
Binary Tree Based Public-Key Management for
Mobile Ad Hoc Networks

Georgios Kambourakis, Elisavet Konstantinou and Stefanos Gritzalis
Info-Sec-Lab Laboratory of Information and Communications Systems Security

University of the Aegean, Samos GR-83200, Greece
{gkamb, ekonstantinou, sgritz}@aegean.gr

Abstract—The establishment of a Public Key Infrastructure

(PKI) in Mobile Ad Hoc Networks (MANETs) is considered a
difficult task because of the intrinsic characteristics of these
networks. The absence of centralized services and the possible
network partitions make traditional security solutions not
straightforwardly applicable in MANETs. In this paper, we
propose a public key management scheme based on a binary tree
formation of the network’s nodes. Using the binary tree
structure, certificate chains are easily built between
communicating nodes that are multi-hops away and the
cumbersome problem of certificate chain discovery is avoided.
We argue that our mechanism has several advantages over
similar solutions, especially when a fair balancing between
security and performance is terminus.

I. INTRODUCTION
Mobile ad hoc networks (MANETs) are currently

employed in many areas of interest and their self-organized
nature is a challenge for researchers who wish to implement
general-purpose protocols in these networks. While many
routing protocols have been proposed in the literature for
MANETs the establishment of a public key infrastructure
(PKI) in these networks has gathered little attention so far.

The absence of any fixed infrastructure and centralized
authorities makes public key management for MANETs a
very difficult task from both an algorithmic and computational
point of view. The main problem of any public key based
security system is to make the public key of a node available
to another by proving in the same time the authenticity of this
key. The solution to this problem in wired, general-purpose
networks comes from the use of on-line or off-line servers that
issue certificates to the nodes of the network. In MANETs the
absence of centralized services and the possible network
partitions makes this problem very difficult. Recently, some
public key management schemes for MANETs have been
proposed. These schemes are classified in two categories. The
first approach uses a set of nodes as servers which can provide
partial certificates to a combiner by utilizing the concepts of
threshold secret sharing [2]-[4]. The second category is based
on the web of trust approach [5],[6]. In this approach, every
node issues certificates to the nodes it trusts. By considering
every issued certificate as an edge, a certification graph is
formed. If two nodes wish to exchange their public keys and
form a common secret, they find a certification path in the
graph and they can in this way authenticate each other.
However, the major disadvantage of this approach is the
cumbersome problem of finding a certification path in the

graph. A solution to this problem is proposed in [7] where a
virtual hierarchy is built among the nodes in the graph.

In this paper we propose an approach similar to [8] which is
based on a binary tree formation of the network’s nodes.
Specifically, two alternative methods for binary tree formation
are proposed each one having its pros and cons. Using this
structure, the certificate path discovery problem is avoided
and the place of each node in the tree can be easily found.
Moreover, the frequent join and leave events in the network
are efficiently handled by modifying the tree structure where
it is needed. In a nutshell, the proposed scheme has several
advantages over other similar solutions, being more effective
in terms of join and leave procedures, path discovery,
certificate management and performance, especially when
security is not of top priority. On the other hand, when
security is at stake, we offer a modified version of the
proposed scheme which can deliver robust security services
and effectively identify Denial of Service (DoS) attacks not
addressed by similar mechanisms until now. Last but not least,
we discuss some methods for establishing initial trust between
the nodes of a MANET. Whilst this issue is very important, as
it globally affects nodes’ trustworthiness, it is not adequately
addressed in the literature so far. The rest of the paper is
organized as follows. In Section II we show how trust can be
initially established between two nodes, while in Section III
we present our binary tree based protocol, consisting of two
alternative tree formation mechanisms. The certificate chain
discovery procedure is presented in Section IV. Section V
provides a comparison with other similar methods, while last
section offers concluding thoughts and some pointers to future
work.

II. ESTABLISHING INITIAL TRUST BETWEEN NODES
Most works in the field of public key management assume

either that some sort of trust among network entities exists
beforehand or that the nodes proceed with pairwise
certification blindly. After certification, if a node is detected
to behave aggressively or does not obey to the network rules
then its certificate is revoked or left expired. Clearly,
establishing trust among network nodes in a MANET is a very
challenging issue. Usually there is no external prior context at
all among the participating entities. Bootstrapping from an
existing infrastructure or exploiting proximity for expressing
indexicality, as they are presented in [9], can furnish partial
solutions towards solving this problem. For these reasons,

978-1-4244-2489-4/08/$20.00 © 2008 IEEE IEEE ISWCS 2008687

trust and ad-hoc networks can be thought in a sense as
contradicting terms.

