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Abstract—The establishment of a Public Key Infrastructure 

(PKI) in Mobile Ad Hoc Networks (MANETs) is considered a 
difficult task because of the intrinsic characteristics of these 
networks. The absence of centralized services and the possible 
network partitions make traditional security solutions not 
straightforwardly applicable in MANETs. In this paper, we 
propose a public key management scheme based on a binary tree 
formation of the network’s nodes. Using the binary tree 
structure, certificate chains are easily built between 
communicating nodes that are multi-hops away and the 
cumbersome problem of certificate chain discovery is avoided. 
We argue that our mechanism has several advantages over 
similar solutions, especially when a fair balancing between 
security and performance is terminus. 

I. INTRODUCTION 
Mobile ad hoc networks (MANETs) are currently 

employed in many areas of interest and their self-organized 
nature is a challenge for researchers who wish to implement 
general-purpose protocols in these networks. While many 
routing protocols have been proposed in the literature for 
MANETs the establishment of a public key infrastructure 
(PKI) in these networks has gathered little attention so far. 

The absence of any fixed infrastructure and centralized 
authorities makes public key management for MANETs a 
very difficult task from both an algorithmic and computational 
point of view. The main problem of any public key based 
security system is to make the public key of a node available 
to another by proving in the same time the authenticity of this 
key. The solution to this problem in wired, general-purpose 
networks comes from the use of on-line or off-line servers that 
issue certificates to the nodes of the network. In MANETs the 
absence of centralized services and the possible network 
partitions makes this problem very difficult. Recently, some 
public key management schemes for MANETs have been 
proposed. These schemes are classified in two categories.  The 
first approach uses a set of nodes as servers which can provide 
partial certificates to a combiner by utilizing the concepts of 
threshold secret sharing [2]-[4]. The second category is based 
on the web of trust approach [5],[6]. In this approach, every 
node issues certificates to the nodes it trusts. By considering 
every issued certificate as an edge, a certification graph is 
formed. If two nodes wish to exchange their public keys and 
form a common secret, they find a certification path in the 
graph and they can in this way authenticate each other.  
However, the major disadvantage of this approach is the 
cumbersome problem of finding a certification path in the 

graph. A solution to this problem is proposed in [7] where a 
virtual hierarchy is built among the nodes in the graph.  

In this paper we propose an approach similar to [8] which is 
based on a binary tree formation of the network’s nodes. 
Specifically, two alternative methods for binary tree formation 
are proposed each one having its pros and cons. Using this 
structure, the certificate path discovery problem is avoided 
and the place of each node in the tree can be easily found. 
Moreover, the frequent join and leave events in the network 
are efficiently handled by modifying the tree structure where 
it is needed. In a nutshell, the proposed scheme has several 
advantages over other similar solutions, being more effective 
in terms of join and leave procedures, path discovery, 
certificate management and performance, especially when 
security is not of top priority. On the other hand, when 
security is at stake, we offer a modified version of the 
proposed scheme which can deliver robust security services 
and effectively identify Denial of Service (DoS) attacks not 
addressed by similar mechanisms until now. Last but not least, 
we discuss some methods for establishing initial trust between 
the nodes of a MANET. Whilst this issue is very important, as 
it globally affects nodes’ trustworthiness, it is not adequately 
addressed in the literature so far. The rest of the paper is 
organized as follows. In Section II we show how trust can be 
initially established between two nodes, while in Section III 
we present our binary tree based protocol, consisting of two 
alternative tree formation mechanisms. The certificate chain 
discovery procedure is presented in Section IV. Section V 
provides a comparison with other similar methods, while last 
section offers concluding thoughts and some pointers to future 
work. 

