regression problems, the number of centers may be directly 

analogous to the performance (precision, recall) of the model. Nevertheless, studies by 

Mao et al.,21,22 show that even in regression problems, with the correct selection of 

neurons/centers the number needed is a very small percentage of the total available data 

points. 

Using the proposed method, the clustering/neuron selection is done on subsets of  

the available data (each user’s data points) which will affect performance. This can be 

averted by the use of privacy preserving distributed clustering algorithms, for example 

the method described in Vaidya and Clifton.10 

5.   Conclusions 

The present article described a privacy-preserving RBF classification or regression 

modeling protocol, applied to horizontally-partitioned datasets. As shown above, this 

method can be used while adopting the malicious user model, since it avoids the pitfall of 

using homomorphic cryptographic schemes. In order to do so, the neurons used should be 

known to all users and the number of these neurons is limited by the number of data 

points the smallest subset has. Points that need further study include a method for proven 

privacy of the number of data points each user has (for use by the neuron selection sub-

protocol) and the further exploitation of the impact on performance the proposed method 

has. Experimental evaluation in both classification and regression tasks using standard 

datasets as well as synthetic ones suggest that the private distributed computation of the 

classification model has comparable results to the centralized one in terms of prediction 

performance, while its execution time is comparable to the execution time of local 

computation when the latter is using a significantly larger number of centers. 
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