In many cases however, it is necessary to initialize security
from the scratch for protecting subsequent interactions within
the system. In this context, using proofs of work in
initialization of trust, and reputation systems can assist in
establishing a certain degree of trustworthiness according to
the first approach also known as “proof of work” (PoW)
[10],[11]. The objective behind PoW systems is that a verifier
V can make sure that a prover P has successfully performed a
certain computational task. The basic characteristic of a PoW
system is that creating the proof must entail a predictable
amount of work, while verifying the proof must be
straightforward. Of course such schemes cannot fully
guarantee that a node can be trusted but they assist in
automatically exclude some of the bad peers from joining the
network.

When no centralized authority exists, as in the case of
MANET, one method towards deriving positive conclusions
whether a given node can be trusted is to employ a reputation
rating system [9],[12]. The reputation ratings can be based on
direct experience or recommendations by others in the
network community or a combination of the two. On the other
hand, while reputation systems work acceptably well in
centralized realms their application in MANET scenarios
require a decentralized reputation system, which in turn brings
several issues in the foreground mostly related with the
recommendations exchange system design and the avoidance
of Sybil attacks. Some other answers to the basic question
“Who trust whom in a MANET and why?” do exist in terms
of device authentication [13]. Yet, such solutions mandate in
many cases some a priori configured trust relationship
between the participating nodes. For example, every device
joining the network can carry a device certificate proving its
genuineness. Nevertheless, this requires a PKI infrastructure
to sign all the certificates during the so-called network
initialization phase. The same problem applies in the case of
trusted computing fashioned solutions. In our opinion

establishing trust among network entities in a MANET
remains very much an open research problem.

III. PROPOSED SOLUTIONS
In this section we will describe two similar solutions for

building a binary tree of trust between the nodes of any
MANET. The binary tree approach can greatly contribute to
path discovery process optimization, and thus can facilitate
the acquisition of certificate chain between the involved nodes.
The first one starts from a single randomly chosen node, e.g.,
the root of the tree and continues cascading until all willing-
to-participate nodes join the tree. The other one hastens the
formation of the binary tree by starting simultaneously from
several different nodes.

A. The binary tree based scheme
The forming protocol starts when a given node, say N0

sends a special (extended) HELLO message (this is actually a
RREP with TTL = 1) to its neighbours stating that it wants to
initiate a tree-based trust relationship with them. Naturally, as
there is no pre-established trust among any network nodes in a
typical MANET, the adjacent nodes can accept the invitation
or simply reject it. Accepting such an invitation from a given
node means that the invited node is willing to proceed with a
mutual-certification process with the initiator. The purpose of
the protocol is to form a binary tree of trust between all
network entities. So, each node can provide certificates to a
maximum of two neighboring nodes. All nodes have a {public,
private} key pair created locally, so for every node pair each
part signs the public key of the other using its private key and
sends the result towards the other part. This tree forming
procedure depicted in Figure 1 continues cascading requests
from the root of the tree (N0) down to the leafs. Assuming
that the network is dense enough the probability of having
some - willing to participate - nodes left out of this process is
negligible.

Fig. 1 Formation of the binary tree of trust

688

Figure 1_I depicts the initial state of the network as well as
each node’s signal range. At some point, N0 initiates the
protocol by sending pairwise-certification requests towards
N1, N2 and N3 correspondingly. The latter nodes agree to
participate, so they are pairwise-certified with N0. After that,
they send pairwise-certification requests towards their
neighbours, e.g., N3 invites N4, N5 and N6. This situation is
illustrated in Figure 1_II. The protocol continues until the
binary tree depicted in Figure 1_III is formed. When a given
parent-node has completed the mutual-certification procedure
with two child-nodes, it will drop any similar request coming
from its neighbours. For example, in Figure 1_II node N0
sends requests to N1, N2 and N3 but drops the reply from N3
since N1 and N2 have answered quicker to its request and
have already been added in the binary tree. In case a child-
node has already mutually-certified with a parent-node
ignores post-dated pairwise certification requests send by
others. To accomplish this each node must send in its HELLO
messages its state in the tree, i.e., the bit 0 or 1 for non-
members and members correspondingly. This is necessary in
order to avoid redundant pairwise-certifications or loops
between the leafs of the same tree. For instance, as N6 has set
up already a relationship with N2, drops the request
originating from N3. It is worth noting that all nodes are
supposed to be equal and the notation “parent” or “child”
denotes their position in the tree. It is also stressed that for
unsecured communications the nodes can use any possible
available route. For example, if N5 is in the range of N9 they
can exchange data directly.