II. ESTABLISHING INITIAL TRUST BETWEEN NODES 
Most works in the field of public key management assume 

either that some sort of trust among network entities exists 
beforehand or that the nodes proceed with pairwise 
certification blindly. After certification, if a node is detected 
to behave aggressively or does not obey to the network rules 
then its certificate is revoked or left expired. Clearly, 
establishing trust among network nodes in a MANET is a very 
challenging issue. Usually there is no external prior context at 
all among the participating entities. Bootstrapping from an 
existing infrastructure or exploiting proximity for expressing 
indexicality, as they are presented in [9], can furnish partial 
solutions towards solving this problem. For these reasons, 
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trust and ad-hoc networks can be thought in a sense as 
contradicting terms. 

In many cases however, it is necessary to initialize security 
from the scratch for protecting subsequent interactions within 
the system. In this context, using proofs of work in 
initialization of trust, and reputation systems can assist in 
establishing a certain degree of trustworthiness according to 
the first approach also known as “proof of work” (PoW) 
[10],[11]. The objective behind PoW systems is that a verifier 
V can make sure that a prover P has successfully performed a 
certain computational task. The basic characteristic of a PoW 
system is that creating the proof must entail a predictable 
amount of work, while verifying the proof must be 
straightforward. Of course such schemes cannot fully 
guarantee that a node can be trusted but they assist in 
automatically exclude some of the bad peers from joining the 
network. 

When no centralized authority exists, as in the case of 
MANET, one method towards deriving positive conclusions 
whether a given node can be trusted is to employ a reputation 
rating system [9],[12]. The reputation ratings can be based on 
direct experience or recommendations by others in the 
network community or a combination of the two. On the other 
hand, while reputation systems work acceptably well in 
centralized realms their application in MANET scenarios 
require a decentralized reputation system, which in turn brings 
several issues in the foreground mostly related with the 
recommendations exchange system design and the avoidance 
of Sybil attacks. Some other answers to the basic question 
“Who trust whom in a MANET and why?” do exist in terms 
of device authentication [13]. Yet, such solutions mandate in 
many cases some a priori configured trust relationship 
between the participating nodes. For example, every device 
joining the network can carry a device certificate proving its 
genuineness. Nevertheless, this requires a PKI infrastructure 
to sign all the certificates during the so-called network 
initialization phase. The same problem applies in the case of 
trusted computing fashioned solutions. In our opinion 

establishing trust among network entities in a MANET 
remains very much an open research problem. 

III. PROPOSED SOLUTIONS 
In this section we will describe two similar solutions for 

building a binary tree of trust between the nodes of any 
MANET. The binary tree approach can greatly contribute to 
path discovery process optimization, and thus can facilitate 
the acquisition of certificate chain between the involved nodes. 
The first one starts from a single randomly chosen node, e.g., 
the root of the tree and continues cascading until all willing-
to-participate nodes join the tree. The other one hastens the 
formation of the binary tree by starting simultaneously from 
several different nodes. 

A. The binary tree based scheme 
The forming protocol starts when a given node, say N0 

sends a special (extended) HELLO message (this is actually a 
RREP with TTL = 1) to its neighbours stating that it wants to 
initiate a tree-based trust relationship with them. Naturally, as 
there is no pre-established trust among any network nodes in a 
typical MANET, the adjacent nodes can accept the invitation 
or simply reject it. Accepting such an invitation from a given 
node means that the invited node is willing to proceed with a 
mutual-certification process with the initiator. The purpose of 
the protocol is to form a binary tree of trust between all 
network entities. So, each node can provide certificates to a 
maximum of two neighboring nodes. All nodes have a {public, 
private} key pair created locally, so for every node pair each 
part signs the public key of the other using its private key and 
sends the result towards the other part. This tree forming 
procedure depicted in Figure 1 continues cascading requests 
from the root of the tree (N0) down to the leafs. Assuming 
that the network is dense enough the probability of having 
some - willing to participate - nodes left out of this process is 
negligible.