However, to establish a secure relationship they must first
obtain the certificate one another via the binary tree of trust, to
setup a symmetric session key, and finally communicate
directly as the case may be.

As already mentioned in Section II the main question of the
certification procedure remains: “how can a node be
convinced that a given public key, say K(N0) truly belongs to
node N0, so as to proceed with certification?” Whilst all the
aforementioned solutions can be applied in our case, we adopt
a “commitment-driven” solution. That is, every node commits
itself to the scheme; to be disciplinarian and behave
legitimately. Therefore, initially, every node certifies the other
for a sort period of time, say for some hours. After that, if the
aspirant node proves good intentions its certificate is renewed
with a greater validity period. It is worth noting that detecting
misbehaving nodes among one-hop nodes is quite easy due to
the broadcast nature of wireless communications. The
certified node must present a valid certificate to get a new one.
Otherwise, the renewal procedure fails. Even though the
proposed method imposes increased node overhead during its
first stages, balances some time later after achieving a relative
high degree of trust level between all participants.

B. The parallelized binary tree based scheme
The binary tree based scheme described in the previous

section, can be easily parallelized in order to improve
efficiency. Instead of starting the protocol with a given node,
one can initiate the protocol by using two or more nodes. The
number of these nodes can be a parameter in the whole

network. Every such root node leads to the construction of a
small binary tree (which can be considered as a small cluster)
and all these trees can be linked together by their root nodes
forming a bigger network of trust. Linking different binary
trees into one also implies that every node on each tree carries
also the unique identity of the tree, i.e., the IP address of the
root.

Consider for example, the network in Figure 2_I. Suppose
that nodes N0, N4 and N11 are randomly selected and they
start the execution of the binary tree based scheme. After, the
first step of the protocol, three subtrees have been created (see
Figure 2_II). Every subtree should have a unique tree_ID e.g.,
the IP address of the root node. When a node accepts an
invitation from one of its neighbours, it should check whether
this node has the same tree_ID. If the two nodes' tree_IDs are
the same, then the invited node does not accept the invitation
(otherwise a cycle would be formed). In the case that the
tree_IDs are different, then both nodes agree randomly in one
of the tree_IDs and inform all the other nodes in the two
subtrees in order to all adopt the same tree_ID. For example,
in Figure 2_III node N8 has sent an invitation to node N11,
node N11 has accepted it (since N8 and N11 belong to
different subtrees) and the rest of the nodes are notified that
they belong now in the same binary tree. If N8 sends an
invitation now to its other neighbour (N5), then this request
will be denied since N8 and N5 belong now in the same
subtree.

However, there is another one parameter that should be
taken care of in order to guarantee that a binary tree is created.
A node having accepted three invitations should not accept
another one, even in the case that this request is coming from
a different subtree node. If this restriction is not satisfied, then
the formed tree would not be binary. When all nodes in the
network have been visited (Figure 2_III), a node having two
adjacent edges should be chosen to be the root. For example,
if node N4 is chosen in Figure 2_III then the formed tree is the
one in Figure 2_IV. Generally, this scheme performs faster
when compared to those described in the previous subsection.
However, this comes at a cost in complexity, i.e., the merging
process of different subtrees.

C. Join and leave events
According to the proposed schemes the join and leave

procedures are straightforward. Briefly, when a node leaves or
an entrant joins the network only a branch of the tree is
affected. More specifically, supposing that N4 in Figure 1_III
leaves the community, e.g., moves out of range, nodes N8, N5
will seek parent in N3 or N6 depending on the topology and
signal strength.

On the other hand, thinking of a scenario where N12 joins
the network near the range of N3 it will establish a
relationship with either N3 or N5, N6, N9. It is implied that in
the rare case a newcomer cannot immediately find an
association it must wait for some time until some other node
roams out of that specific coverage area (a parent loses one
child). In such occasions there is always the possibility for the
node to roam to a new position until it finds a pair.

689

Lastly, the most complex leave situation is when the root
node, say N0 in Figure 1_III, leaves the tree for some reason.
Then N1 or N2, that is, the nodes closer to him, must replace
N0. Assuming that N1 takes over the role of the root he must
abandon N3, keep the connection with N4, and establish a
direct relationship with N2. Consequently, N3 must seek for
another parent. Even in this case the join procedure is
expected to complete after very few interactions, i.e., new
mutual-certifications between the corresponding nodes.

Fig. 2 Example of the parallelized binary tree based scheme

IV. CERTIFICATE CHAIN DISCOVERY PROCEDURE
For secure communication any two nodes must be

authenticated mutually. This means that each part must
acquire and verify the certificate of the other. This can be
fulfilled by constructing a certificate chain between them. In
the following we consider an approach based on Ad hoc On-
Demand Distance Vector (AODV) [1]. However, our method
can be embedded through proper extensions or slight
modifications to any existing routing mechanism like
Dynamic Source Routing (DSR), Highly Dynamic
Destination-Sequenced Distance-Vector Routing (DSDV) and
Cluster Based Routing Protocol (CBRP) to mention just a few.

AODV defines three message types which are Route
Requests (RREQs), Route Replies (RREPs), and Route Errors
(RERRs). All message types are received via UDP, and
normal IP header processing applies. According to AODV,
every time a route to a new destination is needed, the node
broadcasts a RREQ to discover a route to the destination. Note,
that a route can be determined either when the RREQ reaches
the destination itself, or an intermediate node that holds a
fresh route to the destination [1]. Upon that, the route is made
available to the initiator of the RREQ by unicasting a RREP
back to him. This is possible because each node receiving the

initial request caches a route back to the originator. The binary
structure further assists route discovery as each branch of the
tree can be quickly identified by a binary sequence. For
instance, referring to Figure 1_III and starting always from the
root, the route to N5 is ‘110’, where ‘1’ means left and ‘0’
right. This fact actually revokes the need for route
optimization in every hop making the whole procedure
particularly effective. Taking Figure 1_III for example, in the
following we describe the necessary steps for N8 to build a
certification chain with N10.
(a) To set up the required certificate chain N8 broadcasts a

RREQ towards N10. This means that the IP address of
N10 is already known (maybe from a previous RREQ).
In order to indicate to the destination that this RREQ
aims to a certificate chain establishment, N8 inserts the
value ‘11’ in the RREQ reserved field as shown in
Figure 3_I. Note that this field is always sent as ‘0’ in
AODV and is ignored on reception [1]. By setting the
‘11’ value in the reserved field, N8 also ensures that this
specific RREQ will reach its final destination. That is,
every intermediate node must forward the RREQ to its
final destination.

(b) Upon reception of RREQ N10 constructs a
corresponding RREP. First, it marks the reserved field
with the value ‘11’ meaning that the packet refers to a
certificate chain reply. Finally, N10 appends its own
certificate to the message, signs the {RREP || Cert(N10)}
block using its private key and appends it to the RREP.
The format of the modified RREP packet is depicted in
Figure 3_II. The resultant packet is sent back to N8 as a
reply.

Fig. 3 RREQ towards N10 & RREP towards N8

(c) All intermediate nodes must inspect every RREP that
contains ‘11’ in the reserved field. Specifically, N7 will
check the genuineness of the signature Sig(RREP ||
Cert(N10))N10 contained in the received message. Note,
that N7 has the public key of N10, so it can securely
verify the signature. Every attempt by means of a man-
in-the-middle attack to alter the certificate of N10 or the
original RREP will produce an error. Assuming that the
signature check returns true, N7 will sign the {RREP ||
Cert(N10)} using his own private key and forward the
result along with the {RREP || Cert(N10)} block to N2.
All the nodes in the path, that is, N2, N0, N1, N4 will
repeat the same steps, as N7 did, until RREP reaches N8.
If an error occurs at a given hop, that is the signature is
not valid, the process is halted, and a RERRs is
generated and forwarded back to the initiator. We
should mention that it is important for every node in the
chain to sign not only the original RREP but also the

690

certificate of the target node (N10 in our case). This is
done to prevent DoS attacks where the certificate of say
N10 is altered when in transit by a man-in-the–middle
attacker. So, N8 will receive a bogus certificate of N10.
Later on, N8 and N10 having the certificates one
another will try to establish a symmetric key by utilizing
e.g., a challenge – response protocol. Naturally, the
process will fail because the public key of N10 is not
valid. This of course leads to a DoS and consequently,
the nodes must repeat the certificate chain discovery
procedure from the beginning.