 

 
Fig. 1 Formation of the binary tree of trust 
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Figure 1_I depicts the initial state of the network as well as 
each node’s signal range. At some point, N0 initiates the 
protocol by sending pairwise-certification requests towards 
N1, N2 and N3 correspondingly. The latter nodes agree to 
participate, so they are pairwise-certified with N0. After that, 
they send pairwise-certification requests towards their 
neighbours, e.g., N3 invites N4, N5 and N6. This situation is 
illustrated in Figure 1_II. The protocol continues until the 
binary tree depicted in Figure 1_III is formed. When a given 
parent-node has completed the mutual-certification procedure 
with two child-nodes, it will drop any similar request coming 
from its neighbours.  For example, in Figure 1_II node N0 
sends requests to N1, N2 and N3 but drops the reply from N3 
since N1 and N2 have answered quicker to its request and 
have already been added in the binary tree. In case a child-
node has already mutually-certified with a parent-node 
ignores post-dated pairwise certification requests send by 
others. To accomplish this each node must send in its HELLO 
messages its state in the tree, i.e., the bit 0 or 1 for non-
members and members correspondingly. This is necessary in 
order to avoid redundant pairwise-certifications or loops 
between the leafs of the same tree. For instance, as N6 has set 
up already a relationship with N2, drops the request 
originating from N3. It is worth noting that all nodes are 
supposed to be equal and the notation “parent” or “child” 
denotes their position in the tree. It is also stressed that for 
unsecured communications the nodes can use any possible 
available route. For example, if N5 is in the range of N9 they 
can exchange data directly. 

However, to establish a secure relationship they must first 
obtain the certificate one another via the binary tree of trust, to 
setup a symmetric session key, and finally communicate 
directly as the case may be.   

As already mentioned in Section II the main question of the 
certification procedure remains: “how can a node be 
convinced that a given public key, say K(N0) truly belongs to 
node N0, so as to proceed with certification?” Whilst all the 
aforementioned solutions can be applied in our case, we adopt 
a “commitment-driven” solution. That is, every node commits 
itself to the scheme; to be disciplinarian and behave 
legitimately. Therefore, initially, every node certifies the other 
for a sort period of time, say for some hours. After that, if the 
aspirant node proves good intentions its certificate is renewed 
with a greater validity period. It is worth noting that detecting 
misbehaving nodes among one-hop nodes is quite easy due to 
the broadcast nature of wireless communications. The 
certified node must present a valid certificate to get a new one. 
Otherwise, the renewal procedure fails. Even though the 
proposed method imposes increased node overhead during its 
first stages, balances some time later after achieving a relative 
high degree of trust level between all participants. 

B. The parallelized binary tree based scheme 
The binary tree based scheme described in the previous 

section, can be easily parallelized in order to improve 
efficiency. Instead of starting the protocol with a given node, 
one can initiate the protocol by using two or more nodes. The 
number of these nodes can be a parameter in the whole 

network. Every such root node leads to the construction of a 
small binary tree (which can be considered as a small cluster) 
and all these trees can be linked together by their root nodes 
forming a bigger network of trust. Linking different binary 
trees into one also implies that every node on each tree carries 
also the unique identity of the tree, i.e., the IP address of the 
root. 

Consider for example, the network in Figure 2_I. Suppose 
that nodes N0, N4 and N11 are randomly selected and they 
start the execution of the binary tree based scheme. After, the 
first step of the protocol, three subtrees have been created (see 
Figure 2_II). Every subtree should have a unique tree_ID e.g., 
the IP address of the root node. When a node accepts an 
invitation from one of its neighbours, it should check whether 
this node has the same tree_ID. If the two nodes' tree_IDs are 
the same, then the invited node does not accept the invitation 
(otherwise a cycle would be formed). In the case that the 
tree_IDs are different, then both nodes agree randomly in one 
of the tree_IDs and inform all the other nodes in the two 
subtrees in order to all adopt the same tree_ID. For example, 
in Figure 2_III node N8 has sent an invitation to node N11, 
node N11 has accepted it (since N8 and N11 belong to 
different subtrees) and the rest of the nodes are notified that 
they belong now in the same binary tree. If N8 sends an 
invitation now to its other neighbour (N5), then this request 
will be denied since N8 and N5 belong now in the same 
subtree. 