(d) As soon as {RREP || Cert(N10) || Sig(RREP ||
Cert(N10)N4 } arrives to its final destination, N8 will
check the validity of the signature using the local copy
of N4’s public key. If everything is correct N8 will
prepare his RREP to be sent towards N10. The
procedure is exactly the same as before but in the
reverse order. This will allow N10 to successfully
acquire the certificate of N8. Figure 4 provides an
overview of all the aforementioned steps.

(e) After the two ends have acquired the certificate of each
other they can agree on a per session shared secret
(symmetric key) to communicate securely.

V. ANALYSIS & COMPARISON WITH RELATED WORK
Several mechanisms for self-organized public key

management in MANETs have been proposed in the literature
so far. All solutions can be briefly categorized into localized
schemes [6],[14], cluster based [8] and hierarchical ones [7].
Naturally, our solution is also classified into the hierarchical
category. According to localized schemes each node must be
mutually-certified with all its neighbours. As a result, the
overhead for issuing, storing and maintaining certificates is far
larger when compared to our method. Moreover, join and
leave procedures for localized mechanisms are generally more
complex and require frequent interplay between many nodes
of the network. According to our solution each node is
associated with maximum three other nodes and the join and
leave procedures are straightforward, excluding that of which
the root node leaves the tree (see section III.C).

Another important issue is that localized schemes build
one-way trust relationship, not mutual. Putting it another way,
only the certificate of the destination is acquired by the
initiator, not the opposite as our scheme mandates. However,
in order for the two entities to become mutually authenticated
each one of them must successfully obtain the public key
certificate of the other. Even worse, according to localized
schemes, the certificates of all the involved in the chain nodes
are stacked all the way back to the initiator. Therefore, the
more nodes in the certification path the bigger the RREP
message towards the initiator will be. On the downside, our
mechanism copes with this problem similarly to [8] which is a
cluster based protocol. Specifically, each node in the path
must locally authenticate any certification path message
received from a previous node in the path. If this check fails
then an error message is instantly sent towards the initiator.
Furthermore, according to [8] each node in the path must send

its certificate to the next mode for validating the RREP’s
signature. However, this is not necessary (on the contrary it
creates extra overhead to each node) because every node
retains a pairwise-certification relationship with the previous
and next one in the path. So, every node uses its local copy of
the certificate of the previous node to validate the signature.
Actually, this is the safest way to do this. To the best of our
knowledge, localized schemes do not protect the integrity of
the vital parts of the certificate chain messages by having each
node signing them, thus they are prone to DoS attack
scenarios. Another issue with cluster based oriented solutions
like [8] is that only the RREP is integrity protected (signed);
not the certificate of the destination node. This of course can
lead to DoS attacks as already described in Section III.
Moreover, the certificate chain discovery procedure in [8],
which as already mentioned is cluster based, requires route
optimization in each hop, which is also avoided by our
scheme; actually all routes are already optimized due to the
(virtual) binary-tree-style topology.

One possible problem with all solutions arises when a node
in the path becomes compromised. In such an event, the
malicious node could craft the certificate of the destination,
construct as normal the: Sig(RREP ||
bogus_Cert(Destination))private_key_of_malicious_node_y part and
forward the message to the next hop as usual. The next node
in the chain is not able to detect the forgery, so the initiator
will eventually receive a bad certificate. This situation also
leads to a DoS incident and breaks down the whole chain.
Note, that no solution proposed so far deals with such an
attack. Actually, alike scenarios can be avoided with a
significant extra overhead. More analytically, each node in the
path, after putting its own certificate, must re-sign the
Sig(RREP || Cert(initiator))y part over again with its private
key and append each own certificate to the message too.