However, there is another one parameter that should be 
taken care of in order to guarantee that a binary tree is created. 
A node having accepted three invitations should not accept 
another one, even in the case that this request is coming from 
a different subtree node. If this restriction is not satisfied, then 
the formed tree would not be binary. When all nodes in the 
network have been visited (Figure 2_III), a node having two 
adjacent edges should be chosen to be the root. For example, 
if node N4 is chosen in Figure 2_III then the formed tree is the 
one in Figure 2_IV. Generally, this scheme performs faster 
when compared to those described in the previous subsection. 
However, this comes at a cost in complexity, i.e., the merging 
process of different subtrees. 

C. Join and leave events 
According to the proposed schemes the join and leave 

procedures are straightforward. Briefly, when a node leaves or 
an entrant joins the network only a branch of the tree is 
affected. More specifically, supposing that N4 in Figure 1_III 
leaves the community, e.g., moves out of range, nodes N8, N5 
will seek parent in N3 or N6 depending on the topology and 
signal strength. 

On the other hand, thinking of a scenario where N12 joins 
the network near the range of N3 it will establish a 
relationship with either N3 or N5, N6, N9. It is implied that in 
the rare case a newcomer cannot immediately find an 
association it must wait for some time until some other node 
roams out of that specific coverage area (a parent loses one 
child). In such occasions there is always the possibility for the 
node to roam to a new position until it finds a pair. 
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Lastly, the most complex leave situation is when the root 
node, say N0 in Figure 1_III, leaves the tree for some reason. 
Then N1 or N2, that is, the nodes closer to him, must replace 
N0. Assuming that N1 takes over the role of the root he must 
abandon N3, keep the connection with N4, and establish a 
direct relationship with N2. Consequently, N3 must seek for 
another parent. Even in this case the join procedure is 
expected to complete after very few interactions, i.e., new 
mutual-certifications between the corresponding nodes. 
 

 
Fig. 2 Example of the parallelized binary tree based scheme 

IV. CERTIFICATE CHAIN DISCOVERY PROCEDURE 
For secure communication any two nodes must be 

authenticated mutually. This means that each part must 
acquire and verify the certificate of the other. This can be 
fulfilled by constructing a certificate chain between them. In 
the following we consider an approach based on Ad hoc On-
Demand Distance Vector (AODV) [1]. However, our method 
can be embedded through proper extensions or slight 
modifications to any existing routing mechanism like 
Dynamic Source Routing (DSR), Highly Dynamic 
Destination-Sequenced Distance-Vector Routing (DSDV) and 
Cluster Based Routing Protocol (CBRP) to mention just a few. 

AODV defines three message types which are Route 
Requests (RREQs), Route Replies (RREPs), and Route Errors 
(RERRs). All message types are received via UDP, and 
normal IP header processing applies. According to AODV, 
every time a route to a new destination is needed, the node 
broadcasts a RREQ to discover a route to the destination. Note, 
that a route can be determined either when the RREQ reaches 
the destination itself, or an intermediate node that holds a 
fresh route to the destination [1]. Upon that, the route is made 
available to the initiator of the RREQ by unicasting a RREP 
back to him. This is possible because each node receiving the 

initial request caches a route back to the originator. The binary 
structure further assists route discovery as each branch of the 
tree can be quickly identified by a binary sequence. For 
instance, referring to Figure 1_III and starting always from the 
root, the route to N5 is ‘110’, where ‘1’ means left and ‘0’ 
right. This fact actually revokes the need for route 
optimization in every hop making the whole procedure 
particularly effective. Taking Figure 1_III for example, in the 
following we describe the necessary steps for N8 to build a 
certification chain with N10. 
(a) To set up the required certificate chain N8 broadcasts a 

RREQ towards N10. This means that the IP address of 
N10 is already known (maybe from a previous RREQ). 
In order to indicate to the destination that this RREQ 
aims to a certificate chain establishment, N8 inserts the 
value ‘11’ in the RREQ reserved field as shown in 
Figure 3_I. Note that this field is always sent as ‘0’ in 
AODV and is ignored on reception [1]. By setting the 
‘11’ value in the reserved field, N8 also ensures that this 
specific RREQ will reach its final destination. That is, 
every intermediate node must forward the RREQ to its 
final destination. 

(b) Upon reception of RREQ N10 constructs a 
corresponding RREP. First, it marks the reserved field 
with the value ‘11’ meaning that the packet refers to a 
certificate chain reply. Finally, N10 appends its own 
certificate to the message, signs the {RREP || Cert(N10)} 
block  using its private key and appends it to the RREP. 
The format of the modified RREP packet is depicted in 
Figure 3_II. The resultant packet is sent back to N8 as a 
reply. 

Fig. 3 RREQ towards N10 & RREP towards N8 

(c) All intermediate nodes must inspect every RREP that 
contains ‘11’ in the reserved field. Specifically, N7 will 
check the genuineness of the signature Sig(RREP || 
Cert(N10))N10 contained in the received message. Note, 
that N7 has the public key of N10, so it can securely 
verify the signature. Every attempt by means of a man-
in-the-middle attack to alter the certificate of N10 or the 
original RREP will produce an error. Assuming that the 
signature check returns true, N7 will sign the {RREP || 
Cert(N10)} using his own private key and forward the 
result along with the {RREP || Cert(N10)} block to N2. 
All the nodes in the path, that is, N2, N0, N1, N4 will 
repeat the same steps, as N7 did, until RREP reaches N8. 
If an error occurs at a given hop, that is the signature is 
not valid, the process is halted, and a RERRs is 
generated and forwarded back to the initiator. We 
should mention that it is important for every node in the 
chain to sign not only the original RREP but also the 
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certificate of the target node (N10 in our case). This is 
done to prevent DoS attacks where the certificate of say 
N10 is altered when in transit by a man-in-the–middle 
attacker. So, N8 will receive a bogus certificate of N10. 
Later on, N8 and N10 having the certificates one 
another will try to establish a symmetric key by utilizing 
e.g., a challenge – response protocol. Naturally, the 
process will fail because the public key of N10 is not 
valid. This of course leads to a DoS and consequently, 
the nodes must repeat the certificate chain discovery 
procedure from the beginning. 

(d) As soon as {RREP || Cert(N10) || Sig(RREP || 
Cert(N10)N4 } arrives to its final destination, N8 will 
check the validity of the signature using the local copy 
of N4’s public key. If everything is correct N8 will 
prepare his RREP to be sent towards N10. The 
procedure is exactly the same as before but in the 
reverse order. This will allow N10 to successfully 
acquire the certificate of N8. Figure 4 provides an 
overview of all the aforementioned steps. 

(e) After the two ends have acquired the certificate of each 
other they can agree on a per session shared secret 
(symmetric key) to communicate securely. 

V. ANALYSIS & COMPARISON WITH RELATED WORK 
Several mechanisms for self-organized public key 

management in MANETs have been proposed in the literature 
so far. All solutions can be briefly categorized into localized 
schemes [6],[14], cluster based [8] and hierarchical ones [7]. 
Naturally, our solution is also classified into the hierarchical 
category. According to localized schemes each node must be 
mutually-certified with all its neighbours. As a result, the 
overhead for issuing, storing and maintaining certificates is far 
larger when compared to our method. Moreover, join and 
leave procedures for localized mechanisms are generally more 
complex and require frequent interplay between many nodes 
of the network. According to our solution each node is 
associated with maximum three other nodes and the join and 
leave procedures are straightforward, excluding that of which 
the root node leaves the tree (see section III.C). 