For instance, the corresponding message for N7 to be sent
towards N2 will be: {RREP || Cert(N10) || Cert(N7) ||
Sig(Sig(RREP || Cert(N10))N10 || Cert(N7))N7}. By doing so,
the initiator (�8) will finally receive a re-encapsulated
signature by all nodes in the path as well as all nodes’
certificates. Starting from the inner signature, �8 can
sequentially recalculate all the signatures until the outer one.
Actually, N8 can detect the point of failure and alert other
nodes to exclude the misbehaving member. Although this
procedure adds more overhead, has also a positive outcome.
That is, each node acquires valid certificates of all other nodes
in the chain. Storing the certificates until they become expired
can accelerate future communications. In every case one must
balance wisely between performance and security. So, if
security is terminus then the aforementioned solution must be
followed.

VI. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a public key management

scheme based on a binary tree formation of the network’s
nodes. Specifically, we discussed and analyzed two variations
of a method for building a binary tree of trust between the
nodes of MANET. The first one initiates the formation

691

procedure from a single randomly chosen node, while the
other hastens the formation of the binary tree by starting
simultaneously from several different nodes. As future work

we would like to thoroughly evaluate our mechanism in terms
of service times and security robustness.

Fig. 4 Certificate chain discovery procedure between N8 and N10

REFERENCES

[1] Perkins, C., Belding-Royer, E., Das, S., “Ad hoc On-Demand Distance
Vector (AODV) Routing”, IETF RFC 3561, July 2003.

[2] Zhou, L., and Haas, Z. L., “Securing ad hoc networks”, IEEE Network,
Vol. 13, Issue 6, pp. 24-30, IEEE press, 1999.

[3] Kong, J., Zerfos, P., Luo, H., Lu, S., Zhang, L., “Providing robust and
ubiquitous security support for mobile ad-hoc networks”, Proceedings
of ICNP 2001, pp. 251-260, Nov. 2001.

[4] Yi, S., Kravets, R., “MOCA: Mobile certificate authority for wireless
ad-hoc networks”, Proceedings of PKI ‘03, 2003.

[5] Hubaux, J.-P., Buttyan, L., Capkun, S., “The quest for security in
mobile ad hoc networks”, proceedings of ACM Mobihoc, 2001.

[6] Li, R., Li., J., Liu, P., Chen, H.-H., “On-demand public-key
management for mobile ad hoc networks”, Wireless Communications
& Mobile Computing, Vol. 6(3), pp. 295 - 306, May 2006, Wiley.

[7] Satizábal, C. Hernández-Serrano, J., Forné, J., Pegueroles, J.,
“Building a virtual hierarchy to simplify certification path discovery in
mobile ad-hoc networks”, Computer Communications, Vol. 30 , Issue
7, pp. 1498-1512, May 2007, Elsevier.

[8] Hahn, G., Kwon, T., Kim, S. and Song, J., “Cluster-Based Certificate
Chain for Mobile Ad Hoc Networks”, proceedings of the ICCSA 2006,
pp. 769-778, LNCS 3981, Springer.

[9] Asokan, N., Tarkkala, L., “Issues in initializing security”, proceedings
of ISSPIT, pp. 460 – 465, 2005.

[10] Dwork, C., Naor, M., “Pricing via Processing or Combating Junk Mail",
CRYPTO'92, pp. 139-147, 1992.

[11] Abadi, M., Burrows, M., Manasse, M., Wobber, T., ”Moderately Hard,
Memory-Bound Functions”, ACM Trans. Inter. Tech., Vol. 5, No. 2,
pp. 299-327, 2005.

[12] Marias, G. F., Flitzanis, D., Mandalas, K., and Georgiadis, P.,
“Cooperation Enforcement Schemes for MANETs: A Survey”, Wiley's
Journal of Wireless Communications and Mobile Computing, Special
Issue, Vol.6, Issue 3, pp. 319-332, 2006.

[13] Kambourakis, G., Gritzalis, S., “On Device Authentication in Wireless
Networks: Present issues and future challenges”, TrustBus’07, LNCS,
2007.

[14] Capkun, S.; Buttyan, L., Hubaux, J.-P., “Self-organized public-key
management for mobile ad hoc networks”, IEEE Transactions on
Mobile Computing Volume 2, Issue 1, Jan.-March 2003, pp. 52 – 64,
IEEE press.

692