Another important issue is that localized schemes build 
one-way trust relationship, not mutual. Putting it another way, 
only the certificate of the destination is acquired by the 
initiator, not the opposite as our scheme mandates. However, 
in order for the two entities to become mutually authenticated 
each one of them must successfully obtain the public key 
certificate of the other. Even worse, according to localized 
schemes, the certificates of all the involved in the chain nodes 
are stacked all the way back to the initiator. Therefore, the 
more nodes in the certification path the bigger the RREP 
message towards the initiator will be. On the downside, our 
mechanism copes with this problem similarly to [8] which is a 
cluster based protocol. Specifically, each node in the path 
must locally authenticate any certification path message 
received from a previous node in the path. If this check fails 
then an error message is instantly sent towards the initiator. 
Furthermore, according to [8] each node in the path must send 

its certificate to the next mode for validating the RREP’s 
signature. However, this is not necessary (on the contrary it 
creates extra overhead to each node) because every node 
retains a pairwise-certification relationship with the previous 
and next one in the path. So, every node uses its local copy of 
the certificate of the previous node to validate the signature. 
Actually, this is the safest way to do this. To the best of our 
knowledge, localized schemes do not protect the integrity of 
the vital parts of the certificate chain messages by having each 
node signing them, thus they are prone to DoS attack 
scenarios. Another issue with cluster based oriented solutions 
like [8] is that only the RREP is integrity protected (signed); 
not the certificate of the destination node. This of course can 
lead to DoS attacks as already described in Section III. 
Moreover, the certificate chain discovery procedure in [8], 
which as already mentioned is cluster based, requires route 
optimization in each hop, which is also avoided by our 
scheme; actually all routes are already optimized due to the  
(virtual) binary-tree-style topology. 

One possible problem with all solutions arises when a node 
in the path becomes compromised. In such an event, the 
malicious node could craft the certificate of the destination, 
construct as normal the: Sig(RREP || 
bogus_Cert(Destination))private_key_of_malicious_node_y part and 
forward the message to the next hop as usual. The next node 
in the chain is not able to detect the forgery, so the initiator 
will eventually receive a bad certificate. This situation also 
leads to a DoS incident and breaks down the whole chain. 
Note, that no solution proposed so far deals with such an 
attack. Actually, alike scenarios can be avoided with a 
significant extra overhead. More analytically, each node in the 
path, after putting its own certificate, must re-sign the 
Sig(RREP || Cert(initiator))y part over again with its private 
key and append each own certificate to the message too. 

For instance, the corresponding message for N7 to be sent 
towards N2 will be: {RREP || Cert(N10) || Cert(N7) || 
Sig(Sig(RREP || Cert(N10))N10 || Cert(N7))N7}. By doing so, 
the initiator (�8) will finally receive a re-encapsulated 
signature by all nodes in the path as well as all nodes’ 
certificates. Starting from the inner signature, �8 can 
sequentially recalculate all the signatures until the outer one. 
Actually, N8 can detect the point of failure and alert other 
nodes to exclude the misbehaving member. Although this 
procedure adds more overhead, has also a positive outcome. 
That is, each node acquires valid certificates of all other nodes 
in the chain. Storing the certificates until they become expired 
can accelerate future communications. In every case one must 
balance wisely between performance and security. So, if 
security is terminus then the aforementioned solution must be 
followed. 

VI. CONCLUSIONS AND FUTURE WORK 
In this paper we proposed a public key management 

scheme based on a binary tree formation of the network’s 
nodes. Specifically, we discussed and analyzed two variations 
of a method for building a binary tree of trust between the 
nodes of MANET. The first one initiates the formation 
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procedure from a single randomly chosen node, while the 
other hastens the formation of the binary tree by starting 
simultaneously from several different nodes. As future work 

we would like to thoroughly evaluate our mechanism in terms 
of service times and security robustness. 

 
 

 

 
Fig. 4 Certificate chain discovery procedure between N8 and N10 
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